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Abstract. In this paper, we propose a wavelet collocation splitting (WCS) method,
and a Fourier pseudospectral splitting (FPSS) method as comparison, for solving one-
dimensional and two-dimensional Schrödinger equations with variable coefficients in
quantum mechanics. The two methods can preserve the intrinsic properties of original
problems as much as possible. The splitting technique increases the computational ef-
ficiency. Meanwhile, the error estimation and some conservative properties are inves-
tigated. It is proved to preserve the charge conservation exactly. The global energy and
momentum conservation laws can be preserved under several conditions. Numerical
experiments are conducted during long time computations to show the performances
of the proposed methods and verify the theoretical analysis.
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1 Introduction

The Schrödinger equations are very important in many branches of physics and ap-
plied mathematics, such as nonlinear quantum field theory, condensed matter, nonlin-
ear optics, hydrodynamics, self-focusing in laser pulse, thermodynamic process in meso
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scale systems, plasma and so on [1–7]. Meanwhile, most of real physical equations pos-
sess variable coefficient. For example, the dispersion-managed optical fibers and soliton
lasers, certain inhomogeneous optical fibers, arterial mechanics, Laser-atom interaction
and so on [8–13].

In this paper, firstly we consider the one-dimensional nonlinear Schrödinger (1D-
NLS) equation with variable coefficients:

iψt+α(t)ψxx+v(x)ψ+β(t)|ψ|2ψ=0, (1.1a)

ψ(x,0)= ϕ(x), (1.1b)

where α(t), v(x) and β(t) are bounded real functions, ψ(x,t) is the complex-valued wave
function, and α(t) is related to the second order dispersion coefficient. As usual, i=

√
−1,

and ϕ(x) is a smooth function such that

E1(ϕ)=
∫

R

|ϕ(x)|2dx<+∞, (1.2)

(the so-called L2-function). The 1D-NLS system admits following conservation laws

Proposition 1.1. The solution ψ of Eq. (1.1) satisfies:

(1) Global charge conservation:

Q(ψ)=
∫

R

|ϕ|2dx=Q(ϕ); (1.3)

(2) Global momentum conservation:

M(ψ)=
∫

R

(ℜ(ψ)ℑ(ψx)−ℜ(ψx)ℑ(ψ))dx=M(ϕ), (1.4)

where ℜ and ℑ stand for the real part and the imaginary part, respectively;

(3) Global energy conservation: if α(t) and β(t) are independent of t (i.e. α(t) = α,
β(t)=β), then

E(ψ)=
∫

R

(

α|ψx|2−v(x)|ψ|2− β

2
|ψ|4

)

dx

=
∫

R

(

α|ϕx|2−v(x)|ϕ|2− β

2
|ϕ|4

)

dx=E(ϕ). (1.5)

We will consider the following equations from the general form of Eq. (1.1):

(1) Cubic 1D-NLS equation

iψt+α(t)ψxx+β(t)|ψ|2ψ=0. (1.6)

The theoretical investigation of Eq. (1.6) can be found in [4] and references therein. We
assume the solution ψ exists globally and satisfies lim|x|→+∞(|ψ|+|ψx |)=0.
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(2) Gross-Pitaevskii (GP) equation

iψt+αψxx+v(x)ψ+β|ψ|2ψ=0. (1.7)

For this case, we assume the solution of ψ satisfies lim|x|→+∞(|ψ|+|ψxx |)=0.

Meanwhile, we consider a two-dimensional linear Schrödinger (2D-LS) equation of
one atom in an intense laser field [14]

iψt+
1

2
ψxx+

1

2
ψyy+(v(x,y)−ε(t)x)ψ=0, (1.8)

where ψ(x,y,t) is the wave function, v(x,y) is the long range potential and ε(t) is the
external laser field.

Since available theoretical solutions for Schrödinger equations are limited, investi-
gating numerically is an important tool to understand physical behavior of the system.
There are many numerical methods for Schrödinger equations. Delfour et al. [15] pro-
posed general finite difference method. Meng et al. [16] proposed an orthogonal spline
collocation method. Chang et al. [17] discussed several different schemes such as Crank-
Nicolson, Hospscotch scheme, split-step Fourier scheme, pseudo-spectral scheme for
generalized NLS equation. Bao et al. [5, 7] proposed a time-splitting Laguerre-Hermite
pseudo-spectral method and a Fourier spectral method for Gross-Pitaevskii equation.
Compact finite difference schemes for one-dimensional case are constructed in [18, 19].
In addition, numerous symplectic and multi-symplectic methods have been constructed
to simulate Schrödinger system and other Hamiltonian equations due to their long time
simulation property and good preservation property of conservative quantities of origi-
nal problem. Chen et al. [20,21] proposed several symplectic and multi-symplectic meth-
ods for NLS equations. The multi-symplectic Runge-Kutta and Fourier spectral meth-
ods were employed to solve the fourth-order Schrödinger equations with trapped term
by Hong et al. in [22]. Chen et al. [23, 24] took the splitting technique into the multi-
symplectic integrator and Cai et al. [25] proposed some local structure-preserving algo-
rithms for solving coupled NLS equation. But the above methods are almost to solve
Schrödinger equations with constant coefficients or one-dimensional cases. Hong et
al. [26] constructed a multi-symplectic scheme for Schrödinger equations with some spe-
cial variable coefficients. For the system with variable coefficients, the common way is to
modify the finite difference methods to cope with the general cases. Sometimes, it is diffi-
cult for the finite difference methods to meet requirements of high accuracy and high res-
olution of complex physical process. Symplectic, multi-symplectic and other structure-
preserving methods can preserve the intrinsic properties of original problems and con-
servation laws during long time simulations. Theoretically, all most real physical pro-
cess with negligible dissipation can be cast in suitable Hamiltonian formulation in phase
space with symplectic structure, which means the symplectic-preserving algorithms can
hold this properties naturally. But in practice, the structure-preserving methods have
their own constrains. Firstly, most of symplectic and multi-symplectic methods are con-
structed with suitable boundary conditions, such as periodic or homogeneous boundary
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conditions. Secondly, it is very hard to propose symplectic and multi-symplectic for-
mulism for many complex systems. In addition, although it exists some methods to
write Hamiltonian equation as multi-symplectic form [27, 28], there are still many un-
solved problems, which make the construction of multi-symplectic form for a given PDE
a bit complicated [29].

Our main aim is to construct efficient and conservative algorithms for 1D-NLS equa-
tion and 2D-LS equation with variable coefficient without considerations of symplectic or
multi-symplectic conservation formulations. In this paper, we propose the WCS method,
and the analogous FPSS method as comparison. The Schrödinger system is split into two
subsystems. One can be solved exactly. For the other, wavelet collocation method [30]
and Fourier pseudospectral method [23] are employed in spatial discretization, respec-
tively. Wavelet collocation method makes the corresponding spatial differentiation ma-
trix sparse and demands less computations. Fourier pseudospectral method has high ac-
curacy, and does not need transformation between the Fourier space and physical space.
So it is also efficient in computations. For the WCS method, the convergence property
is discussed. It is proved to preserve the charge conservation exactly. The global energy
and momentum conservation laws also can be preserved under several conditions.

The paper is organized in the following way. In Section 2, the splitting technique for
Schrödinger equation is introduced. In Section 3, the WCS method formulations for 1D
and 2D cases are proposed. In Section 4, some theoretical analysis, such as convergence
and conservative properties, are presented. The analogous FPSS method and numerical
experiments are presented in Section 5, which show the effectiveness of the proposed
algorithms. Finally, conclusions are made in Section 6.

2 Splitting technique for Schrödinger equation

In this section, we mainly describe the splitting technique for 1D-NLS equation briefly.
The basic idea of splitting technique for the nonlinear equations is to decompose a system
into linear and nonlinear subsystems on each time step.

wt=(L(t)+N (t,w))w, (2.1)

where L and N are linear and nonlinear operators, respectively. We decompose the non-
linear system into the following subsystems:

wt=L(t)w, (2.2a)

wt=N (t,w)w. (2.2b)

Now, based on the Strang’s splitting idea [31, 32] to solve (2.2a)-(2.2b) over t∈ [tn,tn+1],
we have the following:

w∗=exp
[1

2

∫ tn+1

tn

N (t,w(tn))dt
]

w(tn), (2.3a)
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w∗∗=exp
[

∫ tn+1

tn

L(t)dt
]

w∗, (2.3b)

w(tn+1)=exp
[1

2

∫ tn+1

tn

N (t,w∗∗)dt
]

w∗∗. (2.3c)

In this method, we split Eq. (1.1) into linear equation,

L : ψt= iα(t)ψxx, (2.4)

and nonlinear equation

N : ψt= iv(x)ψ+iβ(t)|ψ|2ψ. (2.5)

This is the second-order version of the Strang splitting technique. In fact, we can con-
struct arbitrary order for the splitting technique. After time-splitting, the nonlinear sub-
system (2.5) can be solved exactly, while the linear subsystem (2.4) could be solved by
using wavelet collocation method and Fourier pseudospectral method in space, respec-
tively. In the following section, we will give the detailed algorithms of the WCS method
for 1D and 2D cases.

3 Wavelet collocation splitting method

In this section, a wavelet collocation method [30, 33], which is based on the autocorrela-
tion function of Daubechies scaling function of order M, is used for space discretization.
Then, we demonstrate the formulation of the WCS method for one-dimensional and two-
dimensional cases.

3.1 One-dimensional case

Consider the periodic boundary condition ψ(a,t) = ψ(b,t), where a and b are integers.

For a fixed scale J = constant, the differential operator ∂k

∂xk yields a wavelet collocation
differential matrix Bk, which can be expressed as

(Bk)m,n=



















2kJ θ(k)(m−n), m−(M−1)≤n≤m+(M−1);

2kJ θ(k)(−i), m−n=N−i, 1≤ i≤M−1;

2kJ θ(k)(i), n−m=N−i, 1≤ i≤M−1;

0, otherwise.

(3.1)

Here N = 2J(b−a) is the grid number. There is no analytical expression for θ(k)(x) (k=
0,1,2,···), but we can get the numerical values of the function θ(k)(x) at integer point x=i
(i= 0,±1,··· ,±(M−1)). From the properties of Bk, we can notice that B2k is symmetric
and B2k+1 is skew-symmetric.



X. Qian, Y. M. Chen and S. H. Song / Commun. Comput. Phys., 15 (2014), pp. 692-711 697

Now, we approximate the space derivative in Eq. (2.4) by using the wavelet colloca-
tion method

∂

∂t
ψj= iα(t)(B2Ψ)j, (3.2)

where Ψ=(ψ0,ψ1,··· ,ψN−1)
T, j=0,1,··· ,N−1.

Then, we apply Euler mid-point method to solve above subsystem in time direction

ψn+1
j =ψn

j +
iτ

2
(αn+1+αn)(B2Ψn+1/2)j, (3.3)

where Ψn+1/2=(Ψn+1+Ψn)/2, and τ is time-step.
By letting ψ= p+iq, the system (3.3) is equivalent to

pn+1
j = pn

j −
τ

4
(αn+1+αn)[B2(Q

n+1+Qn)]j, (3.4a)

qn+1
j =qn

j +
τ

4
(αn+1+αn)[B2(Pn+1+Pn)]j, (3.4b)

where Pn=(pn
0 ,pn

1 ,··· ,pn
N−1)

T, Qn =(qn
0 ,qn

1 ,··· ,qn
N−1)

T.
We obtain the following algorithm of WCS method for Eq. (1.1):

ψ∗
j =exp

[

i
(

v(xj)+|ψn
j |2

∫ tn+1

tn

β(t)dt
)

/2
]

ψn
j , j=0,1,··· ,N−1, (3.5a)

ψ∗∗
j =ψ∗

j +
iτ

4
(αn+1+αn)(B2(Ψ

∗∗+Ψ∗))j, j=1,2,··· ,N−2, (3.5b)

ψ∗∗
0 =ψ∗∗

N−1=0, (3.5c)

ψn+1
j =exp

[

i
(

v(xj)+|ψ∗∗
j |2

∫ tn+1

tn

β(t)dt
)

/2
]

ψ∗∗
j , j=0,1,··· ,N−1. (3.5d)

3.2 Two-dimensional case

According to the splitting technique, We can split the 2D-LS equation (1.8) into two sub-
systems:

L1 : ψt= i
(1

2
ψxx+

1

2
ψyy

)

, (3.6a)

L2 : ψt= i(v(x,y)−ε(t)x)ψ. (3.6b)

After time-splitting, the subsystem (3.6b) can be solved exactly, while the subsystem
(3.6a) could be solved by using two-dimensional wavelet collocation method in space.

By letting ψ= p+iq, the subsystem (3.6a) is equivalent to

pt =−
(1

2
qxx+

1

2
qyy

)

, (3.7a)

qt =
1

2
pxx+

1

2
pyy. (3.7b)
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Consider the subsystem (3.7) with periodic boundary conditions in [0,L]×[0,L], where
L is an integer. We also use the wavelet collocation method to approximate p(x,y,t),
q(x,y,t), and obtain the wavelet collocation semi-discretization for the 2D-LS equation

∂

∂t
pl,l′ =−1

2
(AQ)l,l′ , (3.8a)

∂

∂t
ql,l′ =

1

2
(AP)l,l′ , (3.8b)

where P = (p0,0,··· ,pN−1,0,p0,1,··· ,pN−1,1,··· ,p0,N−1,··· ,pN−1,N−1)
T, Q = (q0,0,··· ,qN−1,0,

q0,1,··· ,qN−1,1,··· ,q0,N−1,··· ,qN−1,N−1)
T, l,l′ = 0,1,··· ,N−1, N = L·2J , J is the fixed scale,

A=B2⊗ IN+ IN⊗B2, ⊗ is Kronecker inner product, IN is the N×N identity matrix, Bk is
the N×N circulant matrix, which has the same definition in (3.1).

We also use mid-point method to solve above subsystem in time direction

Pn+1=Pn− τ

2
(AQn+1/2), (3.9a)

Qn+1=Qn+
τ

2
(APn+1/2), (3.9b)

where Pn+1/2=(Pn+1+Pn)/2, Qn+1/2=(Qn+1+Qn)/2, and τ is time-step. It can also be
rewritten as

ψn+1
l,l′ =ψn

l,l′+
iτ

2
(AΨn+1/2)l,l′ . (3.10)

We can obtain the algorithm of WCS method for the 2D-LS equation (1.8):

ψ∗
l,l′ =exp

[

i
(

v(xl ,yl′)τ−xl

∫ tn+1

tn

ε(t)dt
)

/2
]

ψn
l,l′ , l,l′=0,1,··· ,N−1, (3.11a)

ψ∗∗
l,l′ =ψ∗

l,l′+
iτ

4
(A(Ψ∗∗+Ψ∗))l,l′ , l,l′=1,2,··· ,N−2, (3.11b)

ψ∗∗
0,l′ =ψ∗∗

N−1,l′ =ψ∗∗
l,0 =ψ∗∗

l,N−1=0, l,l′=0,1,··· ,N−1, (3.11c)

ψn+1
l,l′ =exp

[

i
(

v(xl ,yl′)τ−xl

∫ tn+1

tn

ε(t)dt
)

/2
]

ψ∗∗
l,l′ , l,l′=0,1,··· ,N−1. (3.11d)

4 Error estimation and conservative properties of the WCS

method

In this section, we first present error estimate of the WCS method for 1D-NLS equation
and prove the method is convergent. Second, we display some conservative proper-
ties. The analysis for two-dimensional case and the FPSS method has similar deductive
procedure. For simplicity, we only demonstrate the proof of the WCS method for one-
dimensional case.
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Lemma 4.1. [34] Let 0≤ r≤ s≤2M−1, s≥1, and u∈Hs(R), then

‖u− IJu‖r ≤C2−J(s−r)‖u‖s, (4.1)

where ‖ ·‖r and ‖ ·‖s denote the norm of Sobolev space Hr(R) and Hs(R), respectively. I is the

interpolation operator IJu(x)=2−
J
2 ∑k u(2−Jk)θJ,k(x).

Since the numerical solver for the nonlinear subproblem (2.5) is exact, the error is
bound up with linear subproblem.

Theorem 4.1. Suppose p(x,t), q(x,t) ∈ Hs(a,b), s ≥ 5
2 , ∀t ∈ [0,T], p(x,t), q(x,t) ∈ C4(a,b),

α(t)≡α. Then the truncation error Rn of the wavelet collocation method (3.3) satisfies

‖Rn‖≤O(τ+2−J(s−2)).

Proof. Let Ψn =(ψ(xa·2J ,tn),ψ(xa·2J+1,tn),··· ,ψ(xb·2J−1,tn)) be the solution of (2.4). Based
on Taylor expanding, the following equations can be obtained,

Ψn+1−Ψn =τΨn
t +O(τ2),

Ψn+1+Ψn =2Ψn+τΨn
t +O(τ2).

Hence, the truncation error of the wavelet collocation method (3.3) goes as

Rn=
Ψn+1−Ψn

τ
−iαB2

(

Ψn+1+Ψn

2

)

=Ψn
t +O(τ)−iαB2

(

Ψn+
1

2
τΨn

t +O(τ2)

)

−(Ψn
t −iαΨn

xx)

= iα(Ψn
xx−B2Ψn)− iτ

2
αB2Ψn

t +O(τ).

From Lemma 4.1, we get

‖ψn
xx−θxxψn‖L2 ≤‖ψn− IJψ

n‖2≤C2−J(s−2)‖ψn‖s,

where ‖·‖s denotes the norm of Sobolev space Hs(a,b). Notice that

‖Ψn
xx−B2Ψn‖=

{

b·2J−1

∑
k=a·2J

2−J ·[ψn
xx(xk)−θxxψn(xk)]

2

}1/2

is the rectangle quadrature rule approximation to ‖ψn
xx−θxxψn‖L2 . Therefore, the error

estimate follows:

‖Rn‖≤|α|·‖Ψn
xx−B2Ψn‖+τ

∥

∥

∥

1

2
B2Ψn

t

∥

∥

∥
+O(τ)

≤O(2−J(s−2)+τ).

The proof is complete.
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Then, the following error estimate is obtained.

Theorem 4.2. Suppose ψ(x,t) is the same as in Theorem 4.1, then the error estimate eM of the
wavelet collocation method (2.4) satisfies

‖eM‖≤O(τ+2−J(s−2)).

Proof. Suppose Ψn and Ψn
J are the solutions of Eq. (2.4) and Eq. (3.3) respectively, and

define the error at tn as en, i.e.
en =Ψn−Ψn

J ,

then

Rn = i
en+1−en

τ
+αB2

( en+1+en

2

)

. (4.2)

Define

δte
n+1/2=

en+1−en

τ
, en+1/2=

en+1+en

2
,

and make inner product of the both sides of Eq. (4.2) with 2en+1/2, it follows that

〈Rn,2en+1/2〉= i〈δte
n+1/2,2en+1/2〉+〈αB2en+1/2,2en+1/2〉, (4.3)

and we notice that B2 is a real symmetric and negative semi-definite matrix [30], hence

〈B2en+1/2,en+1/2〉≤0. (4.4)

We take the imaginary part of Eq. (4.3)

1

τ
(‖en+1‖2−‖en‖2)=ℑ〈Rn,2en+1/2〉. (4.5)

In addition,
|ℑ〈Rn,2en+1/2〉|≤‖Rn‖2+‖en‖2+‖en+1‖2. (4.6)

Therefore,
‖en+1‖2−‖en‖2≤τ(‖Rn‖2+‖en‖2+‖en+1‖2). (4.7)

We define a discrete function Wn =‖en‖2, and rewrite (4.7)

Wn+1−Wn ≤τ(An+Wn+Wn+1), (4.8)

where An = ‖Rn‖2. And the estimate of WM can be obtained by using Gronwall inequa-
tion [35],

WM ≤
(

W0+τ
M

∑
k=1

Ak
)

e4T, Mτ=T. (4.9)

Because
‖e0‖2 =‖R0‖2=0, ‖e1‖2=O(τ+2−J(s−2))2,
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we have
W0=O(τ+2−J(s−2))2.

In addition, from Theorem 4.1, we have

Ak=‖Rn‖2=O(τ+2−J(s−2))2.

And based on the Gronwall inequation, it follows that

WM =‖eM‖2≤C ·O(τ+2−J(s−2))2.

Finally, we have obtained the error estimate as

‖eM‖≤O(τ+2−J(s−2)).

The proof is complete.

Now, we discuss some conservative properties of proposed method.

Theorem 4.3. The WCS method (3.5) preserves the charge

Qn+1=‖Ψn+1‖2=△x∑
j

|ψn+1|2= ···=Q0, (4.10)

where △x is the space step size.

Proof. It is obviously revealed that the algorithm (3.5) for nonlinear subsystem is exact.
Therefore, we have

‖Ψ∗‖2=‖Ψn‖2, ‖Ψn+1‖2=‖Ψ∗∗‖2. (4.11)

Then, the nonlinear subsystem (3.3) can be rewritten as

i
Ψ∗∗−Ψ∗

τ
+

αn+1+αn

4
B2(Ψ

∗∗+Ψ∗)=0. (4.12)

We make inner product of the both sides of (4.12) with Ψ∗∗+Ψ∗, it follows that

i

τ
(‖Ψ∗∗‖2−‖Ψ∗‖2+2iℑ(Ψ∗∗Ψ̄∗))+

αn+1+αn

4
〈B2(Ψ

∗∗+Ψ∗),(Ψ∗∗+Ψ∗)〉=0. (4.13)

The term 〈B2(Ψ∗∗+Ψ∗),(Ψ∗∗+Ψ∗)〉 is real. Therefore, the imaginary part of Eq. (4.13)
implies

‖Ψ∗∗‖2=‖Ψ∗‖2. (4.14)

Combining Eq. (4.11) with Eq. (4.14), we obtain

‖Ψn+1‖2=‖Ψn‖2. (4.15)

The proof is complete.
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Theorem 4.4. If α(t)≡α, β(t)≡β, and the wave function ψ is separable, i.e.

ψ(x,t)=X(x)T(t), (4.16)

the WCS method (3.5) satisfies the discrete global energy conservation law

△x∑
j

(

α|(B2Ψn+1)j|2−vj|ψn+1
j |2− β

2
|ψn+1

j |4
)

=△x∑
j

(

α|(B2Ψn)j|2−vj|ψn
j |2−

β

2
|ψn

j |4
)

. (4.17)

In other words
En+1=En = ···=E0. (4.18)

Proof. According to (4.10) and (4.16), we have

|Tn+1|2= |Tn|2. (4.19)

Then,

△x∑
j

(

α|(B2Ψn+1)j|2−vj|ψn+1
j |2− β

2
|ψn+1

j |4
)

=△x∑
j

(

α|Tn+1|2|(B2X)j|2−vj|Tn+1|2|Xj|2−
β

2
|Tn+1|4|Xj|4

)

=△x∑
j

(

α|Tn|2|(B2X)j|2−vj|Tn|2|Xj|2−
β

2
|Tn|4|Xj|4

)

=△x∑
j

(

α|(B2Ψn)j|2−vj|ψn
j |2−

β

2
|ψn

j |4
)

. (4.20)

Thus, Theorem 4.4 is proved.

The discrete global momentum conservation law below has similar proof.

Theorem 4.5. Let the conditions of Theorem 4.4 be satisfied. the WCS method (3.5) satisfies the
discrete global momentum conservation law

△x∑
j

(

ℜ(ψn+1
j )ℑ((B2Ψn+1)j)−ℜ((B2Ψn+1)j)ℑ(ψn+1

j )
)

=△x∑
j

(

ℜ(ψn
j )ℑ((B2Ψn)j)−ℜ((B2Ψn)j)ℑ(ψn

j )
)

. (4.21)

In other words
Mn+1=Mn = ···=M0. (4.22)
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5 Numerical experiments

In the section, we conduct some typical numerical examples to show the effectiveness
and high accuracy for proposed algorithms during long time simulations. The results are
compared with Fourier pseudospectral splitting method. In brief, we use Fourier spectral
differential matrix in spatial discretization.

For the one-dimensional case, the first-order differential operator ∂x yields the Fourier
spectral differential matrix D1. Here, D1 is an N×N skew-symmetric matrix whose ele-
ments are

(D1)j,s =







1

2
(−1)j+sµcot

(

µ
xj−xs

2

)

, s 6= j,

0, s= j,

for j, s=1,2,··· ,N, and µ=2π/L. The second-order Fourier spectral differential matrix is
defined as D2=D2

1. For 1D-NLS equation, the wavelet collocation differential matrix B2,
which is displayed in the discrete scheme (3.3), discrete global energy (4.17), and discrete
global momentum (4.21), is substituted by the second-order Fourier spectral differential
matrix D2. Since D2 is symmetric matrix, the FPSS method has the similar conservative
properties. On the analogy of FPSS in 1D-NLS equation, we have the similar changes for
2D-LS equation likewise. For more details, one can consult [23,36] and references therein.

In addition, the autocorrelation function AD30 is used for wavelet collocation method
in the following examples. We solve the implicit parts of our algorithms by using the
fixed-point iteration with tolerance ε=10−15.

Example 5.1. We consider the 1D-NLS equation (1.1) with v(x)=0 in following two cases:

(a) Periodic case:

α(t)=
1

2
cos(t), β(t)=

cos(t)

sin(t)+3
;

(b) Quasi-periodic case:

α(t)=
1

2
(cos(t)+

√
2cos(

√
2t)), β(t)=

cos(t)+
√

2cos(
√

2t)

sin(t)+sin(
√

2t)+5
.

Based on the results in [13], the problem (a) has a periodic solitary-wave solution

ψ(x,t)=
1

√

sin(t)+3
sech

( x

sin(t)+3

)

exp
( i(x2−1)

2(sin(t)+3)

)

,

and the problem (b) has a quasi-periodic solitary-wave solution

ψ(x,t)=
1

√

sin(t)+sin(
√

2t)+5
sech

( x

sin(t)+sin(
√

2t)+5

)

×exp
( i(x2−1)

2(sin(t)+sin(
√

2t)+5)

)

.
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Figure 1: The periodic (left) and quasi-periodic (right) solitary waves by WCS method (τ=0.005, ∆x=0.5).

For this example, we mainly verify the numerical behaviors of the two methods during
long time computations. In Fig. 1, the periodic and quasi-periodic solitary waves are
pictured numerically by WCS method till time t=100, respectively. The L∞ and L2 errors
of the two problems by the WCS and FPSS are displayed in Tables 1 and 2. The discrete

Table 1: Comparison of errors at different time with the two algorithms in Example 5.1(a) (τ=0.005, ∆x=0.5).

Time Real part Imaginary part

L∞ error L2 error L∞error L2 error

WCS method

5 1.240E-4 3.258E-4 1.245E-4 3.133E-4

10 3.199E-4 7.901E-4 3.030E-4 7.740E-4

20 8.007E-5 2.587E-4 7.438E-5 2.653E-4

30 1.477E-4 3.574E-4 1.477E-4 3.853E-4

40 2.315E-4 6.804E-4 2.293E-4 7.033E-4

50 8.374E-5 1.575E-4 1.548E-4 2.764E-4

60 2.965E-4 8.034E-4 2.947E-4 8.406E-4

70 9.463E-5 2.434E-4 1.730E-4 3.819E-4

80 1.939E-4 4.487E-4 3.313E-4 4.487E-4

90 1.823E-4 6.050E-4 2.085E-4 7.029E-4

100 1.647E-4 2.780E-4 3.302E-4 5.273E-4

FPSS method

5 2.327E-4 7.969E-4 1.817E-4 6.760E-4

10 3.319E-4 1.019E-3 3.543E-4 1.058E-3

20 1.772E-4 6.538E-4 2.000E-4 8.120E-4

30 2.046E-4 7.834E-4 1.799E-4 6.818E-4

40 2.812E-4 8.826E-4 2.318E-4 8.559E-4

50 1.691E-4 6.625E-4 1.685E-4 5.499E-4

60 3.483E-4 9.649E-4 3.072E-4 9.912E-4

70 2.056E-4 6.425E-4 1.697E-4 6.540E-4

80 2.153E-4 8.166E-4 3.190E-4 8.279E-4

90 2.328E-4 8.779E-4 2.594E-4 1.012E-3

100 2.227E-4 6.024E-4 3.724E-4 9.347E-4
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Table 2: Comparison of errors at different time with the two algorithms in Example 5.1(b) (τ=0.005, ∆x=0.5).

Time Real part Imaginary part

L∞ error L2 error L∞error L2 error

WCS method

5 1.373E-4 4.821E-4 1.341E-4 4.791E-4

10 3.688E-4 1.371E-3 3.600E-4 1.371E-3

20 3.561E-4 1.438E-3 3.636E-4 1.428E-3

30 3.484E-4 9.882E-4 3.335E-4 9.815E-4

40 1.866E-4 7.050E-4 1.823E-4 6.955E-4

50 1.684E-4 6.210E-4 1.647E-4 6.258E-4

60 5.608E-4 2.006E-3 5.762E-4 2.005E-3

70 2.051E-4 7.085E-4 2.032E-4 7.319E-4

80 1.390E-4 4.675E-4 1.471E-4 5.263E-4

90 2.897E-4 1.236E-3 2.909E-4 1.257E-3

100 3.673E-4 1.218E-3 3.741E-4 1.245E-3

FPSS method

5 1.768E-4 8.018E-4 1.970E-4 7.164E-4

10 3.952E-4 1.543E-3 3.617E-4 1.410E-3

20 3.831E-4 1.565E-3 4.271E-4 1.583E-3

30 3.301E-4 1.110E-3 4.041E-4 1.278E-3

40 1.743E-4 8.379E-4 2.038E-4 9.110E-4

50 1.602E-4 7.836E-4 1.691E-4 8.238E-4

60 5.536E-4 2.058E-3 5.412E-4 2.075E-3

70 2.368E-4 9.498E-4 2.525E-4 9.387E-4

80 2.106E-4 8.492E-4 2.646E-4 8.201E-4

90 3.212E-4 1.224E-3 3.484E-4 1.270E-3

100 3.789E-4 1.376E-3 4.064E-4 1.438E-3

charge errors are showed in Fig. 2 and Fig. 3.

For the periodic problem, the numerical results indicate that the WCS and FPSS can
simulate the periodic solitary wave exactly and preserve discrete charge conservation
law well. The discrete charge conservation laws by the two methods are preserved to an
accuracy 10−14. The errors, in some sense, of WCS method seems a little less than FPSS
method. For the quasi-periodic problem, the two methods have the similar errors during
the period of computations. The charge preserving by FPSS method seems better than
that by WCS method.

Numerical results of both two problems show the trends of errors do not increase
obviously when t becomes larger, and the discrete charge errors are also stable.

Example 5.2. For Gross-Pitaevskii equation, we consider Eq. (1.1) with the parameters
α(t) = 1

2 , β(t) =−1, v(x) =−cos2(x). Based on the results in [21], this problem has the
exact solution

ψ(x,t)=sin(x)exp(−i3t/2).
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Figure 2: Comparison of the discrete charge conservation errors for Example 5.1(a) by WCS method (left) and
FPSS method (right).
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Figure 3: Comparison of the discrete charge conservation errors for Example 5.1(b) by WCS method (left) and
FPSS method (right).

We solve the problem by both WCS and FPSS method with the periodic boundary con-
dition in [0,2π]. For the WCS method, we take a coordinate transform x= 2πξ, and the
boundary condition is equivalent to [0,1]. The L∞ and L2 errors are contained in Table
3. The errors of WCS method are a little less than the FPSS method. The global energy
and charge errors are showed in Figs. 4 and 5. We can see both WCS and FPSS method
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Figure 4: Comparison of the discrete global energy conservation errors for Example 5.2 by WCS method (left)
and FPSS method (right).
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Figure 5: Comparison of the discrete charge conservation errors for Example 5.2 by WCS method (left) and
FPSS method (right).

Table 3: Comparison of errors at different time with the two algorithms in Example 2 (τ=0.005, ∆x=2π/64).

Time Real part Imaginary part

L∞ error L2 error L∞error L2 error

WCS method

5 3.599E-7 6.362E-7 1.267E-7 2.353E-7

10 4.988E-7 8.826E-7 5.836E-7 1.031E-6

15 5.620E-7 9.913E-7 9.979E-7 1.777E-6

20 1.516E-6 2.681E-6 2.394E-7 4.187E-7

25 3.838E-7 6.711E-7 1.879E-6 3.324E-6

30 1.990E-6 3.464E-6 1.318E-6 2.152E-6

FPSS method

5 8.980E-6 1.590E-5 3.165E-6 5.884E-6

10 1.244E-5 2.206E-5 1.456E-5 2.577E-5

15 1.402E-5 2.478E-5 2.489E-5 4.442E-5

20 3.782E-5 6.704E-5 5.958E-6 1.046E-5

25 9.360E-6 1.677E-5 4.673E-5 8.311E-5

30 4.889E-5 8.660E-5 3.011E-5 5.347E-5

preserve energy and charge very well. The discrete energy and charge conservation laws
are preserved to an accuracy of 10−12 and 10−14, respectively. Numerical results verify
theoretical analysis.

Example 5.3. Consider the 2D-LS equation (1.8) with the long range potential v(x,y)=
1/

√

x2+y2, and the laser field profile ε(t)=ε0 f (t)cos(ωt), where ε0 is the peak amplitude
of the laser field, ω is the frequency, 2π/ω is the optical period of the laser field, and f (t)
describes the temporal shape of the pulse,

f (t)=







sin
(π

2
· t

T0

)

, 0< t≤T0,

1, t>T0.
(5.1)
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Figure 6: The laser-atom interaction for Example 5.3 by WCS method (τ=0.001, ∆x=∆y=0.0625).

Here, we choose parameters ω= 2, ε0 = 1, T0 = 4. The laser intensity is large enough for
the electron to go through the potential barrier and be ionized. The initial condition is set
to be the following ground state wave function

ψ(x,y,0)=2

√

2

π
·e−2

√
x2+y2

. (5.2)

We solve the problem in spatial interval [−25,25]×[−25,25] till time t=15. The results of
WCS and FPSS are similar. Therefore, we only show the results of WCS in Fig. 6. It can be
seen that the electron is ionized and spread widely. We also can observe that both of the
electron motion inside the atom and the ejected electron in the continuum. Meanwhile,
the two methods are stable to simulate the laser-atom interaction when t becomes larger.
The results indicate that WCS and FPSS for solving 2D-LS equation in quantum physics
are efficient during long time computations.

6 Conclusions

In this paper, a wavelet collocation splitting method is constructed for solving 1D and
2D Schrödinger equations with variable coefficients. It is proved that the charge can be
preserved exactly, and the global energy and momentum conservation laws can be pre-
served under several conditions, which make sure that proposed algorithms can preserve
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the intrinsic properties of original problems as much as possible. Without consideration
of symplectic, multi-symplectic or other conservation formulations for partial differential
equations, the processes of proposed algorithms seem to be concise and much easier to
implement for other cases. By the theoretical analysis and numerical experiments in com-
parison, WCS is an efficient and high accuracy method, and has conservative properties
for 1D and 2D Schrödinger equations with variable coefficients during long time compu-
tations. The proposed methods can be naturally generalized to solve other complex cases
or higher space dimensional equations.
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