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Abstract. The modified embedded atom method (MEAM) with the universal form of
embedding function and a modified energy term along with the pair potential has
been employed to determine the potentials for alkali metals: Na, K, by fitting to the
Cauchy pressure (C12−C44)/2, shear constants Gv =(C11−C12+3C44)/5 and C44, the
cohesive energy and the vacancy formation energy. The obtained potentials are used
to calculate the phonon dispersions of these metals. Using these calculated phonons
we evaluate the local density of states of neighbours of vacancy using Green’s function
method. The local density of states of neighbours of vacancy has been used to calculate
mean square displacements of these atoms and formation entropy of vacancy. The
calculated mean square displacements of both 1st and 2nd neighbours of vacancy are
found to be lower than that of host atom. The calculated phonon dispersions agree well
with the experimental phonon dispersion curves and the calculated results of vacancy
formation entropy compare well with the other available results.
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1 Introduction

Daw and Baskes [1, 2] have derived so-called embedded atom method (EAM) on the ba-
sis of quasi atom concept and density functional theory, which has been widely used in
computer simulation studies of various defects. Adams and Foiles [3] developed a model
for bcc metal V (Vanadium) with the Morse form as pair potential between atoms; this
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model was successfully applied to calculate many-body potentials. Johnson and Oh [4]
have presented an analytic EAM model for bcc metals in which electron density is taken
as a decreasing function of the distance. The model has been found to be suitable for bcc
alkali and transition metals except for Cr because of negative curvature required for em-
bedding function. By introducing a few modifications in the Johnson and Oh model [4],
Guellil and Adams [5] have applied the EAM Model in the study of alkali and transition
metals and their alloys. These authors haves studied the phonon dispersions along with
the thermal and surface properties of these metals and alloys. An analytical embedded
atom method for bcc transition metals including Cr was developed by Ouyang et al. [6].
In order to fit the negative Cauchy pressure an analytic modified term was introduced.
The model has been successfully applied to study the dilute solution enthalpy and for-
mation enthalpy of binary alloys of some transition metals.

Hu et al. [7] have employed the modified form of analytical EAM model proposed by
Zhang et al. [8] by including the three contributions to the total energy term. The poten-
tial parameters were fitted to bulk properties such as cohesive energy, vacancy formation
energy, elastic constants and lattice constants. This model is applied to investigate vari-
ous properties of defects including interstitial formation energy and vacancy formation
energy, surface energy and the obtained potentials were used to calculate phonon disper-
sion, which were agreed well with the experimental results.

The applications of the Analytic embedded atom method (AEAM) potentials in the
alkali metals have been discussed by Hu & Masahiro [9] and the phonon dispersion,
density of states, Debye temperature, heat capacity, surface energy and thermal expan-
sion properties of these metals have been calculated. In addition, the properties of point
defects; such as vacancy, divacancy, self-interstitials have also been calculated by these
authors. Zhang et al. [10] have performed the calculation of the formation energy of
mono vacancy of bcc metals including the alkali metals and both the binding and forma-
tion energies for di and tri-vacancy of these metals. In another study [11], these authors
have calculated the phonon dispersions for five alkali metals: Li, Na, K, Rb and Cs us-
ing the modified embedded atom potentials and found their results in agreement with
the experimental results. In all the above studies, various proprieties of bcc metals, their
alloys and properties of point defects were investigated using embedded atom method
(EAM) but none of the them have specifically investigated the vibrational and thermal
properties of vacancies in metals including local density of states, formation entropy of
vacancy and mean square thermal displacement. As regards the vibrational properties of
crystal with point defects, a preliminary investigation of self-interstitials has been made
by Pohlong and Ram [12]. The MEAM has widely been used to obtain the potentials
for different metals and these potentials have been employed to calculate different prop-
erties of metals including static properties of point defect such as: formation energies of
vacancy, interstitial and surface energy. However, the MEAM has hardly been used in the
study of dynamics of point defects in metals. In view of the limited work in the study of
the vibrational behaviour of point defects in bcc metals; in our present work we present
the calculation of the vibrational properties of vacancies in Na and K using MEAM.
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In the present study we have followed the MEAM potential of Hu & Masahiro [9] pro-
posed by Zhang et al. [10] and obtained the MEAM potential parameters for Na and K
employing a 2nd neighbour model. The parameters are determined by fitting the Cauchy
pressure, shear modulus Gv, C44, cohesive energy and the vacancy formation energy. The
obtained potential parameters are used to discuss the lattice dynamics: phonon disper-
sion of pure metals, local density of pure and nearest neighbours of vacancy up to 2nd
neighbours. The total energy of perfect and defect crystal have been calculated using
MEAM potentials and from the expression of total energy the force-constants in the per-
fect as well as crystal with vacancy and thereby force-constant changes around vacancy
are obtained. The obtained force-constants in the perfect crystal have been used to ob-
tain the phonons which are used for Green’s function calculations. The force-constant
changes are utilized to calculate the local density of states with the Green’s function
method and further local density of states is used to obtain the vacancy formation en-
tropy and mean square displacements of nearest neighbour atoms of vacancy. The calcu-
lated results are found to be in agreement with the available experimental measurements
for the Na, K.

2 Theory

2.1 MEAM model

In the MEAM model, a modifying term was introduced in the expression of total energy
to resolve the problem of negative Cauchy pressure in Johnson’s model [4]. This term
describes the energy change due to the non-spherical distribution of the electron density
ρi and deviation from the linear superposition of atomic electronic density. The modified
energy term is a function of the argument Pi, which is represented as the sum of second-
order of electron density to correct the assumption of the linear superposition of atomic
electron density in the original EAM.

In the MEAM model [9] the contribution to the total energy of an atom at the site i is
given by:

Ei=F(ρi)+
1

2 ∑
j 6=i

jφ(rij)+M(Pi). (2.1)

The total energy of the system is represented as:

Etot=∑
i

F(ρi)+
1

2 ∑
j 6=i

i, jφ(rij)+∑
i

M(Pi), (2.2)

where ρi =∑j(j 6=i) f j(rij) and Pi=∑j( 6=i) f 2
j (rij).

The embedding function F(ρ) and the atomic density f (r) are taken of the form [4]
as:

F(ρ)=−

[

F0−γln

(

ρ

ρe

)](

ρ

ρe

)n

(2.3)
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and

f (r)= fe

( r1

r

)β
, (2.4)

where F0 and γ are the model parameters, ρe is the equilibrium electron density and n is
an adjustable parameter which can be determined by fitting the empirical energy-volume
relationship of Rose et al. [13] and r1 is the equilibrium first-nearest neighbour distance,
β is equal to 6 and fe is taken as unity [9].

The energy modification term is empirically taken as:

M(P)=α

(

1−
P

Pe

)2

exp

[

−

(

P

Pe
−1

)2
]

. (2.5)

The pair-potential function [9] is of the form:

φ(r)=
3

∑
j=−1

kj

(

r

r1

)j

. (2.6)

In this MEAM model, the atomic interactions up to the second-neighbours distances are
considered and both φ(r) and f (r) are truncated between the second and third-neighbour
distances.

The elastic constants are calculated using the second derivative of total energy, i.e.,
the MEAM potential. The model parameters α and kj (j=−1,0,1,2,3) are also obtained
analytically by fitting to the experimental elastic constants, cohesive energy, formation
energy of vacancy. In this calculation the cut-off distance is taken between 2nd and 3rd
neighbours therefore, pair potential and embedded part including the modified term are
calculated taking only up to the second neighbours of vacancy.

With the inclusion of embedding function and a modified term with the pair potential
the vacancy formation energy is given by:

EF
1V =8F [ρe− f (r1e)]+6F [ρe− f (r2e)]−14F(ρe)

+8M
[

Pe− f 2(r1e)
]

+6M
[

Pe− f 2(r2e)
]

−14M(Pe). (2.7)

As an application of these potentials, we have calculated phonons in metals: Na & K. The
phonon spectra were calculated as usual by diagonalizing the dynamical matrix obtained
from the Fourier transform of the force-constant tensor φij(l,m), and the force-constants
are derived from the energy expression Eq. (2.1) in a straightforward manner as:

φij(l,m)=
∂2Etot

∂ri
l∂r

j
m

, (2.8)

where l,m are the labels of the atoms. The force-constant corresponding to the total en-
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ergy given by Eq. (2.2) and Eq. (2.8), with l 6=m,

∂2Etot

∂ri
l∂r

j
m

=−

[

φ”(rlm)−
φ

′
(rlm)

rlm

]

ri
lmr

j
lm

r2
lm

−δij
φ

′
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rlm
+ ∑

n 6=l,m

F”(ρn) f
′
(rln) f

′
(rmn)

ri
ln

rln

r
j
mn

rmn

+4 ∑
n 6=l,m
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(rln) f (rln) f

′
(rmn) f (rmn)

ri
ln

rln

r
j
mn

rmn
, (2.9)

where i, j are Cartesian components and φ
′
, φ” are first and second derivatives of the

pair-potential.

2.2 Local density of states

For the calculation of the local density of states of the neighbours of a vacancy we have
used the Green’s function method of Ram [14]. The local density of states can be ex-
pressed in terms of the Green’s function of the defect lattice. The vacancy is taken at
the origin and its interaction with its neighbours is modelled by missing springs to these
atoms which are then relaxed to new positions. This results in the change in the force-
constants between neighbouring atoms. The remaining atoms of the host crystal beyond
2nd neighbours are assumed to be unperturbed.

The Green’s function G for the defect lattice in terms of the ideal lattice Green’s func-
tion G0 as is given by:

G(ω)=G0(ω)
[

1+V(ω)G0(ω)
]−1

, (2.10)

where

V(ω)=∆φ+M0ω2 and ∆φ=φ−φ0. (2.11)

φ is the force-constant in a relaxed lattice and φ0 that of the ideal lattice, and M0 is the
mass of the host atom. The Green’s function G(ω) is used to obtain the local density of
states of an atom l in the α direction in the defect lattice as:

Zα(l,ω)=
2ωM

π
ImGαα(l,l;ω). (2.12)

The local density of states provides an elegant way to discuss those properties of the
solids which do not depend on the atom-atom correlation in the lattice. All the thermo-
dynamic properties of the crystal can be expressed in terms of the local spectra of the
atoms. The local density of states is particularly useful in those situations where a de-
fect mode, resonant or localized mode, is dominated by the vibration of the defect only:
Since, then, such modes are easily identified as resonant-type peaks in the local spectrum
of the defect.
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2.3 Formation entropy and mean square thermal displacement

The production of a vacancy increases the entropy of the crystal and this increase in
entropy is known as the vacancy-formation entropy. The vacancy formation entropy is
closely related to the local density of states of neighbours of the vacancy. The formation
entropy of the vacancy may be calculated in terms of the change in the frequency spec-
trum in the presence of the vacancy. The vibrational contribution to the entropy is given
by [14]:

S= k
∫ ∞

0
σ(ω,T)Z(ω)dω, (2.13)

where Z(ω) is the total frequency spectrum. Whereas the formation entropy is given by:

SF
1V = k

∫ ∞

0
σ(ω,T)∆Z(ω)dω, (2.14)

where ∆Z(ω) is the change in frequency spectrum due to a single vacancy.
The change in the frequency spectrum can be expressed in terms of difference be-

tween local frequency spectra of atoms in a defective and ideal lattice:

SF
1V = k

∫ ∞

0
σ(ω,T)σl

[

Z(l,ω)−Z0(l,ω)
]

dω. (2.15)

For a weakly perturbing defect like the vacancy we expect the local frequency spectra of
only a few neighbouring atoms to be significantly different from that of the host spec-
trum.

The mean square thermal displacement of the atom can be calculated by using the
frequency spectrum Z(ω):

〈U2〉=
∫

Z(ω)

2Mω
coth

[

h̄ω

2kT

]

dω. (2.16)

3 Results and discussions

3.1 Determination of potential parameters, effective pair potential and
embedding functions

In order to determine the MEAM potential, the input parameters are listed in Table 1,
the parameters are determined by fitting the Cauchy pressure, shear modulus G(V) and

C44, the cohesive energy and the vacancy formation energy. The best fit to C44 and EF
1V

ultimately determines the final choice of these parameters, which are then utilized to
calculate C11 and C12.

The fitted elastic constants and formation energy are presented in Table 1. The the
model parameters F0,γ,α and kj (j =−1,0,1,2,3) are obtained analytically by fitting to
the experimental elastic constants, cohesive energy, formation energy of vacancy. The
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Table 1: Input (experimental) data: Lattice constant a(Å), cohesive energy Ec (eV), vacancy formation energy

Ev (eV) and elastic constants 1012 dyn/cm2.

Na K

a 4.225 [9] 5.225 [9]

Ec 1.113 [9] 0.934 [9]

C11 0.116 0.0432

C11 0.0736 [15] 0.0448 [15]

C12 0.061 0.0341

C12 0.0624 [15] 0.0368 [15]

C44 0.041 0.0198

C44 0.0416 [15] 0.0256 [15]

Ev 0.345 0.33

Ev 0.34 [16] 0.34 [17]

Table 2: The MEAM model parameters for metals: Na & K.

Na K

α(eV)×10−6 7.6648 0.9637

γ(eV) 0.577 0.454

F0(eV) 0.332 0.237

K1(eV) 7.90187 8.92967

K2(eV) -3.74485 -4.14300

K3(eV) 0.63419 0.69202

K−1(eV) 1.9348 2.4436

K0(eV) -6.86288 -8.04281

n 0.1302 0.154

model parameters calculated from the input parameters and the adjustable parameters
are listed in Table 2. The experimental values of elastic constants for Na and K are taken
from [15], the values of cohesive energy and lattice parameter are taken from [9], vacancy
formation energy for Na is from Fader et al. [16] and for K it is from Mc Donald et al. [17].
The electron density parameter β is taken as 6 for both metals. The calculated values
of C11, C12, C44 and EF

1V along with the experimental values are presented in Table 1.
The effective two-body pair potentials for Na and K with MEAM model are presented
in Fig. 1. The embedding functions for these metals are shown in Fig. 2. The modified
energy functions for Na and K are shown in Fig. 3.

3.2 Phonon dispersion curves

To test the ability of the potential parameters obtained from MEAM model, we have
calculated the phonon dispersion by obtaining the force constants for both perfect and
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Figure 1: Effective pair-potential for Na and K.

Figure 2: Embedding function for Na and K.

Figure 3: Modified energy function for Na and K.

defect crystals using this model. The dispersion curves for both of the metals: Na, K
have been calculated using MEAM potential and compared our results with experimen-
tal phonons [18, 19] fitted to the Born-Von Karman force model. The calculated phonon



564 V. Gairola and P. D. Semalty / Commun. Comput. Phys., 15 (2014), pp. 556-568

Figure 4: Phonon dispersion curves for K. The solid curve: calculated results with MEAM potential and the
points are the experimental data.

Figure 5: Phonon dispersion curves for Na. The solid curve: calculated results with MEAM potential and the
points are the experimental data.

dispersions for Na, K using MEAM potentials in the (100), (110), (111) directions are
presented in Figs. 4-5 along with the experimental phonons, the agreement with the ex-
perimental phonons is excellent in the case of K, whereas it is reasonably good for Na as
compared with the results of Hu [9].

3.3 Calculation of local-density of states

We have calculated the local density of states of the neighbours of the vacancies in met-
als: Na, K with the Green’s function method. To calculate the local density of states of
atoms near a vacancy we have evaluated the force-constants in the vicinity of the vacant
site and for ideal lattice. In the present work the ideal lattice Green’s function G0 for
metals: Na, K, have been calculated using force-constants based on the MEAM potential.
For the calculation of matrix elements of force constants φ in a relaxed lattice, the static
displacements of first and second neighbours of the vacancy for Na, K are taken from the
molecular dynamics calculation of Flocken and Hardy [20], which gives inward displace-
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Figure 6: Local density of 1st neighbours (...), 2nd neighbours (−−−) of vacancy and solid curve of host K
atom.

Figure 7: Local density of 1st neighbours (...), 2nd neighbours (−−−) of vacancy and solid curve of host Na
atom.

ments of first neighbour and outward displacement of second neighbour away from the
vacant site along the coordinate axes. The atoms falling in the cluster of first and second
neighbours of the vacant site take-up the new equilibrium positions and other atoms be-
yond the second neighbours are considered to be in their perfect lattice positions. With
new equilibrium positions of atoms in the defect space, we have new distances between
the atoms. Using the MEAM potential, the force constants are calculated at the new equi-
librium interatomic distances.

The local density of states of the neighbours of the vacancy in Na, K has been cal-
culated using Eq. (2.12) for relaxed lattice using MEAM potential along with the local
density of host atoms (atoms in pure crystal) using experimental phonons. In the relaxed
lattice a significant change in the local density of states of the nearest neighbours of the
vacancy as compared to that of the host lattice is expected. As shown in Figs. 6-7, for the
1st and 2nd neighbours of vacancy in the defective lattice of Na and K, there is an overall
decrease in the frequency spectrum. In the case of K there is a small increase in the local
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density of states in the mid region of frequency and shift towards higher frequency for
1st neighbours of vacancy and for the 2nd neighbours, there is a decrease towards higher
frequency and a shift towards the lower frequency. For Na, there is a slight increase in
the frequency spectrum in the mid region for the 1st neighbours of vacancy and for 2nd
neighbours there is a small decrease in frequency spectrum but not much different from
that of host atoms. This behaviour can be explained by the loss of coupling between
the vacancy and the neighbouring atoms and as a result of relaxations of 1st and 2nd
neighbours of vacancy in opposite directions.

3.4 Calculation of vacancy formation entropy and mean square thermal
displacement

The obtained results of change in the local density of states between relaxed and ideal
lattice are used to calculate the vacancy formation entropy SF

1V using Eq. (2.15) in both
the metals. There have been few calculations on the vacancy formation entropy of bcc
metals giving different results. It seems that, the effect of relaxation of lattice in the pres-
ence of vacancy very much depends on the choice of potential. Burton [21] has reported
values of SF

1V (2.2-2.6kB) for all bcc metals based on the empirical relation between for-
mation entropy and lattice relaxation due to vacancy using Morse potential. Schober et
al. [22] have predicted the value vacancy formation entropy SF

1V ∼ 1.8kB for all bcc met-
als. Our calculated vacancy formation entropy SF

1V (3.05kB) for K is somewhat higher
than (2.53kB) obtained by Burton [21] whereas for Na our value (2.27kB) agrees very well
with that of value of Burton (2.25kB). Pohlong and Ram [14] in their study of vibrational
density of states of neighbours of vacancy in bcc transition metals have observed that
the effect of relaxation in the presence of vacancy is different for different metals. In our
calculation also, we have found that the behaviour of local density of states at lower fre-
quencies and the calculated values of vacancy formation entropy varies differently for K
and Na. The change in the formation entropy closely related to the local density of states
Eqs. (2.14)-(2.15). As shown in Fig. 6, the shift of the spectrum of 2nd neighbours of va-
cancy towards the lower frequency can be considered as a possible cause of the increase
in the vacancy formation entropy in K.

The local frequency spectrum of Na, K using MEAM model has been used to calcu-
late the mean square displacements of neighbours of vacancy using Eq. (2.16) and the
results are presented in Figs. 8-9, along with mean square displacement of host atoms
obtained by using the experimental frequency spectrum. As expected the mean square
displacement varies linearly at high temperatures. In both the cases the mean square dis-
placements for both 1st and 2nd neighbours of vacancies are lower than that of the atoms
in perfect crystal. Beyond 2nd neighbours of vacancy, the mean square displacements
for these metals is assumed to be almost same as that of the host atom which is obvious
as the atoms far away from the vacant site will be least affected. The decrease in the
mean square displacements of 1st and 2nd neighbours of the vacancy in both the metals
resulted due to the general decrease in the local frequency spectrum.
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Figure 8: Mean square displacement of 1st neighbours (...), 2nd neighbours (−−−) of vacancy and solid line
for host Na atom.

Figure 9: Mean square displacement of 1st neighbours (...), 2nd neighbours (−−−) of vacancy and solid line
for host K atom.

To conclude, a detailed study of the dynamics of metals: Na, K and vibrational prop-
erties of vacancy in these metals have been carried out using MEAM potentials. The
calculated phonon dispersions by using MEAM the obtained potential parameters agree
well with the phonons obtained from neutron scattering experiments. The local density
states of these metals have been calculated with Green’s function method and there is
a general shift of frequency spectrum towards the higher frequency of 1st neighbour of
vacancy and an overall decrease for 2nd neighbours of vacancy. This behaviour of local
density of states can be explained as the relaxations of 1st and 2nd neighbour atoms of
vacancy are in opposite directions. The use of local density of states has been made in
the calculation of mean square displacements and formation entropy of vacancy and the
obtained results agrees well with available results in the literature. On the basis of our
calculation in these metals, it has been found that the vibrations of the first and second
neighbours of vacancy are significantly changed compared to those of a host atom.
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