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Abstract. In this study, we present a new numerical model for crystal growth in a
vertical solidification system. This model takes into account the buoyancy induced
convective flow and its effect on the crystal growth process. The evolution of the crys-
tal growth interface is simulated using the phase-field method. A semi-implicit lattice
kinetics solver based on the Boltzmann equation is employed to model the unsteady
incompressible flow. This model is used to investigate the effect of furnace operational
conditions on crystal growth interface profiles and growth velocities. For a simple
case of macroscopic radial growth, the phase-field model is validated against an ana-
lytical solution. The numerical simulations reveal that for a certain set of temperature
boundary conditions, the heat transport in the melt near the phase interface is diffusion
dominant and advection is suppressed.
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1 Introduction

Numerical simulations of crystal growth from the melt in vertical gradient furnaces [1,
2] has attracted significant attention due to the importance of crystals in a number of
medical imaging applications and for radiation detection [3–5].
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Vertical growth methods include both high-pressure and ambient pressure methods
with recent advances in ambient pressure methods coming to the fore [5]. Ambient pres-
sure methods offer reduce experimental complexity and have been shown to produce
large single crystal volumes with properties as good or better than high-pressure meth-
ods, thus, there has been a shift towards low-pressure methods using vertical gradient
furnaces and sealed ampoule growth [5]. However, material uniformity, property homo-
geneity, and crystal defects remain difficult problems to solve for certain systems grown
in this manner, such as Cd-Zn-Te (CZT). Modeling and simulation techniques have been
advanced as a route to understanding the solidification process in complex systems and
are thought to provide a more systematic method for determining optimal growth con-
ditions and improved materials.

Recent advances in computer models for growth processes in the vertical gradient
furnace have been useful in understanding the general effects of furnace operating con-
ditions on the growth of crystals [6]. As such, computer models became a valuable tool
in the furnace design and optimization of operating conditions [7–11]. At the same time,
most existing models use a simplistic description of crystal/melt interface and its dy-
namic. Furthermore, in these models it was assumed that the latent heat dissipates with-
out disturbing the continuity of the heat fluxes at the interface. This approach fails to
account for the effects of crystal anisotropy and solidification kinetics, which may be im-
portant in the simulations of crystal dendritic growth or lateral overgrowth [12,13]. Here,
we have developed a phase-field based model to simulate crystal growth in the vertical
gradient furnace. The model takes into account the effects of anisotropy in kinetic and in-
terfacial free energy coefficients as well as the effect of front curvature on crystal growth.
The model was used to study the effects of operating and boundary conditions on crystal
growth in a prototypical vertical gradient furnace.

The phase-field method has become a standard tool to tackle free-boundary problems
and simulate interfacial pattern formation phenomena in solidification and other sys-
tems [14–16]. The phase-field method avoids explicit front tracking by replacing sharp
interfaces with spatial-smoothly diffused boundaries between bulk phases. Thus, the
phase-field method is suitable for simulating time-dependent free-boundary problems,
especially when complex geometries are present. In a phase-field model, an order pa-
rameter, phase-field variable ψ is introduced to smoothly vary from one value in the
liquid region to another one in the solid region. This method is not only used to simu-
late solidification but is also able to track solid-solid phase transformations and is suit-
able for general microstructural evolution problems. Thus, solidification and subsequent
microstructural coarsening during high-temperature furnace processing can all be ad-
dressed within the same simulation framework.

The main difficulty for simulating the fluid field in the liquid region is the time-
dependent growth interface between the liquid and solid phase. Hence a semi-implicit
lattice kinetics model [17] based on the Boltzmann equation method [18–21]is used for
solving the fluid flow instead of using the traditional computational fluid dynamics
(CFD) method based on solving Navier-Stokes equations. One of the advantages of the
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lattice method is dealing with complicated or moving solid boundaries. Besides that,
it is well known that the original lattice Boltzmann model(LBM) shows high efficiency
in parallel computation, and the lattice kinetics method [22]was designed to eliminate
the need to store and transmit the elements of the particle velocity distribution function,
which was believed to theoretically reduce the data transmit between compute nodes
for massive parallel computation [17, 23]. The semi-implicit lattice kinetics method is
modified from the original lattice kinetics method, and increases the stability for large
time steps [17]. In the following section we present the differential equations that govern
the melt convection, heat conduction and solidification process in the vertical gradient
furnace. In Section 3, we present the numerical model and steps for the solution of the
governing equations. In Section 4, we discuss the results of numerical simulations for
different operational conditions.

2 Governing equations

Melt flow and crystal growth in a vertical gradient furnace can be described by a Boltz-
mann equation with the simple BGK collision operator and energy conservation equa-
tions:

∂ f

∂t
+~u·∇ f =

f − f eq

Υ
, x∈Ωl , (2.1a)
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∇2T, x∈Ωs, (2.1c)

ρLVi =Ks∂nTs−Kl∂nTl , x∈Γ, (2.1d)

Ti−Tm=− ϑ

ρL
KTm−βVi, x∈Γ, (2.1e)

where Ωl is the domain occupied by the liquid phase (melt), Ωs is the domain occupied
by the solid phase (crystal), Γ=Ωs

⋂
Ωl is the interface between crystal and melt, βT is

thermal expansion, ϑ is the surface tension, L is the latent heat, β is the kinetic coefficient,
u and v are components of velocity ~u in the x and y directions (y is in the vertical direc-
tion), P is pressure, ρl , ρs, Kl, Ks, Cl

p and Cs
p represent the density, thermal conductivity

and specific heat capacity of the solution and solid, Ti and Tm are interface temperature
and melting temperature respectively. Vi is normal interfacial velocity. f is the particle
distribution function (PDF), and represents the probability of finding particles at position
~x with velocity ~u at time t. f eq is the equilibrium Maxwell distribution [24]. Υ is a linear
relaxation parameter. More details and numerical methods for the Boltzmann equation
will be introduced in following sections. Eqs. (2.1) are subject to the following boundary
conditions:
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At the top of the crucible wall: The no-slip, no-flow boundary conditions are employed,
(i.e., u=0 and v=0) and the thermal boundary condition is:

∂T

∂n
=0. (2.2)

At the vertical crucible wall: The no-slip boundary conditions are employed at the ver-
tical walls between the surrounding crucible and the liquid. Thus, u= 0 and v= 0. The
thermal boundary conditions for the vertical crucible walls are:

−κs
∂T

∂n
=h(T−Tf (y)), (2.3)

where h is the heat transfer coefficient, Tf (y) is the ambient temperature inside the fur-
nace along the quartz ampoule walls, and can be calculated by Eq. (2.4) [25]

Tf (y)=
1

2

{
Tc+Th+(Th−Tc)tanh

[(
dTf (0)

dy

)
(y−yi)

(Th−Tc)

]}
, (2.4)

where Tc is cold-end temperature, Th is hot-end temperature, and
dTf (0)

dy is the maximum

axial derivative of the ampoule-wall temperature profile. yi is the approximate position
of the melt-solid interface. Generally, there are two main types of setup for applying
the temperature profile Tf (y) on the ampoule wall. The first one is choosing a reference
frame fixed with the imposed temperature distribution on a stationary wall [26]. In this
frame, the ampoule and solidified material move axially at velocity −Upull, equal in mag-
nitude and opposite in sign to the velocity of the phase interface in a frame moving with
the ampoule. We call this setup fixed temperature profile setup, and yi is a fixed value.
The second one is letting the frame move with the moving ampoule, so the melt-solid
interface grows at velocity Upull. We call this setup time-dependent temperature profile
setup, and yi = yi0+Upullt. The first setup causes less computation cost on updating the
computation mesh, so it is favorable for the interface tracking method. The model in
this paper does not need to update the computation mesh when interface is moving, so
the computation cost for our model is the same for these two kinds of wall temperature
profile setup.

3 Numerical methods

Eqs. (2.1) constitute a (highly non-linear) free-boundary problem due to the presence of
moving solid-liquid interface Γ. The phase-field method [15] was used to reduce the free-
boundary problem to a system of coupled Boltzmann, energy, and phase-field equations.
In the phase-field equation, the state variable ψ takes a value of 1 in the solid phase
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(crystal) and −1 in the liquid phase (melt)
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where Ω=Ωl
⋃

Ωs. W(n)=Woas(n)2, Wo is the dimensionless interface thickness, τ(n)=
τoas(n)2 is the dimensionless characteristic time of atom attachment, and, for crystals
with four-fold symmetry, as(n) = (1−3ǫ4)[1+ǫ′(n4

x+n4
y)]. In the sharp interface limit,

the phase-field parameters Wo, τo and λ are related to the physical parameters do and

β via do = a1
W
λ and β(n)= a1τ(n)

λW(n)
[1−a2

W(n)
Dτ(n)

], where a1 =0.8839 and a2 =0.6267 [15]. The

vanishing interface kinetics (β=0) limit can be achieved by setting λ= 1
a2

ατo

W2
o
. In the energy

equations, αl and αs are the thermal diffusivity of liquid and solid phases respectively.
The model is only valid in the symmetric conductivity limit, so αl = αs [15, 27]. Sψ is a
heat source term caused by the phase transition, and it varies in different kinds of wall
temperature profile setups. For the first case, fixed wall temperature profile setup, Sψ =

L
2Cp

∂ψ
∂y Upull. For the second setup, time-dependent temperature profile setup, Sψ=

L
2Cp

∂ψ
∂t .

A semi-implicit lattice method [17] is employed to solve the Boltzmann equation for
the fluid field. After being discretized in momentum, spatial, and time spaces, the parti-
cle distribution function f becomes a finite set of displacement vectors connecting each
lattice site to adjacent sites. Fig. 1 shows the lattice directions for the commonly used
2-dimensional D2Q9 lattice. The discrete external forcing term (F̃) can be calculated in
the lattice scheme by [28]:

F̃i=
(

1− 1

2Υ

)
wi

(
~ei−~u

c2
s

+
~ei ·~u

c4
s

~ei

)
·~F, (3.2)

where ~F is the external force. In the semi-implicit lattice method, the pressure and veloc-
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Figure 1: D2Q9 lattice.

ity can be updated by the following equations:

pn+1=
pn+η(∑N

i=1 f~x−~ei
i,ρ )n+1−η 3

2 w0
ρ~u·~u

c2

1+ η
c2

s
(1−w0)

, (3.3)

~un+1=
(ρ~u)n+(∑N

i=1~ei f~x−~ei

i,~u )n+1+~S0

ρ+ρ 6ν
c2∆t

+S1

, (3.4)

where η is the derivative of pressure with respect to density. The superscript n indicates
values at the beginning of the time step, and the n+1 stands for estimated values at the
end of the time step. N is the total number of lattice directions excluding the stationary
0 direction. ν is the fluid viscosity, c=∆x/∆t is the reference lattice speed, and c2

s = c2/3
is the lattice sound speed [29]. wi is the weight coefficient, for a D2Q9 system, w0 =4/9,

w1−4=1/9 and w5−8=1/36 [30]. ~ei is the unit vector. ~S0 is momentum source terms. The
buoyancy force can be applied in the term ~S0

~S0=~gρ∆tβT(T−T0), (3.5)

where T0 is a reference temperature,~g is gravity, and βT is thermal expansion. S1 is a mass
source term, which can be used to emulate Darcy resistance in a porous medium [17]. In

Eqs. (3.3) and (3.4), f~x−~ei
i,ρ and f~x−~ei

i,~u represents the particle probability distribution arriving

from the neighboring lattice site in the −~ei direction, and they can be calculated by

fi,~u =wi
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p
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6νρ

c2∆t

3~ei ·~u
c2

+ρ

(
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2c4
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, (3.6)

fi,ρ =wi
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s

+ρ
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c2
+ρ

(
9(~ei ·~u)2

2c4
− 3~u·~u

2c2

)]
. (3.7)

One of the lattice method’s strengths is dealing with boundary conditions. It is very
easy to apply a complicated or moving solid wall boundary condition, like phase inter-
face, to lattice method for flow simulation. Halfway bounce back treatment is a widely
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used simple boundary condition for lattice methods [31–33], which requires the solid
boundary is in the middle of two lattices, and offers second order accuracy. For practical
problems, especially for curved boundary, the solid boundary cannot always locate at
the middle of two lattices perfectly. Hence,for more accurate and smoother velocity field
near curved boundary without requiring high mesh resolution, Filipova and Hänel (FH)
proposed a curved wall boundary condition [34], which later was improved by Mei, Luo
and Shyy (MLS). Bao, Yuan and Schaefer further refined this technique to solve the mass
conserving problem when body force is applied on the fluid field [35], and this boundary
condition treatment was used in the proposed model. For a moving boundary, such as
the phase interface, the momentum source from moving wall can be incorporated into
distribution function as 2wiρ

3
c2~ei~uw, where ~uw is wall speed. This implicit lattice kinetics

method has the advantage of being stable at larger time steps but requiring an iterative
solution. The detailed iteration method and steps were introduced in Rector’s work [17].

A finite difference method with uniform mesh size was used to solve the system of
governing partial equations for energy and phase-field. To sufficiently resolve the phase-
field function, the grid size should satisfy the condition Wo ≤2.5∆ [15], and Wo =2.5∆ is
used in the tests that are presented in the following sections. The remaining phase-field
parameters were chosen as follows:

λ= a1
Wo

do
, τo =

a2W2
o λ

α
. (3.8)

The main steps for crystal growth simulation are: (1) Calculate velocity profile in lattice
kinetics scheme with known temperature from last time step to estimate the buoyancy
force; (2) Calculate temperature profile with the known velocity profile from step 1; (3)
Calculate the phase-field with the known temperature profile from step 2; (4) Update
the position of the phase interface, and construct the liquid and solid domain; (5) Go to
next time step. We use the program ParaFlow for the solving fluid flow and temperature
field and combine with a finite difference solver for solving the phase-field. ParaFlow is
a large-scale parallel computational fluid dynamics program based on the semi-implicit
lattice method [23].

4 Results and discussion

4.1 Phase-field model validation

To test the phase-field model, the growth of the circular seed due to solidification in
the absence of melt was simulated numerically and resulting temperature profiles and
the radius of the seed as a function of time are compared with analytical solutions [36].
We consider the case in which the interface separating solid and liquid phases is at ra-
dius r = R(t), the region r > R contains liquid and the region r < R contains solid. Ini-
tially the interface is located at r = a and the temperature of the liquid phase is equal
to the melting temperature Tm. For t > 0 the surface r = a is maintained at the T = Tin
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Table 1: Physical properties of the growing crystal and melting solution used in the simulations of crystal growth
in the vertical gradient furnace.

Physical parameter Values

Specific heat Cp (J kg−1 K−1) 380

Thermal conductivity k (W m−1 K−1) 42.8

Mass density ρ (kg m−3) 5633

Thermal expansion βT (K−1) 1.2×10−4

Viscosity µ (kg m−1 s−1) 7.35×10−4

Melting temperature (K) 1211.4 k

Latent heat L (J kg−1) 4.65×105

Surface tension ϑ (N m−1) 0.554

(Tin <Tm) and the temperature at r=∞ is equal to the melting temperature. Table 1 lists
the physical properties of the benchmark solidification problem (thermal constants ρ, cp,
k, κ were assumed to be the same for liquid and solid phases). In the phase-field simu-
lations, a [0,0.1m]×[0,0.1m] domain was used, and Fig. 2 shows the simulation domain
configurations. Different grid sizes (△)are used for testing the results’ convergence for
different grid sizes and interface thicknesses (W0). The tested grid sizes are △=0.1/100,
0.1/300, 0.1/600, 0.1/1000, and 0.1/3000[m], and the corresponding interface thicknesses
are W0 = 2118d0, 706d0, 353d0, 211d0, and 71d0 (W0 = 2.5△ is used). The phase-field pa-
rameters were chosen based on Eq. (3.8). This choice of parameters yields β = 0. For
most of the materials, the capillary length is on the order of 10−6[m]. For the interface
with a radius of curvature greater than 0.0015[m] and β=0, the interfacial temperature is
approximately equal to the melting temperature. The analytical solution for the solidifi-
cation problem with T=Tm at the interface is given by [36]:

2R2ln(R/a)−R2+a2=4KTmt/Lρ, (4.1)

Figure 2: Sketch of the simulation domain for the model validation.
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and

T=
Tm ln(r/a)

ln(R/a)
, a< r<R, (4.2a)

T=Tm, r>R. (4.2b)

Fig. 3 compares results obtained from the phase-field model with the analytical so-
lutions. Fig. 3 (a) presents the radius of the solidification interface as a function of time
for different W0. For W0 < 706d0, the results can match the analytical solution perfectly.
Fig. 3 (b) describes the thermal field as a function of radius at different times obtained
from the analytical solutions and our phase-field model for △=0.1/600[m] (W0=353d0).
Good agreement is observed between the numerical results and the analytical solutions
in Fig. 3, confirming a high accuracy of the phase-field model for the parameters shown
in Table 1. Similar parameters were used in crystal growth simulations presented in the
following section.

(a) (b)

Figure 3: (a) Radius of the solidification interface as a function of time and (b) thermal field as a function of
radius at different times for a solidification problem with cylindrical symmetry.

4.2 Simulations of the crystal growth in vertical gradient furnaces

This section presents the results of numerical simulations of the crystal growth in the
vertical gradient furnaces. The crucible in the simulations is 0.016[m] wide, 0.32[m] tall,
and the size of lattice ∆=1×10−4[m]. The heat transfer coefficient, h=150.0 [W m−2 K−1],
is used in the boundary condition shown in Eq. (2.3). The solidification of the melt in the
furnace is controlled by the temperature profile Tf (y) which is shown in Eq. (2.4). Hot-
end temperature Th = 1223[K], and cold-end temperature Tc = 1154[K]. Fig. 4 shows the
sketch of initial setup of the solidification system and temperature profile on the vertical
wall. For initial conditions, ~u=0, ψ=−1 in liquid, ψ=1 in solid, and the initial temper-
ature is calculated from Eq. (2.4). The Reynolds number of the system is about 1.7×104,
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Figure 4: Sketch of the vertical solidification system and temperature profile on the vertical wall.

so the k−ǫ turbulence model was incorporated with the proposed semi-implicit lattice
kinetics model through Filippova’s approach [37].

Tables 1 and 2 provide the physical properties and non-dimensionless numbers used
in the simulations. Fig. 5 shows the contour of temperature, streamline, and phase in-
terface in a vertical crystal growth system with pulling speed Upull =6.668×10−6[m s−1].

The color of the streamline represents the magnitude of velocity U=
√

u2+v2. The crystal
growth reaches steady state around 200 seconds. Fig. 6 shows the contour of tempera-
ture, streamline, and phase interface in a furnace with pulling speed Upull = 1.3336×
10−5[m s−1]. The maximum magnitude of velocity in the weak circulation near the phase
interface is 5.5×10−4[ms−1] for the slower pulling speed case (Upull=6.668×10−6[ms−1]),

and 9.8×10−4[m s−1] for the faster pulling speed case (Upull = 1.3336×10−5[m s−1]). It
is clear that the faster pulling speed causes stronger circulation near the phase inter-
face, which may decrease the quality of the crystal during the growth process. Hence,
it should be balanced between crystal quality and productivity. Fig. 7 shows the com-
parison of phase interface shapes between different pulling speeds in a vertical crystal
growth system. Higher pulling speed causes bigger curvature of the phase interface. The

Table 2: Non-dimensionless numbers and their characteristic values used in the simulations of crystal growth in
the vertical gradient furnace.

Dimensionless numbers Expression Characteristic values

Rayleigh number Ra=
gβT∆TL3

µαl
1.81×105

Prandtl number Pr=µ/α 6.53×10−3
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Figure 5: Temperature distribution (left half side),
streamline (right half side), and phase interface
in vertical crystal growth system with pull speed
Upull =6.668×10−6m s−1 at 1, 3, 6, and 200 sec-
ond.

Figure 6: Temperature distribution (left half side),
streamline (right half side), and phase interface
in vertical crystal growth system with pull speed
Upull=1.3336×10−5ms−1 at 1, 3, 6, and 200 sec-
ond.

results shown in Fig. 5 and Fig. 6 are for the fixed wall temperature setup. If a time-
dependent temperature profile setup is applied on the walls, the melt-solid interface will
move up. Fig. 8 shows the comparison of phase interface shapes between two kinds of
frame setups. The phase interface shapes are the same in the both cases, that means they
are equivalent for the vertical gradient solidification system.

4.3 Effect of melt convection on crystal growth

In this section, the effect of convection in the melt region on the temperature distribution
and crystal growth is studied. Fig. 9 shows the temperature distribution in the furnace



G. Lin et al. / Commun. Comput. Phys., 15 (2014), pp. 76-92 87

Figure 7: Comparison of phase interface shape between different pulling speeds in furnace.

Figure 8: Comparison of phase interface shapes in the two different frame setups. Black line is from the fixed
wall temperature profile setup, and red square is for the time-dependent temperature profile setup.

with and without considering the convection and turbulent fluid transport in the melt
region. Generally, the effect of convection in the melt region is very limited, and the tem-
perature distributions are almost the same in the both cases, especially near the phase
interface. This means that the effect of convection is significantly suppressed, which
meets the requirement of the vertical gradient crystal growth system. Fig. 10 shows the
comparison of phase interface shapes between the case with and without convection. The
convection makes the concave crystal surfaces a little bit less curvilinear. The convection
helps take the latent heat during phase transition away from the phase interface, so the
temperature is reduced a little near the interface, which causes the shape to be less curvi-
linear. Because the circulation is very weak, the temperature difference near the phase
interface caused by the convection is small.
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Figure 9: Temperature distribution in the furnace with and without considering the convection effects (left half
side: no convection, right half side: with convection.

Figure 10: Comparison of phase interface shape between the case with and without considering convection
effects.
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4.4 Efficiency of the parallel computation

As mentioned in the previous section, a primary advantage of lattice-based CFD methods
are their inherent parallelism [17, 23]. High Rayleigh number convection in melt region
requires a small time step. Also, crystal growth is a very slow procedure, which often
lasts several hours to a few days. The simulation of crystal growth is computation in-
tensive when the Rayleigh number is high, especially for a 3-dimension simulation. In
this section, we examine the efficiency of the parallel computation of the model. Fig. 11
shows the speedup for the program running on 10, 20, 40, and 80 CPU cores. The pro-
gram shows considerable speedup with increasing the number of CPU cores. Because the
tested cases are only 2-dimensional problems with only about 250 thousand lattices, per-
formance of ParaFlow decreases for 80 or more cores. The performance can be improved
by further program optimization and by applying the model to practical 3-dimensional
problems.

Figure 11: Speedup for the program running on 10, 20, 40, and 80 CPU cores.

5 Summary and discussion

A coupled lattice kinetics phase-field model for crystal growth in the vertical gradient
furnace has been developed. The model takes into account buoyancy induced convective
flow and its effect on the crystal growth process. Comparison of the phase-field model
with an analytical solution for the macro-scale radial solidification shows the high accu-
racy of the phase-field approach in cases where capillary length is significantly smaller
than the radius of the front curvature. This makes the phase-field applicable for the
wide range of free-boundary problems including modeling of the macro-scale interface
evolution during solidification in the vertical gradient furnace. A semi-implicit lattice ki-
netics method is used for solving the convection in the melt region. In the present work,
the model was used to study the effect of the furnace operational conditions on crystal
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growth. Because of the low computational cost on dealing with moving or transforming
solid boundary conditions, two kinds of wall temperature profile setups can be applied
in the proposed numerical model without efficiency difference. The simulation results
shows the same melt-solid interface shape for these two kinds of setup, which proves
that they are equivalent. Besides that, the wall temperature profile as shown in Eq. (2.4)
can significantly suppress the effect of convection, especially near the melt-solid inter-
face, which meets the requirement of the vertical gradient solidification system, and is
favorable for high quality crystal growth. Finally, the parallel computation shows con-
siderable speedup on the 2-dimension tests. It will be an efficient and powerful numerical
simulation tool for further study in 3-dimension cases.
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