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Abstract. In this paper, we present a new model developed in order to analyze phe-
nomena which arise in the solidification of binary mixtures using phase-field method,
which incorporates the convection effects and the action of magnetic field. The model
consists of flow, concentration, phase field and energy systems which are nonlinear
evolutive and coupled systems. It represents the non-isothermal anisotropic solidi-
fication process of a binary mixture together with the motion in a melt with the ap-
plied magnetic field. To illustrate our model, numerical simulations of the influence
of magnetic-field on the evolution of dendrites during the solidification of the binary
mixture of Nickel-Copper (Ni-Cu) are developed. The results demonstrate that the
dendritic growth under the action of magnetic-field can be simulated by using our
model.
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1 Introduction

In order to improve the quality and properties of mixtures, the major industrial chal-
lenges lie in the possibility to control the metal structure and its defects, that occur during
the solidification process and then to achieve the desired properties in the final solidified
metals.
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In recent years the so-called phase field models have become an important tool to
simulate, during the solidification of pure and mixtures of materials, the formation and
growth of dendrites. This approach has proved to be an emerging technology that com-
plements experimental research. Various problems associated with phase-field formula-
tion have been studied to treat both pure materials and binary alloys. From the theoretical
or numerical simulation point view, see e.g. A. Belmiloudi et al. [5–7], D. Kessler [15], P.
Laurençot [17], J. Rappaz et al. [24], S. L. Wang et al. [33] and A. A. Wheeler et al. [36].
We can note the existence of analytical solutions for this type of model, but it remains
limited to very simple cases. In the case of realistic situations where the system is highly
nonlinear and very complex, the numerical simulation is a necessary tool, even essential,
it plays an important role in understanding and analyzing the formation of microstruc-
tures of dendrites. In this context, we can cite works of e.g., M. Grujicic et al. [10], B.
Kaouil et al. [13], J. C Ramirez et al. [22, 23], M. Rappaz [25], T. Takaki et al. [29] and J.
A. Warren et al. [34]. Moreover, in the last decade, the phase field method has been ex-
tended to include the effect of convection on the dendrite growth. This was motivated
by the fact that during the solidification experiments it has been observed a meaningful
impact of the movement in the liquid on the formation and evolution of the dendritic mi-
crostructure. For phase-field models and the simulations of dendrite growth that include
the melt flow, we can cited e.g., in the case of phase-field models for the solidification
of a pure metal, D. M. Anderson et al. [2] that have developed a model in which they
introduced the convection using compressible Navier-Stokes equations by assuming that
viscosity and density are the functions of phase-field in order to obtain the required vis-
cosity and density variation between the two phases; R. Tonhardt et al. [31] and X. Tong
al. [30] have given models by introducing convection using Navier-Stokes equations and
enforcing the velocity to be zero in the solid phase. For other models which incorpo-
rate convection during the solidification, we can cite N. Al-Rawahi et al. [1], E. Bansch et
al. [3]. The principle obstacle in these simulations is to compute accurately the diffusion
and convection processes and to enforce the no-slip condition at the interface so that the
velocity moves along-with the solid liquid interface during the solidification process.

Although significant advances in numerical simulation of microstructural evolution
in the metallurgical and materials science, and therefore it is now recognized that thanks
to the phase field methods, we can simulate numerically the dendritic growth in the en-
tire domain (at the macro scale level) with actual (physically meaningful) dimensions, it
still poses new and challenging problems for scientific community, because of the need
to obtain approximate solutions more and more accurate and reliable. This goal can be
achieved through the development of numerical analysis tools capable of reproducing
fine qualitative properties and approximations of dendritic dynamics with a reasonable
CPU’s computation time. To reach this objective, different approaches have been recently
developed, we can cite e.g. H. Wang et al. [32] in which the authors provide an r-adaptive
moving mesh method for the quantitative phase field equations (which were provided
by A. Karma et al. [14]), in both two- and three-dimensional cases. They redistribute the
meshes in the physical domain by solving an optimization problem which automatically
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includes the boundary conditions and solve the mesh equations by using a multigrid
speedup approach. In S. Bhattacharyya et al. [8], a spectral iterative-perturbation method
was developed to compute the stress distribution in polycrystalline materials with arbi-
trary elastic inhomogeneity and anisotropy in a multi-phase field model. For a review
of the recent development of numerical methods for multi-component fluid flows with
interfacial phenomena in phase-field models see e.g. J. Kim [16].

However most of these simulations show that the dendrites are deformed consider-
ably along the melt flow but the structure of dendrites can not be controlled using these
methods. More recently, experiments have been made to control the metal structure and
its defects that occur, because of the non-uniform dendrites in the final product, during
the solidification process to improve the quality and properties of the metals by using
different means. It has shown experimentally that the microstructure of mixtures can be
controlled during the solidification process by the application of magnetic field and elec-
tric current (see, e.g., Mingjun Li et al. [18]). In particular, it has been proven by different
experiments that the coarse dendrites in the solidified material can be made finer, homo-
geneous and equiaxed to other dendrites by the application of magnetic field. For other
applications of the influence of magnetic fields on the materials, we can cite, e.g., for the
MHD flows H. B. Hadid et al. [12, 28], for the semi-conductor melt flow in the crystal
growth A. Belmiloudi [7], M. Gunzberger et al. [11], M. Watanabe et al. [35], V. Galindo
et al. [9] and for the solidification processes, J. K. Roplekar and J. A. Dantzig [26], P. J.
Prescott [20] and the references therein.

To study the effect of convection and magnetic field on the evolution of micro-structure
of dendrites, we have constructed a new phase-field model to simulate directional so-
lidification and dendritic crystal growth that incorporate, among other, the convection,
magnetic field and their interaction. The mathematical formulation of our model is com-
posed of magnetohydrodynamic, concentration and phase-field systems which are time-
dependent, non-linear and coupled systems in an isothermal environment. The com-
mencing point of the present work is the two dimensional model of solidification of the
binary alloys given by Warren and Boettinger [34] (they have developed a phase-field
model with the state variables phase-field parameter and relative concentration of the
mixtures). In order to take into account the topological changes of the micro-structure
efficiently, we have included among other the effect of convection in the phase-field and
solute equations in the Warren-Boettinger model and also we have introduced the equa-
tions of melt flow in the liquid phase in the presence of magnetic field which is applied ex-
ternally to the entire domain. We can note that this new model, developed in the present
paper, has been used in A. Belmiloudi and A. Rasheed [21] for the 2-dimensional isotropic
and isothermal case. For this particular case, the existence and uniqueness results have
been proved.

The paper is outlined as follows. Section 2 is concerned with the derivation of the
equations governing the model. In Section 3 we give the adimensional quantities used
to non-dimensionalize the model and the initial conditions of the solidification process.
We discuss the numerical resolution and implementation details of the problem, then
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we present numerical simulations of the dendrite growth of our model by considering
different magnetic fields and compare the dendrites obtained in different simulations.
Finally, conclusions are given in Section 4.

2 Mathematical modeling

2.1 Derivation of the model

Let Ω be a bounded, open, connected region of IRn, where n≤3 is the number of space di-
mension, with a piecewise smooth boundary Γ=∂Ω which is sufficiently regular. Initially
the region Ω is occupied by a binary alloy of the solute B (e.g., Cu) in the solvent A (e.g.,
Ni), which is considered as incompressible electrically conducting fluid. To develop the
model, first we present the derivation of the flow systems, second we give the detailed
description of phase-field equation and finally the concentration and energy equations
will be given.

Now we describe the flow equations. The evolution equations for the melt flow are
derived from the laws of conservation of momentum and mass. The motion of the fluid is
initially driven by the buoyancy force. Since the fluid is electrically conducting and also
there is an applied magnetic field B, therefore when the fluid starts moving there would
be electric current. In addition to the applied magnetic field B, there will be induced
magnetic field produced by the electric currents in the liquid metal. Therefore there will
be Lorentz force which acts on the fluid so that an extra body force term F will appear in
the Navier-Stokes equations. The Lorentz force in such a flow is given by†

F=ρeE+J×B, (2.1)

where ρe is the electric charge density, E is the electric field intensity, J is the current
density and B is the applied magnetic field. We assume that the walls of the domain
are electric insulators and the magnetic Reynolds number is sufficiently small that the
induced magnetic field is negligible as compared to the imposed magnetic field B. The
current density J appeared in Eq. (2.1) can be defined by the Ohm’s law for the moving
medium as

J=ρeu+σe(E+u×B), (2.2)

where σe is electrical conductivity and u is the velocity of the fluid. As ρe is usually very
small in liquid metals, therefore we shall neglect the terms ρeE and ρeu in Eqs. (2.1) and
(2.2). Also as electric field is a conservative field, therefore we can express it as E=−∇φ,
where ∇ is the gradient operator, φ is the potential function. Then the Lorentz force,
given in (2.1), takes the form

F=σe (−∇φ×B+(u×B)×B). (2.3)

†We have assumed that the walls of the domain are electric insulators and the magnetic Reynolds number is
sufficiently small that the induced magnetic field is negligible as compared to the imposed magnetic field B.
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In addition to the Ohm’s law, the current density J is governed by the conservation of
electric current, i.e., div(J)=0. Using this relation, incompressibility condition and equa-
tion (2.2), we obtain

∆φ=div(u×B), (2.4)

where ∆ is the Laplace operator and σe is assumed to be constant. From the above equa-
tion, we can calculate the potential function φ under the influence of magnetic field ap-
plied in any direction and therefore with the help of this potential along with the mag-
netic field B, we can calculate the Lorentz force F defined in Eq. (2.1).

Also note that to derive equations for the melt flow, we assume the Boussinesq ap-
proximations (see, e.g., [4]), as is often done in the heat and/or solute transfer problems.
And as we know that the phase-field variable ψ(x,t) is 0 in the solid phase and 1 in the
liquid phase and there is no motion in the solid phase, therefore equations of the melt
flow should give us the zero velocity in the solid region of the domain. To include this
fact in the equations of melt flow, we have multiplied the Boussinesq approximation term
and Lorentz force term by functions a1(ψ) and a2(ψ). These functions are chosen in way
that they are 0 at ψ=0, so that the Boussinesq approximation term and Lorentz force term
become zero in the solid region and the equations of the melt flow together with the zero
initial and boundary conditions give the zero velocity in the solid region of the domain.
Also to include the effects on the velocity with respect to the phase change variable ψ at
the solid/liquid interface, we have added the term f(ψ) in the melt flow equations which
will also be chosen so that it is zero at ψ=0. Consequently, the melt flow system can be
given by using the incompressible Navier-Stokes equations with Boussinesq approxima-
tions and Lorentz force as follows

ρ0
Du

Dt
=div(~σ)+a1(ψ)(−βTT(x,t)−βcc(x,t))G

+a2(ψ)σe(−∇φ+u×B)×B+αf(ψ), (2.5)

div(u)=0, (2.6)

where x=(x1,x2,x3), B=(B1,B2,B3), D/Dt=∂/∂t+(u·∇) is the material time derivative,
u=(u1,u2,u3) is the velocity, ρ0 is the mean density of the fluid, βT and βc are the thermal
and solutal expansion coefficients, G=(0,0,−g) is the gravity vector, T(x,t) is the temper-
ature, c(x,t) is the concentration (mole fraction of the substance B in A) and~σ is the stress
tensor which is defined as

~σ=−pI+µ
(

∇u+(∇u)tran
)

, (2.7)

where p is the pressure, I is the unit tensor, µ is the dynamic viscosity, and tran represents
the usual transpose of a matrix.

Remark 2.1. The functions a1(ψ) and a2(ψ) in Eq. (2.5) can be chosen, for example, as

a1(ψ)=ψ, a2(ψ)=
ψ(1+ψ)

2
(or ψ).
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Figure 1: 2D problem description.

In order to derive the two dimensional model, we assume that the magnetic-field B and
the movement are in the XZ-plane, i.e., B=(B1,0,B3), u=(u1,0,u3), f=( f1,0, f3) and all
the state variables and data are not depending on the variable x2 (see Fig. 1). Then

u×B=(0,u3B1−u1B3,0) and ∆φ=div(u×B)=0.

Moreover, if we assume that ∇φ.n= 0 on the boundary of Ω (i.e. under the insulating
condition on the boundary), then ∇φ= 0 on Ω. We can now give the two dimensional
form of the melt flow as follows (for simplicity, we shall denote x = (x,y), u = (u,v),
B=(B1,B3), f=( f1, f3) and G=(0,−g))

ρ0
Du

Dt
=div(~σ)−a1(ψ)(βTT(x,t)+βcc(x,t))G

+σea2(ψ)((u×B)×B)+αf(ψ), (2.8)

div(u)=0, (2.9)

where the term (u×B)×B is defined by

(u×B)×B=
(

vB1B3−uB2
3,uB1B3−vB2

1

)

.

In the next paragraph, the detailed derivation of the evolution equations for the
phase-field, concentration and energy variables, will be derived. We have generalized
the model of [34] and [10] by including the convection terms. Therefore we shall give
a brief derivation of the evolution equations of phase-field variable, concentration and
energy. These equations are based on the following entropy functional

S(ψ,c,e)=
∫

Ω

(

s(ψ,c,e)− ǫ2
θ

2
|∇ψ|2

)

dx, (2.10)
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where s(ψ,c,e) is an entropy density, e(x,t) is the internal energy, ψ(x,t) is the phase-field
variable and c(x,t) is the mole fraction of solute B in the solvent A. The second term in
the integrand is a gradient entropy term analogous to the gradient energy term in the
free energy, where the parameter ǫθ is the interfacial energy parameter which represents
the gradient corrections to the entropy density.

The phase field variable ψ(x,t) is not a conserved quantity therefore the most appro-
priate form of the evolution equation for the phase field is defined by

Dψ

Dt
=Mψ

δS(ψ,c,e)

δψ
, (2.11)

where D/Dt=∂/∂t+(u·∇), Mψ>0 is the interfacial mobility parameter and the operator
δ denotes the variational derivative. The phase field variable ψ(x,t) varies smoothly in
the interval (0,1) and its value in the solid phase is 0 and in the liquid phase is 1.

The governing equations of the concentration c(x,t) and energy e(x,t) are derived by
using conservation laws of the concentration and the energy as

Dc

Dt
=−div(Jc), (2.12)

De

Dt
=−div(Je), (2.13)

where Jc and Je are the conserved flux of concentration and energy, respectively, which
can be expressed by the irreversible linear laws as

Jc=Mc∇
δS(ψ,c,e)

δc
, (2.14)

Je =Me∇
δS(ψ,c,e)

δe
, (2.15)

where the parameters Mc and Me are assumed to be positive and are related to the A-
B inter-diffusion coefficient and the heat conductivity, respectively, and S(ψ,c,e) is the
entropy functional which is defined by Eq. (2.10).

Now we need to take the variational derivative of the functional S(ψ,c,e) in the sense
of distribution. Let X be a topological space and U be an open set in X. Then the varia-
tional derivative of Eq. (2.10) at ψ∈U in the direction of ξ∈D(U) is

〈

δS(ψ,c,e)

δψ
,ξ

〉

D′(U),D(U)

=

〈

∂s(ψ,c,e)

∂ψ
,ξ

〉

D′(U),D(U)

−
〈

∂

∂ψ

(

ǫ2
θ

2
|∇ψ|2

)

,ξ

〉

D′(U),D(U)

, (2.16)

where D′(U) is the space of distributions corresponding to the space D(U) of test func-
tions on U with compact support. Consider now the term

I=
〈

∂

∂ψ

(

ǫ2
θ

2
|∇ψ|2

)

,ξ

〉

D′(U),D(U)

=
∫

Ω

∂

∂ψ

(

ǫ2
θ

2
|∇ψ|2

)

ξdx
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and carrying out the differentiation in the integrand on the right hand side of the above
equation with respect to ψ, we have

I=
∫

Ω

(

ǫθ |∇ψ|2 ∂ǫθ

∂ψ
·ξ+ǫ2

θ∇ψ·∇ξ

)

dx.

Since ǫθ is a function of θ, therefore by applying the chain rule and using divergence
theorem, we arrive at

I=
∫

Ω

(

ǫθ |∇ψ|2 ∂ǫθ

∂θ

∂θ

∂ψ
·ξ−div

(

ǫ2
θ∇ψ

)

ξ

)

dx. (2.17)

Therefore the variational derivative of S can be given as

δS

δψ
=

∂s

∂ψ
+div

(

ǫ2
θ∇ψ

)

−A

(

ǫθ ,ǫ′θ ,
∂θ

∂ψ
,∇ψ

)

, (2.18)

where ǫ′θ = ∂ǫθ/∂θ and A
(

ǫθ ,ǫ′θ , ∂θ
∂ψ ,∇ψ

)

= ǫθǫ′θ
∂θ
∂ψ |∇ψ|2. The variational derivative of S

with respect to c and e respectively, can easily be given (using (2.10)) as

δS

δc
=

∂s

∂c
, (2.19)

δS

δe
=

∂s

∂e
. (2.20)

In the above equations, the derivatives of the entropy density s(ψ,c,e) with respect to ψ, c
and e are left to be determined and will be calculated using free energy density f (ψ,c,T).
As we know from the basic thermodynamics that the free energy density can be defined
by

f (ψ,c,T)= e(ψ,c,T)−Ts(ψ,c,e), (2.21a)

1

T
=

∂s

∂e
(ψ,c,e), (2.21b)

where e(ψ,c,T) and s(ψ,c,e) are the internal energy density and entropy density of the
binary alloy and T(x,t) is the temperature at any point in the time-space domain. Taking
the differential of the above equation we have

d f (ψ,c,T)=de(ψ,c,T)−Tds(ψ,c,e)−s(ψ,c,e)dT,

or

d f (ψ,c,T)=de(ψ,c,T)−T

(

∂s

∂e
de+

∂s

∂ψ
dψ+

∂s

∂c
dc

)

−s(ψ,c,e)dT,

and using the definition of the temperature (1/T = ∂s/∂e), the above equation takes the
form

d f (ψ,c,T)=−T
∂s

∂ψ
dψ−T

∂s

∂c
dc−sdT. (2.22)
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Also as we know that

d f (ψ,c,T)=
∂ f

∂ψ
dψ+

∂ f

∂c
dc+

∂ f

∂T
dT. (2.23)

Comparing Eqs. (2.22) and (2.23), we have the following relations

∂s(ψ,c,e)

∂ψ
=− 1

T

∂ f (ψ,c,T)

∂ψ
, (2.24)

∂s(ψ,c,e)

∂c
=− 1

T

∂ f (ψ,c,T)

∂c
, (2.25)

∂ f (ψ,c,T)

∂T
=−s(ψ,c,e). (2.26)

An explicit relation of the free energy density f (ψ,c,T) of a binary alloy is given in [34] as

f (ψ,c,T)=(1−c)µA(ψ,c,T)+cµB(ψ,c,T), (2.27)

where µA(ψ,c,T) and µB(ψ,c,T) are the corresponding chemical potentials of the two
constituent species A and B, and are defined as

µA(ψ,c,T)= fA(ψ,T)+λ(ψ)c2+
RT

Vm
ln(1−c), (2.28)

µB(ψ,c,T)= fB(ψ,T)+λ(ψ)(1−c)2+
RT

Vm
ln(c), (2.29)

where fA(ψ,T) and fB(ψ,T) are the free energy densities for substances A and B respec-
tively, R is the universal gas constant, Vm is the molar volume and λ(ψ) is the regular
solution interaction parameter associated with the enthalpy of mixing and is assumed to
be

λ(ψ)=λS+p(ψ)(λL−λS),

where the parameters λS and λL are the enthalpies of mixing of the solid and liquid
respectively. Here it is assumed that the solution is ideal (similar as in [34]), therefore the
parameters λS and λL are assumed to be zero and hence λ(ψ)=0.

Now using the basic thermodynamic, the relationship for the free energy density of
the pure substance can be given as

f I(ψ,T)= eI(ψ,T)−TsI(ψ,T), I=A or B, (2.30)

where eI(ψ,T) is the internal energy density and sI(ψ,T) is the entropy density of the pure
substance I, with I = A or B. The internal energy density for each substance is assumed
to have the form in [34] as

eI (ψ,T)= eI,S(T)+p(ψ)(eI,L(T)−eI,S(T)), I=A or B, (2.31)
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where eI,S(T) and eI,L(T) are the solid and liquid internal energies of the pure substances
I and are further defined as

eI,S(T)= eI,S(T
I
m)+CI

S(T−T I
m), (2.32)

eI,L(T)= eI,L(T
I
m)+CI

L(T−T I
m), (2.33)

where T I
m is the melting temperature, CI

S and CI
L are the heat capacities of solid and liq-

uid and eI,S(T
I
m) and eI,L(T

I
m) are the internal energies of solid and liquid at the melting

temperature respectively of the substance I, where I= A or B. The factor p(ψ) should be
selected here in the way that it is 0 in the solid phase to recover the internal energy den-
sity of solid and 1 in the liquid phase to obtain the internal energy density of the liquid
for the pure substance I, that is, it should satisfy the following conditions

p(0)= p(1)=0, p′(ψ)>0 ∀ ψ ∈ ]0,1[. (2.34)

We shall elucidate further the choice of p(ψ) below. The latent heat of each pure substance
is defined as

LI = eI,L(T
I
m)−eI,S(T

I
m), I=A or B, (2.35)

and by supposing that heat capacities are identical (i.e. CI
S =CI

L=CI) for solid and liquid
phase of each substance, we can write the final form of the internal energy densities of
each substance using Eqs. (2.32), (2.33) and (2.35) as

eI (ψ,T)= eI,S(T
I
m)+CI(T−T I

m)+p(ψ)LI , I=A or B. (2.36)

Now using Eq. (2.26), Eq. (2.30) can be written as

f I(ψ,T)= eI(ψ,T)+T
∂ f I

∂T
(ψ,T), I=A or B,

which can further be written as

∂( f I /T)

∂T
+

eI(ψ,T)

T2
=0.

By integrating above equation with respect to T from T to T I
m and using (2.36), we arrive

at

f I(ψ,T)=
T

T I
m

f I(ψ,T I
m)+

(

eI,S(T
I
m)−CIT

I
m+LI p(ψ)

)

(

1− T

T I
m

)

−CIT ln

(

T

T I
m

)

. (2.37)

Now the expression f I(ψ,T I
m) is left only to be determined to achieve the final form of

the free energy density of each substance. The choice of f I(ψ,T I
m) is dependent on the

phase field variable ψ as we should have the free energy density of the substance I in the
solid phase at ψ=0 and in the liquid phase at ψ=1. Also the free energy density should
be symmetric at the melting temperature with respect to ψ= 1/2. Thus the free energy
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density f I(ψ,T I
m) that follows these conditions can be chosen as a function g(ψ) of class

C2([0,1],R) which satisfies the following conditions















g(0)= g(1)=0,
g′(ψ)=0 iff ψ∈{0,1/2,1} ,
g′′(0), g′′(1)>0,
g(ψ)= g(1−ψ).

(2.38)

The function g can be chosen as

g(ψ)=ψ2(1−ψ)2, (2.39)

which is a double well polynomial function of the minimum degree that satisfies the
properties defined in (2.38). More details about the choice and properties of the function
g(ψ) can be found in [34]. Therefore the form of f I(ψ,T I

m) is assumed to be

f I(ψ,T I
m)=T I

mWI ψ
2(1−ψ)2, (2.40)

where WI is the constant which controls the height of the well and is defined as

WI =
3σI√
2T I

mδI

, I=A or B, (2.41)

where σI is the solid-liquid interface energy, T I
m is the melting temperature and δI is the

interface thickness of the pure substance I. The graph of f I(ψ,T I
m) is given in Fig. 2. Note

that, to show that the minima of f I(ψ,T I
m) lie only in the interval [0,1], we have taken the

domain interval as [−0.5,1.5] for f I(ψ,T I
m) in the figure.

Now we shall determine an expression for p(ψ) by demanding that the only stable
states of the system are the solid and liquid states and there are only two minima of the
free energy density f I(ψ,T) at ψ=0 and ψ=1 for any temperature T(x,t). Differentiating
the relation (2.37) with respect to ψ and using (2.40), we have

∂ f I(ψ,T)

∂ψ
=WI Tg′(ψ)+LI p′(ψ)

(

1− T

T I
m

)

,

where g′(ψ)= ∂g(ψ)/∂ψ and p′(ψ)= ∂p(ψ)/∂ψ. As g′(0)= g′(1)= 0, we note from the
above equation that ∂ f I /∂ψ is zero at ψ = 0 and ψ = 1 only if p′(0) = p′(1) = 0 for any
temperature T(x,t). To ensure that the only minima of the free energy density f I(ψ,T) are
at ψ=0 and ψ=1 for any temperature, the function p(ψ) is required to fulfill the following
conditions along with the conditions defined earlier and that it is of class C2([0,1],R)















p(0)=0, p(1)=1,
p′(0)= p′(1)=0,
p′′(0)= p′′(1)=0,
p′(ψ)>0, ∀ ψ ∈ ]0,1[.

(2.42)
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Figure 2: The graph of f I(ψ,T I
m).
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Figure 3: The graph of function p(ψ).

This function can be chosen as (see, e.g., [34])

p(ψ)=ψ3
(

10−15ψ+6ψ2
)

such that p′(ψ)=30g(ψ), (2.43)

which satisfies the conditions defined in (2.42). The graph of the function p(ψ) is given
in Fig. 3. Note that, to show the behavior of the function p(ψ) within the interval [0,1],
we have taken the domain interval as [−0.5,1.5].

Thus the final form of the free energy density for the substance I, where I = A or B,
can be given as

f I(ψ,T)=WI Tg(ψ)+
(

eI,S(T
I
m)−CI T

I
m+LI p(ψ)

)

(

1− T

T I
m

)

−CIT ln

(

T

T I
m

)

. (2.44)

Now using the relations (2.27)-(2.29) in Eq. (2.24), we have

∂s

∂ψ
=− 1

T

∂

∂ψ

{

(1−c)

(

fA(ψ,T)+
RT

Vm
ln(1−c)

)}

+
1

T

∂

∂ψ

{

c

(

fB(ψ,T)+
RT

Vm
ln(c)

)}

,

where λ(ψ)=0.

Using (2.44) and carrying out the differentiation with respect to ψ, we have

∂s

∂ψ
=− 1

T
(1−c)

(

WAg′(ψ)T+p′(ψ)LA

(

1− T

TA
m

))

− 1

T
c

(

WBg′(ψ)T+p′(ψ)LB

(

1− T

TB
m

))

.

The above equation can be written as

∂s

∂ψ
=−(1−c)HA(ψ,T)−cHB(ψ,T), (2.45)
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where (since p′(ψ)=30g(ψ))

HA(ψ,T)=WAg′(ψ)+30g(ψ)LA

(

1

T
− 1

TA
m

)

, (2.46)

HB(ψ,T)=WBg′(ψ)+30g(ψ)LB

(

1

T
− 1

TB
m

)

, (2.47)

where g′(ψ)=∂g(ψ)/∂ψ.
Substituting Eq. (2.45) into Eq. (2.18) and then the resulting equation in Eq. (2.11), we

obtain the following equation

Dψ

Dt
=Mψ

(

div
(

ǫ2
θ∇ψ

)

−(1−c)HA(ψ,T)−cHB(ψ,T)−A
(

ǫθ ,ǫ′θ ,
∂θ

∂ψ
,∇ψ

))

, (2.48)

which is the general equation of phase-field, where the operators A and div
(

ǫ2
θ∇ψ

)

are
left to be calculated. We can compute these operators by introducing the operator ǫθ .

In two dimensional geometry, the parameter ǫθ is assumed to be anisotropic and is de-
fined as [34]

ǫθ =ǫ0η=ǫ0(1+γ0coskθ), (2.49)

where anisotropic means that ǫθ is dependent on the direction of the solid-liquid inter-
face, γ0 is the anisotropic amplitude, k the mode number, ǫ0 is a constant and

θ=arctan

(

ψy

ψx

)

, (2.50)

is the angle between the local interface normal and a designated base vector of the crystal
lattice, subscripts x and y are used to denote the partial derivatives with respect to spatial
coordinates, that is, ψx =∂ψ/∂x and ψy=∂ψ/∂y.

Remark 2.2. The anisotropy plays an important role in modeling the dendritic solidifi-
cation process. In fact, for example, for the metal alloys, the form of dendrites is usually
symmetric and has four major dendrite arms and minor arms around them. In the solid-
ification model, the mode number k, in the anisotropy function ǫθ , usually represents the
dendrite arms. If we want to obtain a dendrite with four arms, we fix the value of k equal
to 4. Its value depends on the form of dendrites obtained in a particular alloy.

By calculating the operators A and div
(

ǫ2
θ∇ψ

)

(according to the expression of ǫθ and
θ, we can deduce, from (2.48), the following two dimensional model

Dψ

Dt
=Mψ

(

ǫ2
0η2

∆ψ−(1−c)HA(ψ,T)−cHB(ψ,T)
)

−
Mψǫ2

0

(

ηη′′+(η′)2
)

2

{

2ψxy sin2θ−∆ψ−
(

ψyy−ψxx

)

cos2θ
}

+Mψǫ2
0ηη′{sin2θ

(

ψyy−ψxx

)

+2ψxy cos2θ
}

, (2.51)
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which is the final form of the evolution equation for the phase-field ψ(x,t), where we
assume Mψ to be a positive constant.

If we assume that the interface thickness δA = δB = δ in the parameters defined in the
relation (2.41), then Eq. (2.51) can be simplified and takes the form

Dψ

Dt
=Mψǫ2

0

(

η2
∆ψ− λ1(c)

δ2
g′(ψ)− 1

δ
λ2(c)p′(ψ)

)

−
Mψǫ2

0

(

ηη′′+(η′)2
)

2

{

2ψxysin2θ−∆ψ−
(

ψyy−ψxx

)

cos2θ
}

+Mψǫ2
0ηη′

{

sin2θ
(

ψyy−ψxx

)

+2ψxycos2θ
}

, (2.52)

where

ǫ2
0 =

3
√

2(σA+σB)δ

Tm
, Tm =

TA
m +TB

m

2
, (2.53a)

λ1(c)=(1−c)λ1A+cλ1B, λ2(c)=(1−c)λ2A+cλ2B, (2.53b)

with

λ1A =
σA

(σA+σB)

Tm

TA
m

, λ1B =
σB

(σA+σB)

Tm

TB
m

,

λ2A =
LATm

3
√

2(σA+σB)

(

1

T
− 1

TA
m

)

, λ2B =
LBTm

3
√

2(σA+σB)

(

1

T
− 1

TA
m

)

.

Now we present the derivation of the concentration and energy equations. It is ob-
served by Warren and Boettinger [34] that the terms ∇T in the concentration equation
(2.12) and ∇c in the energy equation (2.13) are the small corrections. Therefore, in the
derivation of the concentration equation, we shall assume that the temperature T(x,t)
is constant and in the derivation of energy equation, the concentration c(x,t) will be as-
sumed fixed.

By employing Eqs. (2.27), (2.25) and (2.19), Eq. (2.14) takes the form

Jc=Mc∇
(

−µB(ψ,c,T)−µA(ψ,c,T)

T(x,t)

)

.

Since temperature T(x,t) is assumed to be constant, therefore the above equation can be
written as

Jc=−Mc

T
∇(µB(ψ,c,T)−µA(ψ,c,T)) .

With the help of Eqs. (2.28) and (2.29), the above equation takes the form

Jc=−Mc

T

(

∇ fB(ψ,T)+
RT

Vm

1

c
∇c

)

+
Mc

T

(

∇ fA(ψ,T)+
RT

Vm

1

1−c
(−∇c)

)

.
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Making use of the relation (2.44), we obtain

Jc=Mc

(

−WBg′(ψ)−p′(ψ)LB

(

1

T
− 1

TB
m

))

∇ψ

+Mc

(

WAg′(ψ)+p′(ψ)LA

(

1

T
− 1

TA
m

))

∇ψ

+Mc

(

− R

Vm

1

c
∇c− R

Vm

1

1−c
(∇c)

)

.

Using the relations (2.46) and (2.47) in the above equation, we have

Jc=Mc(HA(ψ,T)−HB(ψ,T))∇ψ− McR

Vmc(1−c)
∇c. (2.54)

Also the comparison of Eq. (2.54) with the Fick’s first law in a single-phase system (i.e.,
with ∇ψ=0) establishes the relation given below [34]

Mc=D(ψ)
Vmc(1−c)

R
, (2.55)

where D(ψ)=DS+p(ψ)(DL−DS) is the A-B inter-diffusion coefficient.
Substituting (2.55) into Eq. (2.54), we obtain

Jc=D(ψ)
Vmc(1−c)

R
(HA(ψ,T)−HB(ψ,T))∇ψ−D(ψ)∇c. (2.56)

Finally substituting Eq. (2.56) into Eq. (2.12), we have

Dc

Dt
=div

(

D(ψ)

(

∇c+
c(1−c)Vm

R
(HB(ψ,T)−HA(ψ,T))∇ψ

))

. (2.57)

Eq. (2.57) represents the final form of the evolution equation for the mole fraction (con-
centration) of the solute.

If we assume that the interface thickness δA = δB = δ in the parameters defined in the
expression (2.41), then the above equation reduces to the following equation

Dc

Dt
=div(D(ψ)∇c)+div

(

α0D(ψ)c(1−c)

{

1

δ
λ′

1(c)g′(ψ)+λ′
2(c)p′(ψ)

}

∇ψ

)

, (2.58)

where

α0=
3
√

2Vm

RTm
(σA+σB), (2.59)

with λ′
1(c)=∂λ(c)/∂c, λ′

2(c)=∂λ(c)/∂c, where λ1(c) and λ2(c) are defined in (2.53).
For the derivation of the evolution equation for the energy, first, the internal energy

density of a binary alloy can be expressed using a rule of mixture as (e.g., [10])

e(ψ,c,T)=(1−c)eA(ψ,T)+c eB(ψ,T). (2.60)
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Using the definition of the temperature ∂s/∂e=1/T into Eqs. (2.20) and (2.15) we get

Je =Me

(

− 1

T2
∇T(x,t)

)

. (2.61)

Now substituting (2.60) and (2.61) in Eq. (2.13), we have

D

Dt
((1−c)eA(ψ,T)+c eB(ψ,T))=−∇·

(

Me

(

− 1

T2
∇T(x,t)

))

.

Since concentration c(x,t) is considered constant in the derivation of the energy equation,
therefore the above equation takes the form

(1−c)
DeA(ψ,T)

Dt
+c

DeB(ψ,T)

Dt
=−∇·

(

Me

(

− 1

T2
∇T(x,t)

))

.

By using (2.36) and setting Me = KT2, where K is the thermal conductivity, the above
equation becomes

(1−c)

(

CA
DT

Dt
+LA

Dp(ψ)

Dt

)

+c

(

CB
DT

Dt
+LB

Dp(ψ)

Dt

)

=∇·(K∇T).

Applying chain rule and re-arranging the above equation, we have

((1−c)CA+cCB)
DT

Dt
+((1−c)LA+cLB)p′(ψ)

Dψ

Dt
=∇·(K∇T).

Further the above equation can be written as

C
DT(x,t)

Dt
+30L g(ψ)

Dψ(x,t)

Dt
=∇·(K∇T(x,t)), (2.62)

where

C=(1−c)CA+cCB,

L=(1−c)LA+cLB,

K=(1−c)KA+cKB,

with KA and KB, the thermal conductivities of substances A and B respectively. Eq. (2.62)
represents the final form of the evolution equation for the temperature field T(x,t).

We can now summarize the governing equations of the model.
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2.2 The governing equations of the model

2.2.1 General model

In this section, we shall summarize the entire set of governing equations that model the
solidification process of a binary alloy in a non-isothermal environment in the presence of
motion in the liquid phase with the magnetic field effect. The equations that model this
phenomenon are the phase-field equation (2.48), concentration equation (2.57), energy
equation (2.62) and the melt flow system (2.4), (2.5) and (2.6) which are given below

ρ0
Du

Dt
=div(~σ)+a1(ψ)(−βTT(x,t)−βcc(x,t))G

+a2(ψ)σe(−∇φ+u×B)×B+αf(ψ) on Q, (2.63a)

div(u)=0 on Q, (2.63b)

Dψ

Dt
=Mψ

(

div
(

ǫ2
θ∇ψ

)

−(1−c)HA(ψ,T)−cHB(ψ,T)−A
(

ǫθ ,ǫ′θ ,
∂θ

∂ψ
,∇ψ

))

on Q, (2.63c)

Dc

Dt
=div

(

D(ψ)

(

∇c+
c(1−c)Vm

R
(HB(ψ,T)−HA(ψ,T))∇ψ

))

on Q, (2.63d)

C
DT

Dt
+30L g(ψ)

∂ψ

∂t
=∇·(K∇T) on Q, (2.63e)

∆φ=div(u×B) on Q, (2.63f)

where ~σ=−pI+µ
(

∇u+(∇u)tran
)

, Q=Ω×
(

0,Tf

)

, Tf is the solidification time and the
expressions for the nonlinear operators and for the parameters are defined earlier. In the
case of an isothermal process, the model (2.63) can be reduced to

ρ0
Du

Dt
=div(~σ)−a1(ψ)βcc(x,t)G+a2(ψ)σe(−∇φ+u×B)×B+αf̃(ψ) on Q, (2.64a)

div(u)=0 on Q, (2.64b)

Dψ

Dt
=Mψ

(

div
(

ǫ2
θ∇ψ

)

−(1−c)H̃A(ψ)−cH̃B(ψ)−A
(

ǫθ ,ǫ′θ ,
∂θ

∂ψ
,∇ψ

))

on Q, (2.64c)

Dc

Dt
=div

(

D(ψ)

(

∇c+
c(1−c)Vm

R

(

H̃B(ψ)−H̃A(ψ)
)

∇ψ

))

on Q, (2.64d)

∆φ=div(u×B) on Q, (2.64e)

where

f̃(ψ)=− a1(ψ)βTTG

α
+f(ψ) and H̃I(ψ)=HI(ψ,T)

for I=A,B.

Next we shall reduce the previous systems to the two dimensional geometry.
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2.2.2 Two dimensional geometry

In a two dimensional case, we have worked in the XZ-plane and we have supposed that
∇φ.n=0 on the boundary of the solidification domain Ω. According to (2.8), (2.49), (2.50)
and (2.51), the two dimensional model is

ρ0
Du

Dt
=div(~σ)+a1(ψ)(−βTT(x,t)−βcc(x,t))G

+a2(ψ)σe(u×B)×B+αf(ψ) on Q, (2.65a)

div(u)=0 on Q, (2.65b)

Dψ

Dt
=Mψ

(

ǫ2
0η2

∆ψ−(1−c)HA(ψ,T)−cHB(ψ,T)
)

−
Mψǫ2

0

(

ηη′′+(η′)2
)

2

{

2ψxy sin2θ−∆ψ−
(

ψyy−ψxx

)

cos2θ
}

+Mψǫ2
0ηη′{sin2θ

(

ψyy−ψxx

)

+2ψxycos2θ
}

on Q, (2.65c)

Dc

Dt
=div

(

D(ψ)

(

∇c+
c(1−c)Vm

R
(HB(ψ,T)−HA(ψ,T))∇ψ

))

on Q, (2.65d)

C
DT

Dt
+30L g(ψ)

∂ψ

∂t
=∇·(K∇T) on Q. (2.65e)

In the case of an isothermal process, the model (2.65) is reduced to

ρ0
Du

Dt
=div(~σ)−a1(ψ)βcc(x,t)G+a2(ψ)σe(u×B)×B+αf̃(ψ) on Q, (2.66a)

div(u)=0 on Q, (2.66b)

Dψ

Dt
=Mψ

(

ǫ2
0η2

∆ψ−(1−c)H̃A(ψ)−cH̃B(ψ)
)

−
Mψǫ2

0

(

ηη′′+(η′)2
)

2

{

2ψxysin2θ−∆ψ−
(

ψyy−ψxx

)

cos2θ
}

+Mψǫ2
0ηη′{sin2θ

(

ψyy−ψxx

)

+2ψxycos2θ
}

on Q, (2.66c)

Dc

Dt
=div

(

D(ψ)

(

∇c+
c(1−c)Vm

R

(

H̃B(ψ)−H̃A(ψ)
)

∇ψ

))

on Q. (2.66d)

Nota Bene: In the sequel, we omit the ” ˜ ” in the system (2.66).

We assume that there exists a unique solution (u,ψ,c) of the problem (2.66), under
some hypotheses for data and some regularity of the nonlinear operators. In particular,
for the isotropic case of the model (2.66), we have proved the existence and the unique-
ness results in [21]. In the next section, we shall present the numerical simulations of
the dendrite growth during the solidification of a Ni-Cu (Nickel-Copper) binary mixture.
To perform these simulations, we consider the two dimensional and isothermal model
(2.66). We further suppose that the interface thicknesses for both substances are equal
i.e., δA =δB=δ.
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3 Numerical study

For the numerical simulations of dendrite growth during the solidification process, we
have considered the isothermal model, that is, the energy equation is not included in the
simulations. Also we have considered the simplified case by assuming δA = δB = δ. Ac-
cording to (2.66) with the relations (2.46), (2.47) and (2.53), the complete set of equations
can be given by

ρ0
Du

Dt
=div(~σ)−a1(ψ)βcc(x,t)G+a2(ψ)σe(u×B)×B+αf(ψ) on Q, (3.1a)

div(u)=0 on Q, (3.1b)

Dψ

Dt
=Mψǫ2

0

(

η2
∆ψ− λ1(c)

δ2
g′(ψ)− λ2(c)

δ
p′(ψ)

)

−
Mψǫ2

0

(

ηη′′+(η′)2
)

2

{

2ψxysin2θ−∆ψ−
(

ψyy−ψxx

)

cos2θ
}

+Mψǫ2
0ηη′{sin2θ

(

ψyy−ψxx

)

+2ψxycos2θ
}

on Q, (3.1c)

Dc

Dt
=div(D(ψ)∇c)+div

(

α0D(ψ)c(1−c)

(

λ′
1(c)

δ
g′(ψ)

−λ′
2(c)p′(ψ)

)

∇ψ

)

on Q. (3.1d)

We suppose that the physical system, where solidification process takes place, is a
closed system, that is, there is no phase and concentration exchange across the bound-
ary and the velocity in the liquid phase along the boundary is negligible. Therefore we
have enclosed the system by taking Neumann boundary conditions for the phase-field
and concentration variables and no-slip condition for the velocity along with the initial
conditions given below

(u,ψ,c)(t=0)=(u0,ψ0,c0) on Ω, (3.2a)

u=0,
∂ψ

∂n
=∇ψ·n=0,

∂c

∂n
=∇c·n=0 on Σ=∂Ω×

(

0,Tf

)

, (3.2b)

where n is the unit outward normal to the boundary ∂Ω.
In the next section, we shall present the non-dimensionalization and the details of the

physical parameters used in the simulations of the model (3.1)-(3.2).

3.1 Non-dimensionalization and parameter details

We have non-dimensionalize the model (3.1) by introducing the following dimensionless
quantities

x̃=
x

ℓ
, t̃=

DLt

ℓ2
, ũ(x̃, t̃)=

ℓ

DL
u(x,t), p̃=

ℓ3

D2
L

p,
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B̃=
B

B0
, ψ̃(x̃, t̃)=ψ(x,t), c̃(x̃, t̃)= c(x,t), (3.3)

where x̃ and t̃ are the dimensionless spatial and time coordinates, ũ, ψ̃, and c̃ are the
nondimensional velocity-field, phase-field and concentration respectively, ℓ is the char-
acteristic length of the domain Ω, ℓ2/DL is the liquid diffusion time, DL is the solutal
diffusivity in liquid and B0 is the characteristic magnetic-field. Note that the phase-field
is a mathematical quantity and c is the relative concentration which are already dimen-
sionless quantities. Using these adimensional relations, we get finally the dimensionless
form of the model as

Dũ

Dt̃
= ˜div(−pI+Pr(∇̃ũ+(∇̃ũ)tran)+PrRaca1(ψ̃)c̃eG

+Pr(Ha)2a2(ψ̃)(ũ×B̃)×B̃+Krf(ψ̃) on Q̃= Ω̃×
(

0,t f

)

, (3.4a)

˜div(ũ)=0 on Q̃, (3.4b)

Dψ̃

Dt̃
=ǫ2

(

η2
∆̃ψ̃− λ1(c̃)

δ̃2
g′(ψ̃)− λ̃2(c̃)

δ̃
p′(ψ̃)

)

−
ǫ2

(

ηη′′+(η′)2
)

2

{

2ψ̃xy sin2θ−∆̃ψ̃−
(

ψ̃yy−ψ̃xx

)

cos2θ
}

+ǫ2ηη′{sin2θ
(

ψ̃yy−ψ̃xx

)

+2ψ̃xycos2θ
}

on Q̃, (3.4c)

Dc̃

Dt̃
= ˜div

(

D̃(ψ̃)∇̃c̃
)

+ ˜div

(

α̃0D̃(ψ̃)c̃(1− c̃)

(

λ′
1(c̃)

δ̃
g′(ψ̃)

−λ̃′
2(c̃)p′(ψ̃)

)

∇̃ψ̃

)

on Q̃, (3.4d)

with the initial and boundary conditions

(ũ,ψ̃, c̃)(t=0)=(ũ0,ψ̃0, c̃0) on Ω̃, (3.5a)

ũ=0,
∂ψ̃

∂n
=0,

∂c̃

∂n
=0 on Σ̃=∂Ω̃×

(

0,t f

)

, (3.5b)

where Pr=µ/DL is the Prandtl number, Rac=gβcℓ
3/DLµ, is the solutal Rayleigh number,

Ha=(σe/ρ0µ)1/2 B0ℓ is the Hartmann number and Kr=αℓ3/ρ0D2
L, δ̃=δ/ℓ is the adimen-

sional interface thickness, λ̃2 = ℓλ2, α̃0 = α0/ℓ and ǫ2 = Mψǫ2
0/DL are the adimensional

parameters and eG =(0,1). For model parameters, we have used physical values of the
binary mixture Ni-Cu as given in Table 1 and f(ψ̃)=(ψ̃,ψ̃). The density ρ, viscosity µ, and
electrical conductivity σe are assumed to be constant in the liquid as well as in the solid,
therefore we have used average values of Ni and Cu for these constants in the simulations
and we define α=3.57 104. The adimensional space unit ℓ is chosen as ℓ=2.8284×10−6m
which gives the domain length equal to 8 and the domain as Ω̃=[−4,4]×[−4,4]. With this
value of ℓ, we have the adimensional δ̃=0.03 which corresponds to an interface thickness
δ of order 10−8m. Since the value of δ is strongly dependent on the size of mesh and as
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Table 1: Physical values of constants.

Property Name Symbol Unit Nickel Copper

Melting temperature Tm K 1728 1358

Latent heat L J/m3 2350×106 1758×106

Diffusion coeff. liquid DL m2/s 10−9 10−9

Diffusion coeff. solid DS m2/s 10−13 10−13

Linear kinetic coeff. β m/K/s 3.3×10−3 3.9×10−3

Interface thickness δ m 8.4852×10−8 6.0120×10−8

Density ρ Kg/m3 7810 8020

viscosity µ Pa·s 4.110×10−6 0.597×10−6

Surface energy σ J/m2 0.37 0.29

Electrical conductivity σe S/m 14.3×106 59.6×106

Molar volume Vm m3 7.46×10−6 7.46×10−6

Mode Number k N/A 4 4

Anisotropy Amplitude γ0 N/A 0.04 0.04

the mesh size should be sufficiently less than the interface thickness δ and we have used
a coarse mesh for our simulations due to technical difficulties in computations, therefore
we fix the value of the adimensional interface thickness as δ̃= 0.05 for our simulations
to ensure the mesh size less than the interface thickness. The adimensional final time is
t f =0.13, which corresponds to the real physical final time of Tf =1 ms. Note that big time
steps and smaller interface values can create convergence problems during the calcula-
tion of numerical solution of the problem. We choose the values of the physical constants
(see Table 1) for the phase-field and concentration equations in our model as given in [34]
and the constants associated with the flow equations are chosen by keeping in view the
properties of substances A (Copper (Cu) in the present case) and B (Nickel (Ni) in the
present case).

Nota Bene: the use of ”˜” for the variables x,y and t will now be omitted.

Initially at the start of solidification, the initial condition is taken to be a circular seed
(impurity) of radius 0.2 at the center of the domain Ω̃ (see Fig. 4). Inside the circular seed,
the value of ψ̃ is 0 and outside this seed the value of ψ̃ is 1. The concentration c̃ in the
initial seed is equal to 0.482 and outside the seed it is taken as 0.497, i.e.,

ψ̃(x,y,t=0)=

{

0, if x2+y2<0.2,
1, if x2+y2≥0.2,

(3.6)

and

c̃(x,y,t=0)=

{

0.482, if x2+y2<0.2,
0.497, if x2+y2≥0.2.

(3.7)

Obviously, the velocity inside and outside the circular solid seed is taken to be 0 initially.
The values of the initial concentration, inside and outside the initial seed, are given differ-
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Figure 4: Geometry of the domain.

ent by different authors depending on the phase diagram of binary mixture Ni-Cu (see,
e.g,. [10, 15, 34]).

3.2 Numerical scheme and implementation details

In this section we elaborate the numerical resolution of the problem (3.4). First, we dis-
cretize the problem with respect to spatial coordinates using mixed finite elements, which
satisfy the InfSup condition (Babuska-Brezi’s condition), for the velocity ũ and pressure p̃
in the system (3.4a)-(3.4b) and the usual finite elements for phase-field ψ̃ and concentra-
tion c̃ in the equations (3.4c) and (3.4d) respectively. More precisely we have used mixed
finite elements Pi−Pi−1 for the velocity ũ and pressure p̃ and Pi for the phase-field ψ̃
and concentration c̃, respectively, where Pi is the polynomial of degree i. We obtain a
system of nonlinear ordinary differential equations. The derived non-linear systems are
then solved by using solver DASSL: for the time discretization, we have used back-ward
difference Euler’s formula and the resulting non-linear systems are solved using New-
ton method (for more details about the solver DASSL see e.g., [19]). To implement the
developed method, we have employed Comsol together with Matlab tools.

Remark 3.1. Before employing the developed numerical scheme to perform numerical
simulations of the model in the case of Ni-Cu, we have studied the convergence (both
with respect to space and time variables) and stability of the scheme by considering sev-
eral examples with known exact solutions (with parameters and data corresponding to
the mixture Ni-Cu). We have demonstrated numerically that the error estimates with
respect to space are of order i+1 for velocity ũ, phase-field ψ̃ and concentration c̃ and
of order i for the pressure p̃, and the error estimates with respect to time are of order
1 for (ũ, p̃,ψ̃, c̃). The stability of the scheme has also been studied by introducing a ran-
dom function, which varies between 0 and 1, in the model. We found that the numerical
scheme is convergent and stable.
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(a) Mesh type-I at first step (b) Mesh type-I at second step (c) Mesh type-I at final step
with 128×128 nodes

(d) Mesh type-II at first step (e) Mesh type-II at second step (f) Mesh type-II at final step
with 64×64 nodes outside and
128×128 nodes inside Ωint

Figure 5: Types of mesh used in simulations.

We have used two types of structured meshes, the first type of mesh is generated in a
way that first we have divided the domain, at first step, into eight triangles (see Fig. 5(a)),
at second step each of these eight triangles are further divided into four triangles (see
Fig. 5(b)), at third step we have divided each triangle further into four triangles and so on.
The final mesh used for the simulations is shown in Fig. 5(c) in which there are 128×128
nodes containing 32768 triangular elements. The second type of mesh is generated in the
similar way except that we have made a square given by

Ωint=
{

(x,y)∈R
2 | x,y belongs to square S

}

, (3.8)

where S=L1∪L2∪L3∪L4 such that

L1={(x,y) | y=−x+4, 0≤ x≤4} ,

L2={(x,y) | y= x+4, −4≤ x≤0} ,

L3={(x,y) | y=−x−4, −4≤ x≤0} ,

L4={(x,y) | y= x−4, 0≤ x≤4} ,

inside the domain Ω̃=[−4,4]×[−4,4] and the triangles inside Ωint are divided two times
greater than the triangles outside Ωint (see Fig. 5). The final mesh used in simulations
has 128×128 nodes inside and 64×64 nodes outside the square Ωint containing 24576
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triangular elements (see Fig. 5(f)). The second kind of mesh is used to save the time and
to reduce memory requirement without having effect on the results.

We have used two types of finite elements to solve the problem (3.4). First is P2−P1

for the magnetohydrodynamic type system and P2 finite elements for the phase-field
and concentration equations respectively. Second is the P3−P2 for the magnetohydrody-
namic type system and P3 for the phase-field and concentration equations of the problem
(3.4). It is important to mention that using first kind of finite elements and type-I mesh,
it takes approximately 29 hours and using type-II mesh takes approximately 18 hours to
complete one simulation. And using second type of finite elements with type-II mesh, it
takes about 8 days to execute one simulation using the hardware defined below.

To carry out all simulations we have used a Dell Laptop computer with 4GB of com-
puter memory and 2GHz core2 dual processor with 64−bit Vista windows.

3.3 Numerical simulations

In this section, we shall present simulations of our model problem (3.4) for different cases.
First, we have solved the model without magnetic-field, that is, with B = 0 and used
P2 finite elements for the velocity u, phase field ψ and concentration c and P1 for the
pressure p. Type-I mesh with 128×128 nodes for 210053 degree of freedom is used in
this simulation. The vector plot of velocity field are presented in Fig. 6, and plots of
phase-field, concentration and their contour plots are given in Fig. 7. We notice that the
magnitude of velocity is 2.8 10−6m/s which is very small therefore the convection has no
effect on the growth of the dendrite. The dendrite in this case is completely symmetric
about x-axis and y-axis.

Second, we consider the complete set of the model equations (3.4) and present the
simulations of our model by introducing different magnetic fields. To observe the effect
of magnetic field on the dendrite growth, we have fixed all other parameters and solved
the problem (3.4), first by choosing different constant magnetic fields at angles 90◦, 45◦

and then introducing various variable magnetic fields both in time and spatial variables.
All these simulations are performed, using P2 finite elements for the velocity u, phase-

Figure 6: Vector plot of velocity field without magnetic-field B̃.
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Figure 7: Phase-field, concentration and their contour plots.

field ψ and concentration c and P1 for the pressure p. Type-I mesh, with 128×128 nodes,
is used to solve the problem in all cases.

We present the results obtained in the simulations of our model with the magnetic
field at an angle 45◦ in the figures of the first column of Fig. 14. In this case, we remark
that the magnitude of the velocity has been increased to 0.0034m/s and the dendrite is
deformed along the direction of the applied magnetic field. We can observe that the
flow behavior of the melt is also along the applied magnetic field which forces the pri-
mary arms of the dendrites to deform along the direction of magnetic field. The upper
and right arms of the dendrite are smaller than the bottom and left dendrite arms. The
dendrite in this case is symmetric along the line y= x. The deformation in the dendrite
structure has been achieved by using B0 =10. We have noticed that with less amount of
the B0, the dendrite structure does not change considerably. This observation confirms
the claim of the author of [20] who examined experimentally that one has to apply ultra-
high magnitude of constant magnetic field to deform the morphology of the dendrites
or a variable magnetic field should be applied to deform the structure of dendrites. To
demonstrate further the authors claim, next we give the simulations by applying a vari-
able magnetic field B̃ = (cosx,siny) in Figs. 8 and 9. In this case, we can see that the
structure of the dendrite has been deformed significantly due to remarkable increase in
the magnitude of the velocity to 0.016m/s. The dendrite is no more symmetric along any
of the axis. We have shown the vector plots of velocity field in Fig. 8 at time t f =0.125 for
the better apprehension of flow behavior of the velocity in the vicinity of the dendrite.
The plot shows that the velocity along the left arm is towards the wall of the domain
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Figure 8: Vector plot of velocity field with B̃=(cosx,siny).

(a) Phase-field (b) Contour phase-field

(c) Concentration (d) Contour concentration

Figure 9: Plots of phase-field and concentration obtained for variable magnetic field B̃= (cosx,siny) using
type-I mesh and P2 for the velocity, phase-field and concentration and P1 for the pressure.

which encourages the secondary arms to grow along the left dendrite arm whereas along
the right primary arm, the velocity is towards the dendrite arm which forces it to grow
slowly and also restrains the secondary arms to generate along it.

Now we show the effect of magnetic field magnitude on dendrite structure. Fig. 10
shows the dendrites at a level set ψ= 1/2 of phase-field variable for different B0 in case
of B̃=(cosx,siny). We have noticed that with the small value of B0, the deformation in
the dendrite structure is not significant but as the amount of B0 increases, the dendrite
deforms significantly.
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(a) B0=0.1T (b) B0 =5T (c) B0=30T

Figure 10: Comparison of dendrites with different B0 in case of B̃=(cosx,siny).

(a) B̃= 1√
2
(1,1) (b) B̃=(0,1) (c) B̃=(cosx,siny)

Figure 11: Comparison of dendrites without (blue curve) and with magnetic-fields (red curve), (a) B at 45◦,
(b) B at 90◦, (c) B=(cosx,siny).

Fig. 11 shows the comparison of the dendrites at a level set ψ=1/2 of the phase-field
variable without and with magnetic-field at 90◦, 45◦, and the variable magnetic field. In
Fig. 11(a), we notice that by applying magnetic-field at angle 90◦, the form of dendrite
has not been changed considerably, but the dendritic arms along x-axis have grown up
little longer than the arms along the y-axis and it is now symmetric only about the y-
axis. We have also seen this behavior of the dendrite arms by applying the magnetic
field at 0◦ and found that in this case the dendrite arms along y-axis have grown up little
larger than the dendrite arms along x-axis. Fig. 11(b) shows that by the application of
magnetic-field at an angle 45◦, the structure of the dendrite has been changed and the
dendrite arms have grown up more rapidly and collide with the walls of the domain.
The top and right arms of the dendrite are smaller than the bottom and left dendrite
arms and it is now symmetric about the line y = x. In Fig. 11(c), we can see that the
variable magnetic-field has deformed the structure of the dendrite remarkably. We found
an irregular structure of dendrite in this case and the dendrite is no longer symmetric
about any of axis. The left arm of the dendrite has grown up more than the right arm and
they have completely different shape from other cases. We conclude from these results
that the constant magnetic-field has not significant effect on the growth and structure
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Figure 12: Vector plot of velocity field with B̃=(cosx,siny).

of the dendrites. To deform the dendrites considerably in this case we have to apply a
very strong constant magnetic field. We also notice that the variable magnetic-field have
changed the form and structure of the dendrites remarkably. Our results are in good
agreement with the observations made by [20], who examined the constant magnetic-
field does not effect significantly the inter-dendritic flows and micro-segregations during
the solidification process.

Further we have solved the model using P3 finite elements for the velocity, phase-

(a) Phase-field (b) Contour phase-field

(c) Concentration (d) Contour concentration

Figure 13: Plots of phase-field and concentration obtained for variable magnetic field B̃= (cosx,siny) using
type-II mesh and P3 for the velocity, phase-field and concentration and P2 for the pressure.
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(a) Velocity field

(b) Phase-field

(c) Contour phase-field

(d) Concentration

(e) Contour concentration

Figure 14: Plots of velocity, phase-field and concentration obtained for magnetic field B̃= 1√
2
(1,1) using type-I

(resp. type-II) mesh and P2 (resp. P3) for the velocity, phase-field and concentration and P1 (resp. P2) for
the pressure.
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field and concentration and P2 for the pressure using type-II mesh for the magnetic-field
at an angle 45◦ and a variable magnetic-field B̃=(cosx,siny) and presented the results in
Fig. 13 and in the second column of Fig. 14 (B0=10T). We noticed that the flow patterns in
these cases are similar to the previously mentioned results in Fig. 9 and in the first column
of Fig. 14. The magnitude of velocity field has been increased slightly to 0.0037m/s in
the case of magnetic-field at an angle 45◦ and 0.0199m/s for a variable magnetic-field
B̃=(cosx,siny). In Fig. 14, we observe that the dendrite is more refined and the secondary
dendrite arms have also been started to grow along the primary dendrite arms. We can
also see the effect of magnetic field more clearly as the top and right dendrite arms are
smaller than the bottom and left dendrite arms. In Fig. 13, we can see that dendrite
structure in this case has been changed significantly, large secondary arms arise along
the left arm of the dendrite whereas along the other arms of the dendrite, the secondary
arms have not grown up greatly.

4 Concluding remarks

In this work, we have developed a new phase-field model that incorporates convection
together with the influence of the magnetic-field. For the numerical study, we have con-
sidered the case of the isothermal solidification model. The numerical simulations have
been carried out by choosing the real physical parameters of the binary mixture Ni-Cu
in order to fit a realistic physical alloy. We have focused mainly the effect of magnetic-
field on the growth of dendrites during the solidification process by considering various
magnetic-fields (all other parameters remain fixed). We have found that the constant
magnetic-field does not effect considerably but the variable magnetic-field has a signif-
icant effect on the structure of dendrites and on the dynamics of the melt flow. These
observations are in good agreement with the study made by [20]. The simulations can
be broaden for the non-isothermal anisotropic case by the inclusion of the temperature
equation.

It is clear that, due to the multi-scale nature of solidification microstructures, the num-
ber of mesh elements used in our preliminary simulations is not very sufficient to com-
pute in a computationally efficient manner the dendritic growth, because they require
very significant spatial resolution and particularly in the neighborhood of the free-phase
interface which are computationally intensive and time consuming. Therefore, to get
even closer to a realistic calculation, it is necessary to use in the future a more sophis-
ticated methods which have already proven successful, such as adaptive moving mesh
techniques [32] and the references therein and implicit time stepping [27] and the refer-
ences therein.

In order to predict the quality of the finished product, we can also study control prob-
lems where the control function is the magnetic-field and the observation is the desired
dynamics of the dendrite by using the technique developed in Belmiloudi’s Book [7].
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