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Abstract. We develop an efficient, adaptive locally weighted projection regression
(ALWPR) framework for uncertainty quantification (UQ) of systems governed by ordi-
nary and partial differential equations. The algorithm adaptively selects the new input
points with the largest predictive variance and decides when and where to add new
local models. It effectively learns the local features and accurately quantifies the uncer-
tainty in the prediction of the statistics. The developed methodology provides predic-
tions and confidence intervals at any query input and can deal with multi-output cases.
Numerical examples are presented to show the accuracy and efficiency of the ALWPR
framework including problems with non-smooth local features such as discontinuities
in the stochastic space.
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1 Introduction

Uncertainty Quantification (UQ) is critical in all engineering and scientific fields. UQ is a
broad topic involving many aspects, for example, representation of uncertainty, propaga-
tion of uncertainty across scales, validation and verification for predictive computational
science, visualization of uncertainty in high-dimensional spaces and so on [1–5]. The
aim of this paper is to present a methodology for investigating the propagation of uncer-
tainty from the input space to the response space using a deterministic code. The Monte
Carlo (MC) is the traditional method for addressing such UQ tasks. Its wide acceptance
is due to the fact that it can compute the complete statistics of the solution, while having
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a convergence rate that is independent of the input dimension. Nevertheless, it quickly
becomes inefficient in high dimensional and computationally intensive problems, where
only a few samples are available.

Another well-known approach for uncertainty quantification is the spectral finite ele-
ment method [6]. It involves the projection of the response on a space spanned by orthog-
onal polynomials of the random variables and the solution of a system of coupled deter-
ministic equations involving the coefficients of the expansion in these polynomials. The
scheme was originally developed for Gaussian random variables which correspond to
Hermite polynomials (polynomial chaos (PC)). It was later generalized to include other
types of random variables (generalized PC (gPC)) [7] and then expanded to the multi-
element case. The multi-element generalized polynomial chaos (ME-gPC) method [8, 9]
decomposes the stochastic space in disjoint elements and then employs gPC on each el-
ement. The coupled nature of the resulting equations that determine the coefficients of
the polynomials make the application of the method to high input dimensions rather
difficult [10].

Another commonly used UQ method is stochastic collocation. The response is rep-
resented as an interpolative polynomial of the system response (output) in the random
input space constructed by calls to the computer code at specific input points. In [11,12],
a Galerkin based approximation was introduced alongside a collocation scheme based
on a tensor product rule using one-dimensional Gauss quadrature points. These meth-
ods do not scale well with the number of random input dimensions. To address high
dimensionality problems, various sparse grid collocation (SGC) methodologies were de-
veloped based on the Smolyak algorithm [13]. In [14], the authors developed an adaptive
hierarchical sparse grid collocation algorithm and considered a number of applications
with non-smooth behavior in the stochastic space. However, the piecewise local linear
nature of the scheme performed poorly when only a few data points were used while in-
terpolation of adverse functions was shown that it can trick the adaptive algorithm into
stopping prior to convergence.

While it is evident that a local approach to uncertainty propagation is required to
capture localized features in the stochastic space, it is essential to select within each local
model the most informative input to maximize predictive capability. In [15, 16], the au-
thors developed such kind of method, specifically, a treed Gaussian process model where
on each leaf of the tree, Bayesian Experimental Design techniques were used to learn a
multi-output Gaussian process. The active learning aspects of these Bayesian approaches
was shown to lead to better convergence than interpolation-based methods such as adap-
tive sparse grids [15].

Locally weighted projection regression (LWPR) is an algorithm for incremental non-
linear function approximation in high-dimensional spaces [17–19]. At its core, it employs
nonparametric partial least squares regression to locally approximate the relationship
between input and output. This methodology has several merits including no need to
memorize the training data, adjusting the local models only by the local information, an
ability to deal with high dimensional correlated data and providing a confidence interval
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for each prediction. However, there still exist several problems that limit its application
to uncertainty quantification tasks, for example, (1) the accuracy of this approach cannot
be guaranteed, (2) the training data points are randomly sampled and (3) the learning
process is not optimized. Hence, in this paper, we propose an adaptive way to improve
the learning process of the LWPR method, in order to solve the aforementioned problems
with emphasis on uncertainty quantification tasks. For brevity, we name the method as
the adaptive locally weighted projection regression (ALWPR) method.

The paper is organized as follows. First, the mathematical framework of the stochas-
tic problem is introduced in next followed by a brief review of the LWPR method in
Section 2.1. The ALWPR algorithm is described in detail in Section 2.2. Various examples
are given in Section 3 demonstrating the accuracy and efficiency of the ALWPR method
when applied to UQ tasks. Brief conclusions are provided in Section 4.

2 Methodology

Let us define a complete probability space (X ,F ,P) with sample space X which corre-
sponds to the outcomes of some experiments, F is the σ−algebra of subsets of X and
P :F→ [0,1] is the probability measure. We assume that the stochastic problem has been
formulated in such a way that X is a compact subset of RK for some K≥1:

X =×K
k=1[ak,bk], (2.1)

with −∞≤ ak < bk ≤+∞ as the upper and lower bounds of each dimension. The under-
lying σ−algebra is then:

F={B∩X :∀B∈BK}, (2.2)

where BK is the Borel σ−algebra of RK. Then, we let P be absolutely continuous (with
respect to the underlying Lebesgue measure), i.e., there exists a density function p:X→R

s.t. for any A∈F we have

P(A)=
∫

A
p(x)dx. (2.3)

Let us now consider the multi-output function f :X →RM representing the result of
a deterministic solver modeling a physical system, i.e. at a given input point x∈X the
predicted response of the system is f(x). We will write

f=( f1,··· , fM), (2.4)

where fr is the r-th output of the response function, r=1,··· ,M. In this work, we assume
there is no modeling error. The input distribution induces a probability distribution on
the output. The UQ problem involves the calculation of the statistics of the output y=
f(x). Quantities of particular interest are the q-moments mq =(m

q
1,··· ,mq

M) for q≥ 1 and
r=1,··· ,M:

m
q
r :=

∫

X
f

q
r (x)p(x)dx. (2.5)
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In particular, the mean m=(m1,··· ,mM):

µr :=m1
r =

∫

X
fr(x)p(x)dx, (2.6)

and the variance v=(v1,··· ,vM):

vr :=
∫

X
( fr(x)−µr)

2p(x)dx=m2
r −(m1

r )
2. (2.7)

In this work, we build a surrogate model f̃(·) to approximate the nonlinear output
function f(·) and the aforementioned UQ problem will be investigated using the surro-
gate model. As it is typical with other UQ methods (e.g. sparse grids [14]), we concentrate
on building a surrogate of individual responses (i.e. for each given r) without considering
correlations between the output variables.

2.1 Local weighted projection regression

The core of the LWPR [19] method is to find piecewise low-dimensional linear approxi-
mations to the nonlinear output function f(·) (Eq. (2.4)). For the multi output case, we
assume independence of each dimension. Thus for the r-th output, we build a separate
LWPR model to approximate fr. The LWPR method combines Local Weighted Regression
(LWR) and Partial Least Squares (PLS) that are briefly discussed next.

2.1.1 Local weighted regression framework

The LWPR regression function for the r-th output is constructed by blending S local linear

models (so called receptive fields) φ
(s)
r (x) in the form

f̃r(x)=
1

W(x)

S

∑
s=1

ws(x)φ
(s)
r (x), W(x)=

S

∑
s=1

ws(x). (2.8)

Here, ws(x) is a measure of locality for each data point, which is usually modeled by a
Gaussian kernel

ws(x)=exp
{
− 1

2
(x−cs)

TDs(x−cs)
}

, (2.9)

where cs is the center of the sth local model and Ds is positive semi-definite distance
metric that determines the size and shape of the local model. The dependence of the
weights on s is not shown here to simplify the notation.

The local linear model φ
(s)
r (x) can be built by various linear regression methods [20],

such as ordinary least squares [21], principal component regression [22,23], ridge regres-

sion [24,25] and partial least squares [26,27]. In general, the local linear model φ
(s)
r (x) can

be expressed as:

ỹ
(s)
r (x)=φ

(s)
r (x)=φ

(s)
r (x;βs), (2.10)
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where βs are the regression associated parameters. Given a set of training data, the learn-
ing process includes the calculation of the regression parameters βs and the distance met-
ric Ds. In this work, for mathematical convenience, we use the Cholesky decomposition
of Ds, where Ds=MT

s Ms and learn the upper triangular matrix Ms instead of Ds. With S

predictions from all the local models, ỹ
(s)
r (xq), at query point xq, the final output of LWPR

for the r-th output is simply given as follows:

ỹr(xq)=
1

∑s ws(xq)
∑

s

ws(xq)ỹ
(s)
r (xq). (2.11)

2.1.2 Partial least squares

In LWPR [19], Partial Least Squares (PLS) is chosen as the basis for the local linear models

φ
(s)
r (x) (Eq. (2.10)). PLS is a regression technique that predicts the dependent response y

(here taken as scalar) in terms of the K-th dimensional input x [26–28] (note that in this
section, we work with a generic output y and all subscripts r are dropped). Let us denote
with y (n×1) and X (n×K) the centered training output and input data, respectively. PLS
regression computes the directions u (K×1) in the input space (also called latent vectors)
that maximize the covariance between X and y. The score vectors z (n×1) are then formed
as a linear combination of the columns of X with weights u (in some sense providing the
best linear combination of the columns of X for predicting y). Ordinary linear regression
is then performed of y on the score vectors. The residuals after regressing y and X are
defined such that orthogonality of the latent vectors is enforced. This ensures that the
multiple regressions of y on the score vectors can be obtained one column at a time. The
algorithm iteratively reveals more and more information about the connection between
y and X.

The basic algorithm is summarized below [19]:

1. Initialization: X1=X, y1=y.

2. For i=1 to R (number of latent variables) do

(a) Find the direction that maximizes the correlations between Xi and yi: ui=XT
i yi.

(b) Compute the latent variables (also called scores): zi=Xiui.

(c) Compute the regression coefficient: βi=zT
i yi/(z

T
i zi).

(d) Update the residual after regressing yi on zi: yi+1=yi−βizi.

(e) Update the residual after regressing Xi on the score vector zi: Xi+1 =Xi−zip
T
i , where

pi =XT
i zi/(z

T
i zi) (transpose of the vector of regression coefficients obtained from linear

regression of the columns of Xi on zi). This step enforces the orthogonality condition
Xi+1ui=0.

R is often automatically determined by tracking the mean square error of the predic-
tion [19]. The prediction for a new input xnew is performed by essentially retracing the
steps of the algorithm above. Let x̄ and ȳ be the mean of the inputs and output. The
prediction process goes through the following steps:
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1. Initialization: x1=xnew− x̄.

2. For i=1 to R do

(a) Compute the latent variables: zi=xiui.

(b) Update the residual of x: xi+1=xi−zip
T
i .

The predicted output of the local model is then formed by a linear combination of the
latent variables as

φs(xnew)= ȳ+
R

∑
i=1

βizi. (2.12)

2.1.3 Updating the distance metric of each receptive field

The distance metric Ds, controls the shape and size for the local model φ
(s)
r (x) (Eq. (2.10)).

In LWPR [19], the distance metric of each local model starts from a predefined value and
then can be adjusted according to the observed data. Specifically, the distance metric
for each local model can be learned individually by stochastic gradient descent using a
penalized cross-validation cost function [18]:

Js =
1

∑
n
i=1ws(xi)

n

∑
i=1

ws(xi)(yr(xi)− ỹ
(s)
r (xi))

2

(1−ws(xi)x
T
i Pxi)2

+
λ

K

K

∑
i,j=1

(Ds)
2
ij, (2.13)

where n denotes the number of data points in the training set and K denotes the dimen-
sion of the distance metric Ds (same as the dimension of the input), ws(xi) is defined in
Eq. (2.9), P corresponds to the inverted weighted covariance matrix of the input data (de-

fined in [19]), ỹ
(s)
r (xi) is the local prediction given by the sth local model for the r-th output

and λ is the trade-off parameter that determines the strength of the penalty term. The first
term of the cost function Js is the mean leave-one-out cross-validation error of the local
model which ensures proper generalization [18]. The second regularization term penal-
izes the sum of squared coefficients of the distance metric Ds to allow smoother local
predictions for the model [18]. Some details on the derivation of Eq. (2.13) are provided
in Appendix A. Based on the cost function, the distance metric can be learned via:

Mn+1
s =Mn

s −α
∂Js

∂Ms
, (2.14)

where Ds =MT
s Ms and Ms is an upper triangular matrix, α is the step size [18, 19]. The

gradient of Js can be computed analytically in terms of several sufficient statistics.

Note that the adjustment of the distance metric described above is not capable of
modeling alone local features. In Section 2.2, we address how to adaptively define the
initial Ds and subsequently control its size.
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2.1.4 Adding a receptive field

In LWPR [19], if a training sample (x,y) does not activate any of the existing receptive
fields by more than a threshold wgen, i.e., maxs ws(x)<wgen, then a new receptive field
is created (wgen is defined by the user, here wgen = 0.2). The center of the new receptive
field is taken as c = x and the initial distance metric D is set to a default value, Ddef

(usually, Ddef is a diagonal matrix, as Ddef= aIK×K , where a is problem dependent). Ddef

determines the initial size and shape for the local model. It can be understood as the
inverse of the covariance matrix of the Gaussian kernel, as shown in Eq. (2.9).

All other regression associated parameters (β, the sufficient statistics to calculate β

and P (Eq. (2.13))) are initialized to predefined values (zero except the matrix P). A suit-
able initialization of P is a diagonal matrix with Pii =1/r2

i , where the parameters ri take
very small value, e.g., 0.001 [19].

This approach has been shown to be robust but not very accurate. As shown in [19],
although the mean squares error (MSE) for all examples considered eventually converges,
it actually converges to a rather large value. Furthermore, a large amount of training
data were often required to achieve convergence. In addition, it is not appropriate to set
the distance metric of each new receptive field to a default value Ddef. For example, in
problems with strong local features, the default size of the local model is much larger
than the span of the local features. One needs to select the initial distance metric based
on the local environment. Given a set of training data, we discuss in Section 2.2 when we
need to add a local model and how to select the initial distance metric.

2.1.5 Computing confidence intervals

LWPR has the ability to give us a confidence interval for the prediction at a query
point [19]. The prediction for a query point xq is taken as a noisy observation of the
true response, where the noise comes from two sources. The first noise source models
the predictive error of local models, in this work, the error bar given by the local PLS
method. The second noise process accounts for the difference between predictions of lo-
cal models. This term comes into the picture because of the Local Weighted Regression
framework, since the final prediction is obtained by averaging all the local predictions.
The overall predictive variance can be approximated as (see Appendix B):

σ2
pred=

∑s ws(xq)σ2
pred,s

(∑s ws(xq))2
+

σ2

∑s ws(xq)
. (2.15)

The first term on the righthand of the equation accumulates the predicted variances for
all the local models, where σ2

pred,s is the local predicted variance for the sth model [19]. The

second term calculates the predicted variance due to the overlap of local models, here σ2

is defined by

σ2=
∑s ws(xq)(ỹ(xq)− ỹ(s)(xq))2

∑s ws(xq)
. (2.16)
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Substituting this into Eq. (2.15) results in the following:

σ2
pred=

1

(∑s ws(xq))2

S

∑
s

ws(xq)[(ỹ(xq)− ỹ(s)(xq))
2+σ2

pred,s]. (2.17)

2.2 Adaptive LWPR

Given a set of training data, one can build the LWPR model as summarized in Algo-
rithm 2.1. wgen is the main parameter of this algorithm controlling when a sample point
xi is to be sent to a particular local model s via the criterion ws(xi)>wgen. In this paper,
our interest is on developing an adaptive LWPR algorithm (Algorithm 2.2). Based on the
standard LWPR model, the following question needs to be addressed: If we are to choose
the next observation, what is the most informative input we should select from the input
distribution? This is the classical experimental design or active learning problem [29,30].
In [31], the authors concluded that the most informative data point is the one that max-
imizes the error bar (predictive variance). In this work, we adaptively select the sample
which has the maximum predictive variance. However, if the response surface has a local
feature (e.g. a discontinuity), then the largest predictive variance always occurs around
the local feature. This results in a cluttering of points in the training set around the local
features with insufficient observations at other locations. This situation can be avoided
by adding a distance penalization factor η(xi) [32] (Eq. (2.18)) to prevent samples from
lying too close to the current training data set. The scaling γ in the definition of the
penalization factor attempts to balance the goal of sampling in areas of large predictive
variance with the ability to detect unexplored (less-sampled) areas.

Algorithm 2.1: The complete LWPR algorithm

Initialize LWPR model with no local models
for i=1,··· ,l0 do

for s=1,··· ,Scurr (Scurr is the number of current local models) do
Calculate the weight ws(xi) from Eq. (2.9)
if ws(xi)>wgen then

Update the PLS regression parameters to include xi (Section 2.1.2)
Update the distance metric Ds to include xi (Section 2.1.3)

end if

end for

if no current local model was activated by more than wgen then

Create a new local model centered at xi with an initial distance metric Ddef (Section 2.1.4)
end if

end for

The penalty function η(xi) is introduced with the following properties (Algo-
rithm 2.2). At first, it should give a very small value when there exists a data point in
the training set that is very close to the candidate sample xi. In that way, this candidate
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point will not be selected simply because the predictive variance at this point is large.
Secondly, η(xi) should take a relatively large value if no points in the training set are
close to the candidate sample. In this work, the penalty function contains a parameter γ
that controls its strength. After several tests, we here select γ=10−2. We can now select
as a candidate sample for our regression scheme the sample h out of N samples from the
distribution p(x) that maximizes the weighted predictive variance (Eq. (2.19)). Therefore,
one can build an adaptive version of LWPR (ALWPR) by selecting the most informative
input samples from the input space X (Eq. (2.1)) biased by the input probability distribu-
tion.

Algorithm 2.2: The complete adaptive LWPR framework

Start with l0 initial training points, construct a LWPR model (Algorithm 2.1).
Set the initial ξ larger than δ.
while ξ>δ do

Randomly sample N data points from p(x).
Calculate the predictive variance σ2(xi) for each sample xi.
Calculate the distance factor η(xi) as

η(xi)=1−exp
{
−γmin

j
(xi−x(j))T(xi−x(j))

}
, (2.18)

where x(j) is one point in the training set.
The one that maximizes the weighted predictive variance is chosen,

xnew=xh, where h=argmax
i

(σ2(xi)p(xi)η(xi)), (2.19)

Send the new selected input xnew to the deterministic solver.
Calculate ξ as

ξ=
∫

σ2(x)η(x)p(x)dx≈ 1

N

N

∑
i=1

σ2(xi)η(xi)p(xi). (2.20)

Update the LWPR model with the new training data {xnew,ynew}.
if |ỹnew−ynew|>ǫ then

for s=1,··· ,Scurr do

Calculate the weights ws(xnew)=exp{− 1
2 (xnew−cs)TDs(xnew−cs)}.

if ws(xnew)>we then

Reset the distance metric as:

Ds =
1

α2
s

IK×K, (2.21a)

where αs =
1

2

√
(xnew−cs)T(xnew−cs). (2.21b)

Relearn the regression coefficients of local model s.
end if

end for



860 P. Chen and N. Zabaras / Commun. Comput. Phys., 14 (2013), pp. 851-878

Create a new receptive field centered at xnew

Set the initial distance metric as:

Dnew=
1

α2
min

IK×K, (2.22a)

where αmin=argmin
s

1

2

√
(xnew−cs)T(xnew−cs). (2.22b)

end if

end while

The convergence criterion ξ<δ (with δ a given tolerance that defines a stopping crite-
rion for the Algorithm 2.2) is chosen with ξ defined in Eq. (2.20) as the average weighted
predictive variance σ2

i ηi over the whole domain biased by the input distribution. As we
know, the predictive variance around local features is higher than in other regions, how-
ever, the probability that candidate samples go to the local feature region is relatively
small (discontinuities have zero probability measure). As the number of data points ob-
served increases, ξ will gradually decrease leading to higher reliability of the prediction
over the whole domain.

The Algorithm 2.2 starts with l0 training points and constructs an initial LWPR model
(see Algorithm 2.1). The value of l0 is selected based on the input dimensionality (e.g.,
in this work, we set l0 = 50 for K = 2 and l0 = 100 for K = 4). Then N candidate points
(here N = 1000) are sampled from the input distribution p(x). From them, we add to
the training data set the input point xnew that maximizes the weighted predictive vari-
ance (Eq. (2.19)). The next algorithmic step is updating the LWPR model using the
new training set {xnew,ynew}. This step includes the creation of a new receptive field
if maxs ws(xnew)<wgen, or otherwise updating all neighboring local models. These calcu-
lations were discussed in the earlier sections.

If a new receptive field is created at a point at xnew, the prediction error at that point
will be close to zero (not exactly zero owing to the contribution from other local mod-
els). Let us assume now that no new receptive field was created at xnew. In this case,
we will need to check if the update of neighboring local models provides a reasonable
prediction ynew at xnew. The parameter ǫ is introduced to control this error. In particular,
when |ỹnew−ynew|> ǫ (with ỹnew the estimate at xnew before the update), a new receptive
field will be introduced centered at xnew with an appropriate distance metric (Eqs. (2.22a)
and (2.22b)). A user-defined parameter we is introduced to control the update of the
neighboring local models. In particular, the models s for which ws(xnew)> we are up-
dated. The parameter we controls in certain way the overlap of these neighboring to xnew

local models. The updated distance metric for these models s is taken as in Eqs. (2.21a)
and (2.21b) and is such that the influence of local models at the point xnew is decreased,
i.e., the weight ws(xnew) reduces from some large value to 0.135. This value is obtained
from the definition of the weight in Eq. (2.9) using the distance metric given in Eq. (2.21b).

Now suppose we < ws(xnew)< 0.135. This means that the current model s needs to
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be updated. Thus the weight ws(xnew) will increase to 0.135. With a fixed center of the
local model s and fixed xnew, the only way for this to happen is by increasing the size of
the local model s, which of course is not desirable. This implies that we need to choose
we > 0.135. For we close to 1, only the local models that are very close to xnew will be
updated. From numerical experimentation, we found that the optimal choice for all the
examples reported in this paper is we=0.3.

Yet another consideration is relearning of the neighboring local models s after the
update of the new distance metric. This is because several points that were previously
included in model s may not satisfy the condition ws(x)> wgen. Thus we need to re-
move these points from model s (i.e. clean the sufficient statistics of local model s) and
recalculate its regression parameters. Lastly, note that in order to allow reasonable local
predictions, at least K+1 points need to be observed at each local model.

Depending on the input distribution p(x), the ALWPR algorithm will result in the
creation of new models for many of the added points in the non-smooth regions of the
stochastic space. In general for smooth stochastic responses, this will not be the case and
the ALWPR algorithm will preferably refine the parameters in current local models than
adding new local models.

For the multi-output case, we assume that the output dimensions are independent
from each other. Thus we construct M independent K-inputs-to-single-output ALWPR
models. All ALWPR models share the same training input data. When calculating the
predictive variance for a sample input xi, we accumulate the predictive variances of all
the outputs, σ2(xi) =∑

M
r=1σ2

r (xi), where σ2
r (xi) is the predictive variance at input xi for

the rth output. The convergence criterion in Eq. (2.20) is then adjusted with ξ defined as
follows:

ξ=
∫

σ2(x)η(x)p(x)dx≈ 1

N

N

∑
i=1

M

∑
r=1

σ2
r (xi)η(xi)p(xi). (2.23)

To accelerate the data selection process, instead of taking one input sample with the
largest weighted predictive variance, we can take the first n input samples with the high-
est weighted predictive variance. Using these input points, we can run the deterministic
solver independently using different processors. After all the calculations are completed,
we gather all the outputs and include these new observations into the training set to up-
date the model. Note that for the M multi-output case, all the M LWPR models share the
same input training data, but they do not have the same local models.

For q+n+1 processors available, we take one processor (P0) as the root node, q pro-
cessors (P1 to Pq) to build the LWPR model for the M-output problem and n processors
(Pq+1 to Pq+n) to run the deterministic solver. At first, the root node sends the training
data set to processors P1 to Pq. After the model has been built, the root node will receive
a signal from P1 to Pq, then it will start to sample N points from the input distribution
p(x). These samples are going to be sent to P1 to Pq to calculate the predictive variance for
each output, while the root node is calculating the value of the distance penalty function
for each sample. After all the predictive variances for all the outputs have been calcu-
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lated and sent back to the root node, the root node sums them up, finds the first n largest
weighted predictive variances and calculates ξ using Eq. (2.23). Finally, the new selected
n inputs will be sent to processors Pq+1 to Pq+n to run the deterministic solver. For each
output, we check the prediction for the newly added points. If it is not satisfying the set
accuracy requirements at a newly added point, a local model centered at this point will
be added and the size of the neighboring local models will manually be changed. The
process is repeated until convergence. The calculated responses are sent to the root node
and added to the training set.

3 Numerical examples

The examples considered here are designed to demonstrate that ALWPR has the ability
to learn local features in the stochastic space such as discontinuities, adaptively choose
the inputs for the model (active learning/experimental design) and accurately provide
predictions with uncertainty for a new input.

All the examples are run on massively parallel computers at the National Energy
Scientific Computing Center (NERSCC) [33].

3.1 Kraichnan-Orszag (K-O) problem

The transformed Kraichnan-Orszag three-mode problem is expressed as the following
dynamical system [8, 14]

dy1

dt
=y1y3,

dy2

dt
=−y2y3,

dy3

dt
=−y2

1+y2
2, (3.1)

subject to initial conditions

y1(0)=Y1(0;ω), y2(0)=Y2(0;ω), y3(0)=Y3(0;ω). (3.2)

The problem exhibits a bifurcation on the parameters y1(0) and y2(0), in particular a
discontinuity occurs when the initial conditions cross the planes of y1=0 and y2=0. The
deterministic solver we use is a 4-th order Runge-Kutta method as implemented in the
GNU Scientific Library [33]. We solve the system for the time interval [0,10] and record
the responses at time step interval of ∆t=0.01. This results in a total of M=300 outputs
(100 for each of the three dimensions of the response). The error of the statistics will be
evaluated using the (normalized) L2 norm of the error in variance defined by:

EL2
=

1

M

M

∑
r=1

(vr,MC− ṽr)
2, (3.3)

where vr,MC is the Monte Carlo estimate of the variance using 106 samples and ṽr is the
predictive variance, r=1,··· ,M.
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For brevity, we only consider here the two dimensional case. The initial conditions
for the problem are taken as:

y1=0, y2=0.1x1, y3= x2,

where

xi ∼U([−1,1]), i=1,2.

This problem has a line discontinuity at x1=0. The algorithm starts with 50 random sam-
ples. Figs. 1-3 show the comparison of the prediction of y3(t=10) with the true response
at tolerance levels δ=10−5,10−7 and 10−9, respectively. As shown in these figures, with
decreasing δ, most of the new samples selected by the algorithm are placed near the dis-
continuity that is gradually being resolved. Fig. 4 depicts the mean weighted predictive
variance and L2 norm of the error in variance as a function of the number of observations.
Here, we also compare the results obtained from the ALWPR with those of the Adaptive
Sparse Grid Collocation Method (ASGC) [14] and Monte Carlo method. As shown in the
figure, for this KO-2 problem, for the same number of samples, ALWPR leads to higher
accuracy than ASGC. Fig. 5 plots the predictive mean and variance of y3(t) as a function
of time t and compares it with the MC prediction. Finally, using 105 samples, Fig. 6 pro-
vides the kernel density estimation of the PDF of y2(t=10) and y3(t=10). This example
is run in parallel with 24 processors (q=20 and n=4).
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Figure 1: KO-2: (a) The prediction of y3(t= 10) at δ= 10−5. (b) The true response of y3(t= 10). (c) Final
Receptive fields. (d) Initial data (red squares) and new samples selected by ALWPR (green squares).
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Figure 2: KO-2: (a) The prediction of y3(t= 10) at δ= 10−7. (b) The true response of y3(t= 10). (c) Final
Receptive fields. (d) Initial data (red squares) and new samples selected by ALWPR (green squares).
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Receptive fields. (d) Initial data (red squares) and new samples selected by ALWPR (green squares).
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Figure 4: KO-2: (a) The mean weighted predictive variance as a function of the number of samples observed.
(b) The L2 norm of the error in variance as a function of the number of samples observed for ALWPR, Sparse
Grid Collocation (SGC), Adaptive Sparse Grid Collocation (ASGC) and Monte Carlo (MC).
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Figure 6: KO-2: Kernel density estimation of the PDF of y2(t= 10) (left) and y3(t= 10) (right) using 105

samples.

3.2 Horn problem

In this section, we apply the ALWPR method to the planar acoustic horn problem [34–36],
in the form of the two-dimensional Helmholtz equation in random media. The structure
of the horn is depicted in Fig. 7. The incoming wave comes from the left end and prop-
agates to the right end through a horn-like tunnel. The walls of the tunnel are built by
sound-hard material. The governing equations for the (complex) pressure are:

∇2 p(x,y,ω)+k2(1+n2(x,y,ω))p(x,y,ω)=0, (3.4)

with boundary conditions

∂p

∂~n
−ikp=0, on Γ1,

∂p

∂~n
=0, on Γ2,

p(x,y,ω)= f (x,y), on Γ3,

Figure 7: The structure of the horn, the incoming wave comes from the left end and propagates to the right
end through a horn-like tunnel, where the walls of the tunnel are built by sound-hard material.
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where ~n is the unit outer-pointing normal of the boundary, k is the wave number and
n2(x,y,ω) is the random reflectivity of the media. Γ1 is the outer boundary, Γ2 is the
boundary of the tunnel (horn) and Γ3 is the source boundary for the incoming wave (inlet
of the horn). In this example, the random reflectivity of the media is chosen to be [37]

n2(x,y,ω)=
4

∑
i=1

ξi(ω)ψi(x,y),

where {ξi(ω)} are i.i.d. uniformly distributed random variables in [0,1] and the functions
{ψi(x,y)} are given by

ψ1(x,y)=sin2(2πx)sin2(2πy), ψ2(x,y)=sin2(4πx)sin2(4πy),

ψ3(x,y)=sin2(6πx)sin2(4πy), ψ4(x,y)=sin2(6πx)sin2(6πy).

The deterministic problem is solved by using the FreeFEM++ software [38] with
f (x)=1 and k=0.7. We consider a circular domain discretized with triangular elements
with totally 3942 nodes, as shown in Fig. 8. In the context of the ALWPR method, this is
a regression problem with 3942 outputs. In this example, the geometric parameters (see
Fig. 8) are chosen as follows: a=1.6, b=4, l =4, d=4, R=9.6 (the radius of the circular
domain).

5

10

0

5

y

-10

-5

-10 -5 0 5 10

x

Figure 8: The FEM mesh used in the horn problem (3942 nodes).

The horn problem is studied with a four-dimensional random input using 100 initial
samples. The convergence plots of the mean weighted predictive variance and L2 norm
of the error in variance are shown in Fig. 9. The obtained results are compared with the
results of ASGC and MC method. Fig. 10 compares the predictive mean and variance
given by ALWPR with the corresponding MC estimates obtained with 106 samples. No-
tice that as the threshold δ decreases, the predictive variance is almost identical to the
MC estimates. In order to see the predictive capabilities of ALWPR for this problem, we
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Figure 9: Horn (4 input dimensions): (a) The mean weighted predictive variance as a function of the number
of samples observed. (b) The L2 norm of the error in variance as a function of the number of samples used by
ALWPR, ASGC and MC.

(a)                                                                                (b)                                       

(c)                                                                                (d)                                       

(e)                                                                                (f)                                       (e)                                                                                (f)                                       

(g)                                                                                (h)                                       

Figure 10: Horn (4 input dimensions): Comparison of the predictive variances using ALWPR with the MC

estimates using 106 samples. The first row provides the MC mean (a) and the MC std (b). The next three rows

are the predicted mean and predicted std with δ=10−5, 10−7 and 10−9, respectively.
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(a)            (b)

(c)                                     (d)

Figure 11: Horn (4 input dimensions): Comparison of the prediction at a random input point with the true
response. (a) prediction given by ALWPR, (b) true response, (c) difference between the prediction and the true
response and (d) predictive variance given by ALWPR.

(a)            (b)

(c)                                     (d)

Figure 12: Horn (4 input dimensions): Comparison of the prediction at a random input point with the true
response. (a) prediction given by ALWPR, (b) true response, (c) difference between the prediction and the true
response and (d) predictive variance given by ALWPR.

plot the prediction at δ = 10−9 on two random input samples and compare them with
the true responses, as shown in Figs. 11 and 12. One can notice that the predictions agree
very well with the true responses. Also to better examine the performance of ALWPR, we
compare the predictive PDFs for the outputs at two specific nodes, p(−4,1.6), the junc-
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Figure 13: Horn (4 input dimensions): Comparison of the predictive PDF at two different spatial points using
ALWPR with the corresponding MC predictions.

tion point of the throat and horn flare, where the incoming wave first enters the divergent
region of the horn and p(0,4), the end of the horn flare where the wave leaves the horn.
Fig. 13 provides the kernel density estimation of the PDFs at these two points by using
105 samples. We can see that the predicted PDFs agree well with the MC estimates. This
example is run in parallel with 205 processors (q=200 and n=5).

3.3 Elliptic problem

In this section, we consider a benchmark stochastic elliptic problem:

−▽·(aK(x,·)▽u(ω,·))= f (·), in D, (3.5a)

u(ω,·)=0, on ∂D, (3.5b)

where the physical domain is D= [0,1]2. In order to avoid confusion with the physical
dimension x=(x,y), ω is used to denote the random variables instead of x. We choose a
smooth deterministic load

f (x,y)=100cos(x)sin(y), (3.6)

and work with homogeneous boundary conditions. The deterministic problem is solved
with the finite element method using a 20×20 grid of bilinear quadrilateral elements. The
random diffusion coefficient aK(ω,x) is constructed as

log(aK(ω,x,y)−0.5)=1+ω1

(√
πL

2

)2

+
K

∑
k=2

ξkφk(x)ωk, (3.7)

where

ξk :=(
√

πL)
1
2 exp

(
− (⌊ k

2⌋πL)2

8

)
, for k≥2,
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and

φk(x) :=





sin
( ⌊ k

2⌋πx

Lp

)
, if k is even,

cos
( ⌊ k

2⌋πx

Lp

)
, if k is odd.

(3.8)

We choose ωk, k=1,··· ,K to be independent identically distributed random variables

ωk∼Beta([2,5]).

While this problem has been studied before with polynomial chaos and sparse grid ap-
proaches using uniform random variables, we select variables following the Beta dis-
tribution in order to demonstrate the ability of the algorithm to bias the sample selec-
tion based on the input probability distribution. Hence, the stochastic input space is
Ω=[0,1]K . Finally, we set

Lp=max{1,2Lc} and L=
Lc

Lp
,

where Lc is called the correlation length. The expansion Eq. (3.7) resembles the Karhunen-
Loève expansion of a two-dimensional random field with stationary covariance

Cov[log(aK−0.5)]((x1,y1),(x2,y2))=exp

{
− (x1−x2)2

L2
c

}
.

In this example, we set the correlation length to Lc=0.6 and study the problem with K=40
input dimensions. The number of initial samples is chosen to be 1000. The convergence
plots of the mean weighted predictive variance and L2 norm of the error in variance are
shown in Fig. 14. A comparison with the results obtained using the ASGC method and

ALWPR
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N
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L 2
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(a)                                                                         (b)

Figure 14: Elliptic example (40 input dimensions): (a) The mean weighted predictive variance as a function
of the number of samples observed. (b) The L2 norm of the error in variance as a function of the number of
samples used by ALWPR, ASGC and MC.
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Figure 15: Elliptic example (40 input dimensions): Comparison of the predictive variances using ALWPR with

(a) δ=10−5, (b) δ=10−7 and (c) a MC simulation using 106 samples.
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Figure 16: Elliptic example (40 input dimensions): Comparison of the prediction at a random input point with
the true response. (a) Prediction given by the ALWPR, (b) True response, (c) Difference between the prediction
and the true response and (d) Predictive variance given the ALWPR.

MC method is also shown. Fig. 15 plots the predicted variance of the response for K=40
against the MC estimate with 106 samples. Notice that as the threshold δ decreases, the
predicted variance becomes indistinguishable from the MC estimates. Figs. 16 and 17
show the predictive capabilities of ALWPR for K= 40 at δ= 10−7 on two random input
points. The predictions agree very well with the true responses. Also, by using 105 sam-
ples, we compare the predictive PDFs for two randomly selected outputs, u(0.4,0.15) and
u(0.5,0.5), as shown in Fig. 18. It can be seen that the predicted PDFs are in good agree-
ment with those obtained from MC. This example was run in parallel with 300 processors
(q=200 and n=100).
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Figure 17: Elliptic example (40 input dimensions): Comparison of the prediction at a random input point with
the true response. (a) Prediction given by the ALWPR, (b) True response, (c) Difference between the prediction
and the true response and (d) Predictive variance given the ALWPR.

2

2.5

3

5

6

7

8

MC

d = 10-5

d = 10-7

MC

d = 10-5

d = 10-7

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

0.5

1

1.5

2

3

4

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

1

u(0.4,0.15) u(0.5,0.5)

(a)                  (b)

Figure 18: Elliptic example (40 input dimensions): Comparison of the predictive PDF at two different spatial
points using ALWPR with the MC predictions.

4 Conclusions

An adaptive implementation of the locally weighted projection regression method was
considered and applied to uncertainty quantification problems. The method works for
any input distribution and provides predictions with error-bars at any query point. It can
deal with multi-outputs and uses active learning in the selection of new sample input
points. The selection of new input points is based on the predictive variance and an
additional distance penalty term. Also, the method is capable of assigning a proper initial
value of the distance metric for each local model depending on the local environment.
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Once the model is successfully built, it can provide rapid predictions at new query points
thus making the ALWPR framework an inexpensive surrogate of the direct solver.

Various examples were considered to study the accuracy and efficiency of the de-
veloped ALWRP method. It was shown that the method is capable of predicting the
correct statistics in the presence of discontinuities in the stochastic space. In the high-
dimensional elliptic problem considered, the scheme captured well the first- and second-
order statistics and also provided reasonable predictions of the PDFs of the outputs. It
is clear that at higher dimensions the performance of the method will be limited from
issues related to the curse-of-dimensionality. The presented methodology treats multiple
outputs in an independent fashion thus it cannot accurately predict correlations among
them. This certainly can be a promising direction for expanding the framework. Finally,
a complete Bayesian treatment of locally weighted progression regression if of current
interest and work in this area will be reported in future works.
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Appendices

A Update of the distance metric

In Section 2.1.3, the penalized cross-validation cost function Js (Eq. (2.13)) is defined as
the leave-one-out cross-validation error J augmented with a penalty term. We can write
the first term J in Eq. (2.13) as:

J=
1

∑
n
i=1wi

n

∑
i=1

wi‖yi− ỹi,−i‖2=
1

∑
n
i=1wi

n

∑
i=1

wie
2
i,−i, (A.1)

where ỹi,−i denotes the prediction at the input location xi of the i-th data point calculated
from training the model with the i−th data point (xi,yi) excluded from the training set.
Also, ei,−i denotes the leave-one-out error. In the following, we use the subscript ()i,−i to
denote the corresponding variables to the model without using the i-th data point.
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In the weighted linear regression system, the parameter β can be calculated by:

β=(XTWX)−1XTWy=PXTWy, (A.2)

where P is the inverted weighted covariance matrix of the input. For mathematical con-
venience, let C = XTWX = P−1 and d = XTWy. In order to obtain ỹi,−i, we should first
compute the regression coefficient βi,−i. Similarly to Eq. (A.2), we can write:

βi,−i=(XT
i,−iWi,−iXi,−i)

−1XT
i,−iWi,−iyi,−i=C−1

i,−idi,−i, (A.3)

where

Ci,−i=C−xT
i wixi, di,−i=d−wix

T
i yi. (A.4)

To obtain the inverse of Ci,−i, we use the Sherman-Morrison-Woodbury Theorem [18].
A special case for the theorem is given below:

Theorem A.1 (Sherman-Morrison-Woodbury Theorem [39]). Given an invertible matrix A

and column vector v, then assuming 1+vTA−1v 6=0,

(A+vvT)−1=A−1−A−1vvTA−1

1+vTA−1v
. (A.5)

Using Theorem A.1, we can thus write:

C−1
i,−i=(C−xT

i wixi)
−1=C−1+

C−1xT
i wixiC

−1

1−wixiC−1xT
i

=P+
PxT

i wixiP

1−wixiPxT
i

. (A.6)

Using this result and Eq. (A.3), we can express βi,−i as:

βi,−i=
[
P+

PxT
i wixiP

1−wixiPxT
i

][
d−wix

T
i yi

]
,

=Pd−Pwix
T
i yi+

PxT
i wixiPd

1−wixiPxT
i

− PxT
i wixiPwix

T
i yi

1−wixiPxT
i

=β+
1

1−wixiPxT
i

[Pwix
T
i yiwixiPxT

i

−Pwix
T
i yi+PxT

i wixiPd−PxT
i wixiPwix

T
i yi]

=β− Pwix
T
i

1−wixiPxT
i

(yi−xiβ). (A.7)

Here, xiβ= ỹi is the prediction of the linear model. By multiplying the above equation by
xi and subtracting by yi, we obtain,

ei,−i=yi−xiβi,−i=yi−xiβ+
xiPwix

T
i

1−wixiPxT
i

(yi−xiβ)

=
1

1−wixiPxT
i

(yi− ỹi). (A.8)
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Hence, we can write the following:

J=
1

∑
n
i=1wi

n

∑
i=1

wi‖yi− ỹi,−i‖2=
1

∑
n
i=1wi

n

∑
i=1

wi
‖yi− ỹi‖2

(1−wixiPxT
i )

2
. (A.9)

In ALWPR, the above cost function can be formulated in terms of the PLS projected inputs
zi as

J=
1

∑
n
i=1wi

n

∑
i=1

wi
‖yi− ỹi‖2

(1−wiziPzzT
i )

2
, (A.10)

where Pz corresponds to the inverse covariance matrix computed from the projected in-
puts zi. The proof of xiPxi =ziPzT

i can be found in Appendix A in [19].

B Combined prediction variance

In LWPR, for each individual local model, we assume that the local prediction is a noisy
observation of the true response with two independent noise processes [19]:

ỹ(s)(xq)=y(xq)+ǫ1+ǫ2,s, (B.1)

where ǫ1 ∼N (0,σ2/ws(xq)), ǫ2,s ∼N (0,σ2
pred,s/ws(xq)) and y(xq) = fr(xq) is the true re-

sponse for the output r. Recall from Eq. (2.11) that:

ỹ(xq)=
1

∑s ws(xq)
∑

s

ws(xq)ỹ
(s)(xq). (B.2)

To simplify the notation, we denote in the following ws(xq) simply as ws and similarly

ỹ(xq) as ỹ and ỹ(s)(xq) as ỹ(s). The combined predictive variance can now be derived as

σ2
pred=E[ỹ2]−(E[ỹ])2=E

[(
∑s wsỹ

(s)

∑s ws

)2
]
−(E[ỹ])2

=
1

(∑s ws)2
E
[(

∑
s

wsy
)2

+
(
∑

s

wsǫ1

)2
+
(
∑

s

wsǫ2,s

)2]
−(ỹ)2

=
1

(∑s ws)2
E
[(

∑
s

wsǫ1

)2
+
(
∑

s

wsǫ2,s

)2]

=
1

(∑s ws)2

[
var

(
∑

s

wsǫ1

)
+var

(
∑

s

wsǫ2,s

)]

=
1

(∑s ws)2

[
∑

s

w2
s

σ2

ws
+∑

s

w2
s

σ2
pred,s

ws

]

=
∑s wsσ

2

(∑s ws)2
+

∑s wsσ
2
pred,s

(∑s ws)2

=
σ2

∑s ws
+

∑s wsσ
2
pred,s

(∑s ws)2
. (B.3)
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