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Abstract. In this paper, a boundary condition-enforced IBM is introduced into the
LBM in order to satisfy the non-slip and temperature boundary conditions, and natural
convections in a concentric isothermal annulus between a square outer cylinder and
a circular inner cylinder are simulated. The obtained results show that the boundary
condition-enforced method gives a better solution for the flow field and the compli-
cated physics of the natural convections in the selected case is correctly captured. The
calculated average Nusselt numbers agree well with the previous studies.

AMS subject classifications: 76R10

Key words: Lattice Boltzmann method, boundary condition-enforced immersed boundary
method, natural convection.

1 Introduction

Natural convection is a flow process driven by temperature gradient on the gravity con-
dition. Natural convection phenomena exist widely in engineering field, such as air re-
frigeration, solar energy storage, electronic component cooling and so on. Therefore it
has attracted a large amount of attention about the characteristics of flow and heat trans-
fer from researchers. Nowadays there are three basic methods that have been used to
study this problem: theoretical analysis, experimental study and numerical simulation.
Among them, numerical simulation is popular due to its low cost, efficiency and infor-
mativeness. Actually, there are many works to simulate natural convection problems
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using numerical method, especially the natural convection in enclosed spaces. As early
as 1983, G Davis published a benchmark solution for natural convection in a square cav-
ity [1]. Later many researchers have studied the natural convection problem in different
cases by different methods [2–6].

Recently, a lattice Boltzmann method (LBM), as an alternative method of computa-
tional fluid dynamics, has been applied to many areas of fluid dynamics and heat trans-
fer such as natural convection [7–13]. For example, Shu et al. applied LBM to simulate
natural convection in a square cavity [7]. Dixit et al. computed the cases of high Rayleigh
number natural convection [8]. Peng et al. developed a thermal LBM model to simulate
3D natural convection [10]. Nor Zwadi et al. proposed a Double-Population Thermal
LBM to simulate natural convection [11]. Especially, some researchers have studied the
natural convection in a concentric annulus using LBM. Peng et al used LBM to simulate
natural convection in a concentric annulus between a square outer cylinder and a circular
inner cylinder [12]. Shi et al. proposed a finite difference-based LBM to simulate natural
convection heat transfer in a horizontal concentric annulus [13].

LBM is a particle-based numerical method at a mesoscopic level. The main advan-
tage of LBM is its simplicity, and easily parallel computing and program coding, more-
over setting the boundary condition is simple for LBM. After two decades’ development,
although the basic theory has been gradually improved, LBM encounters a challenge
in simulating fluid problems with complex boundaries because it is based on Cartesian
grid. In order to solve this problem, Feng and Michaelides [14] proposed a direct-forcing-
boundary-LBM method by introducing Peskin’s immersed Boundary method (IBM) [15]
into LBM. IBM uses a fixed Eulerian grid in the flow field areas, and set up another set
of Lagrangian points to represent objects immersed in the flow field. IBM can be natu-
rally combined with LBM in deal with fluid flows with complex geometries due to both
based on Cartesian grid. However, in the early IBM-LBM work [14], the interaction force
between fluid and particles is computed by the penalty method which introduces a user-
defined spring parameter. To overcome this drawback, Feng and Michaelides [16] later
introduced a direct-forcing scheme and Niu et al. [17] proposed a momentum exchange-
based IB-LBM for simulation of particles moving in incompressible flow.

Although the direct forcing and momentum-exchange ideas are simple and physi-
cally plausible, the non-slip boundary condition is often unable to be satisfied. The direct
consequence of them is that streamlines penetrate the immersed boundary. So it is dif-
ficult to directly apply in thermal boundary. Recently, Shu et al. developed a boundary
condition-enforced IBM to overcome the above drawbacks by solving the Navier-Stokes
equations to study the natural convection problem [18]. This method has several advan-
tages such as satisfying the non-slip condition, and introducing a little work to extend
the method to thermal boundary including Dirichlet boundary and Neumann boundary.
In the present study, the boundary condition-enforced IBM is further introduced to LBM,
and the natural convections in a concentric isothermal annulus between a square outer
cylinder and a circular inner cylinder are simulated. We use LBM as a fluid field solver
and thermal field solver, and make use of the boundary condition-enforced IBM to deal
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with the cylinder boundary. All results obtained are verified by comparing with those
obtained by other researchers [18, 19].

2 Numerical methods

2.1 Governing equations

Under conditions of natural convection, buoyancy processing often uses the Boussinesq
approximation. Therefore, macroscopic governing equations for this problem can be
written as:

∇·u=0, (2.1a)

ρ
(∂u

∂t
+u·∇u

)

=−∇p+µ∇2u−ρg(1−β(T−T∞))j+f, (2.1b)

ρcp

(∂T

∂t
+u·∇T

)

=κ∇2T+q, (2.1c)

with the boundary conditions on the boundary Γ:

uΓ =UBΓ, (2.2a)

TΓ =TBΓ, (2.2b)

where ρ, u, p, T represent density, velocity, pressure and temperature, uB, TB are velocity
and temperature on the solid boundary; physical parameter µ, cp, κ are dynamics viscos-
ity, specific heat capacity at constant pressure and thermal conductivity, respectively; T∞

is the reference temperature and β is the thermal expansion coefficient at the reference
temperature; g is the gravitational acceleration directed downward, j is the unit positive-
direction vector directed upward and f and q denote the external force and heat source
terms.

2.2 Lattice Boltzmann method for flow and temperature fields

LBM governing equation with extern forcing term can be written as:

fα(x+eαδt,t+δt)− fα(x,t)=− 1

τf
( fα(x,t)− f

eq
α (x,t))+Fαδt, (2.3a)

gα(x+eαδt,t+δt)−gα(x,t)=− 1

τg
(gα(x,t)−g

eq
α (x,t))+Qαδt, (2.3b)

where x and t are the coordinate of Eulerian node and time, and fα(x,t) and gα(x,t) de-
note density distribution function and thermal distribution function for the discrete ve-
locity eα, respectively; δt is time step, τf and τg are dimensionless relaxation times of
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flow and temperature fields, respectively. f
eq
α (x,t) and g

eq
α (x,t) are the respective local

equilibrium density and thermal distributions, and they can be expressed as

f
eq
α (x,t)=ωαρ

(

1+
eα ·u

c2
s

+
(eα ·u)2

2c4
s

− u2

2c2
s

)

, (2.4a)

g
eq
α (x,t)=ωαT

(

1+
eα ·u

c2
s

+
(eα ·u)2

2c4
s

− u2

2c2
s

)

, (2.4b)

where cs is the lattice sound speed and ωα is the weight coefficients which depend on
lattice velocity model.

In our study, D2Q9 a model has been used, the velocity set is defined as:

eα =
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(
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√
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c, α=5,6,7,8,

(2.5)

where c= δx/δt, δx is the lattice spacing. Further, c =
√

3cs. In the case of δx = δt, c is
taken as 1. The corresponding weight coefficients are given as:

c=



























4

9
, α=0,

1

9
, α=1,2,3,4,

1

36
, α=5,6,7,8.

(2.6)

The discrete force term Fα in Eq. (2.4a) is defined as:

Fα=
(

1− 1

2τ

)

wα

(

3
eα−u

c2
+9

eα ·u
c2

)

·F, (2.7)

where F is a total external force which contains the forces come from immersed boundary
and buoyancy. In our study, it is

F=−ρgβ(T−T∞)j+f. (2.8)

The heat source term Qα in Eq. (2.3b) is determined by:

Qα=ωαq. (2.9)

The macro density, velocity and temperature in the LBM can be calculated by:

ρ=∑
α

fα, (2.10a)

u=
(

∑
α

eα fα+
1

2
Fδt

)/

ρ, (2.10b)

T=∑
α

gα+
1

2
qδt. (2.10c)
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Using the Chapman-Enskog multi-scale analysis, we can deduced that the lattice Boltz-
mann equations (2.3a) and (2.3b) are consistent with the incompressible Navier-Stokes
equations (2.1a)-(2.1c) to the second order of small Knudsen number with the relaxation
times of τf and τg defined as:

τf =3µ/(ρc2δt)+0.5, (2.11a)

τg =3κ/(ρc2δt)+0.5. (2.11b)

2.3 Velocity and temperature correction procedure

As previously mentioned, the boundary condition-enforced method [18] can satisfy non-
slip condition and temperature condition, and this method has used for N-S solver [18].
In our study, this method will be extended to LBM solver. The boundary condition-
enforced idea for the non-slip condition can be implemented as follows:

1. Velocity correction

Defining the intermediate velocity u∗ as:

u∗=
(

∑
α

eα fα−ρgβ(T−T∞)j
)/

ρ, (2.12)

and the velocity correction is calculated by

δu=
1

2
fδt/ρ. (2.13)

Then the macro velocity can be written as:

u=u∗+δu. (2.14)

2. Calculating interaction force by the non-slip boundary condition

In the IBM [15], the interaction force f of the solid-fluid can be given by

f(x,t)=
∫

Γ
F(X(s,t))δ(x−X(s,t))ds, (2.15)

where X is the coordinate of Lagrangian node on the immersed boundary, F(X(s,t)) is the
force density at immersed boundary, and δ(x−X(s,t)) denotes the Dirac delta function.
The above equation can be further discretized by

f(xi)=∑
l

F(Xl
B)D(xi−Xl

B)∆sl , (2.16)

where ∆sl is the arc length of the boundary element, Xl
B (l = 1,2,··· ,M) are the discrete

Lagrangian points on the immersed boundary, xi (i=1,2,··· ,N) are the uniform Cartesian
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mesh points with mesh spacing δx=δy=h. D(xi−Xl
B) is smoothly approximated of Dirac

function, which is proposed by Peskin [15]:

δ(r)=







1

4

(

1+cos(π|r|/2)
)

, |r|≤2,

0, |r|>2,
(2.17a)

Dil =D(xi−Xl
B)=δ(xi−Xl

B)δ(yi−Yl
B). (2.17b)

From Eq. (2.16), one can see that the force term f(xi) at the Eulerian point is distributed
from the boundary point. Eq. (2.16) can be further written in a matrix form as:

fE =AL→EFL, (2.18)

with AL→E be the matrix form of linear interpolation operator from Lagrangian points to
Eulerian points:

AL→E=











D11∆s1 D12∆s1 ··· D1N∆s1

D21∆s2 D21∆s2 ··· D21∆s2
...

...
. . .

...
DM1∆sM DM2∆sM ··· DMN∆sM











. (2.19)

As at the Eulerian points, Eq. (2.13) gives

fE =2ρδuE/δt. (2.20)

Substituting Eq. (2.20) into Eq. (2.18), we can have

δuE=
2δt

ρ
AL→EFL. (2.21)

According to the non-slip condition, the velocity at the boundary point is equal to the
interpolated value from Eulerian points, that is

UL=h2BE→LuE, (2.22)

where

BE→L=











D11 D12 ··· D1M

D21 D21 ··· D21
...

...
. . .

...
DN1 DN2 ··· DNM











. (2.23)

Substituting Eqs. (2.14) and (2.22) into Eq. (2.23), we can get the following algebraic equa-
tion system

UL =h2BE→L

(

u∗
E
+

2δt

ρ
AL→EFL

)

. (2.24)
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Algebraic equation (2.24) can be further written in the following form:

2δth2

ρ
AL→EBE→LFL =UL−h2BE→Lu∗

E
. (2.25)

The boundary-enforced idea for temperature condition can be implemented as simi-
larly as the velocity correction procedure.

1. Temperature correction

We define the intermediate temperature as:

T∗=∑
α

gα, (2.26)

and the temperature correction is calculated by

δT=
1

2
qδt. (2.27)

On the basis of Eq. (2.14), the macro temperature on the immersed boundary can be
expressed as:

T=T∗+δT. (2.28)

2. Heat source calculation

The heat source term at the Eulerian point can interpolated from the heat flux of bound-
ary point through the Dirac function, and can be written as:

q(x,t)=
∫

Γ
δQ(X(s,t))δ(x−X(s,t))ds, (2.29)

with δQ(X(s,t)) be the heat flux density on the immersed boundary. The matrix form of
Eq. (2.29) is

qE =AL→EδQL. (2.30)

On the Eulerian points, similar to the velocity treatment, we can get the following equa-
tion:

qE =2ρcp/δtδTE. (2.31)

Substituting Eq. (2.31) into Eq. (2.30), we can get

δTE=
2δt

ρcp
AL→EδQL. (2.32)
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To satisfy the temperature boundary condition, we should have

TL =h2BE→LTE. (2.33)

Substituting Eqs. (2.29) and (2.32) into Eq. (2.33), we can obtain the following algebraic
equation system:

TL =h2BE→L

(

T∗
E+

2δt

ρcp
AL→EδQL

)

. (2.34)

Algebraic equation (2.34) can also be written in the following form:

2δth2

ρcp
BE→LAL→EδQL =TL−h2BE→LT∗

E . (2.35)

By solving the algebraic equation systems (2.24) and (2.34), one can achieve the ac-
curate velocity and temperature corrections. It is not difficult to find the elements of the
coefficient matrix AL→E, BE→L, because the elements in AL→E, BE→L are only depend on
the coordinate information of immersed boundary and the adjacent points. So it increases
a little workload to solve the fixed boundary problem.

3 Numerical examples

In this section, several different natural convection problems in a concentric annulus will
be simulated by the proposed boundary condition-enforced LBM. In the study of natural
convection problem, Rayleigh number and Prandtl number are very important parame-
ters, and they are defined as:

Pr=
µcp

κ
, Ra=

ρ2cpβgL3(Tw−T∞)

κµ
. (3.1)

Here, Tw is the temperature on the inner cylinder surface. In order to compare with the
former results, we selected the most representative Rayleigh number and Prandtl number
of Pr=0.71, Ra=104,105,106.

In the present method, the relaxation times can not be expressed by Rayleigh number
and Prandtl number directly. For easily calculation, we further introduce a characteris-
tic velocity, ure f =

√

gβL(Tw−T∞) and the Mach number, Ma = ure f /cs, in the natural
convection problems and the relaxation times of flow and temperature fields can be al-
ternatively given as:

τf =

√

3
Pr

Ra

MaL

δt
+

1

2
, (3.2a)

τg =

√

3

RaPr

MaL

δt
+

1

2
. (3.2b)
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Fig. 1. Configuration of natural convection in a concentric annulus between a square 
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Figure 1: Configuration of natural convection in a concentric annulus between a square outer cylinder and a
circular inner cylinder.

In our simulation, a two-dimensional incompressible natural convection flow is stud-
ied and problem is schematically described by Fig. 1. As shown in Fig. 1, the computa-
tional domain Ω contains a closed immersed boundary Γ, which divides the flow domain
into internal and external areas. The initial conditions are set to zero for u and T∞ for T in
the entire domain, and the reference velocity ure f is taken as 0.25 for all numerical cases.
The numerical examples use the dimensionless form to compute, the side length of the
outer cavity is taken as the reference length, and the temperature is normalized by

T∗=
T−T∞

Tw−T∞

. (3.3)

For the purpose of the understanding the natural convection in a concentric annulus,
the numerical cases of different aspect ratios Ar= L/2r will be considered. In our study,
the numerical cases of different Rayleigh numbers will be calculated with three aspect
ratios of 5, 2.5 and 1.67. The heat transfer behaviors of the natural convection can be
evaluated by Nusselt numbers. The local Nusselt number Nu is defined as:

Nu(X,t)=
h(X,t)L

κ
, (3.4)

where h(X,t) is heat convection coefficient, L is reference length. Based on the Newtons
cooling law and Fouriers law, the average Nusselt number can be calculated by the fol-
lowing formula simply [18],

Nu=
1

L

∫

Γ

Lc

κ(Tw−T∞)
Q(X(s,t))ds. (3.5)
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In our study, Lc is taken as half of the circumferential length of the inner cylinder
surface. So the discrete form of Eq. (3.5) can be written as:

Nu=

∑
i

Qi
B∆si

2κ(Tw−T∞)
. (3.6)

In order to test the efficiency of the present method, the solution must be grid-
independence. For the case of Ra=105, Ar=2.5, we use three different grids of 201×201,
251×251, 301×301. The results are listed in Table 1. As is shown in Table 1, the average
Nusselt number has little change with the mesh refinement, so for the grid of 251×251,
the solution is accurate enough. In our study, all the results are based on the grid of
251×251.

Table 1: The average Nusselt number computed by different grids for Ra=105, Ar=2.5.

Grid 201×201 251×251 301×301

Nu 4.926 4.917 4.914

Figs. 2-4 show the numerical results visualized as the streamlines and isotherms.
These figures can help us to effectively analyze the characteristics of flow, heat conduc-
tion and heat convection. Because the symmetry of physical conditions and geometry
conditions, streamlines and isotherms are symmetrical about the central axis as shown
in Figs. 2-4 clearly. As is shown in Fig. 2, it is the case of Ra = 104, the isotherms are
quasi-circular, implying that the heat flow in the cavity is dominated by diffusion, and
the thermal convection is very weak. So it is not obvious that the velocity field affects the
thermal field. With the change of the aspect ratio, Ar, the thermal boundary layer and
the eddy will change obviously. The dynamic processes of natural convection shown in
Fig. 2 are that two eddies are firstly originated in the cavity; when Ar=5, the eddy will
move up, so the center of eddy moves above the horizontal axis; as Ar decreases from 5
to 2.5 and 1.67, each original eddy will split to two small eddies. Because of the buoyancy
effect and the thermal boundary layer on the bottom surface of the cylinder thinner than
that on its top surface.

With the Rayleigh number increases from 104 to 105, as shown in Fig. 3, the effect of
convection are strengthen, so the closed isotherm and the center of eddy would move to-
ward the y-axis positive direction. For the case of Ar=2.5, by the effect of buoyancy, the
two small eddies under the horizontal disappear. When Ar=1.67, due to the space con-
straint, the flow field becomes more complicated with four large eddies and the central
position of the top boundary appearing two small eddies.

As Rayleigh number increases further up to Ra=106 in Fig. 4, the isotherms strongly
distorted and disordered, so the effect of convection increases stronglyit denote that the
heat flow in annulus is mainly dominated by convection. The evolution of the flow field
becomes more complex for the case of Ar=5 due to the vertical convection, strengthening
near the cylindrical wall. The bottom of wall generates two secondary eddies. As aspect
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(a) 5Ar

(b) 5.2Ar

(c) 67.1Ar

410Figure 2: Streamlines (left) and isotherms (right) for Ra=104.

ratio further decreases to 1.67, there exist six eddies. When compared with the case of
Ra = 105, Fig. 4(c) shows that two eddies locate in the top of wall while the other four
eddied on the left and right become more narrow and long. So in our study, due to
the temperature and pressure differences and space constraints, natural convection in a
concentric annulus produces different morphologies. With Rayleigh number increasing,
the flow field and temperature field change from simple and laminar state to chaos.
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(a) 5Ar

(b) 5.2Ar

(c) 67.1Ar

510Figure 3: Streamlines (left) and isotherms (right) for Ra=105.

In order to understand the details of flow, the forces density acting on the inner cylin-
der surface are shown in Figs. 5-8 with the angle starting from the top point of the inner
cylinder and varying from 0◦ to 180◦ on the right half of the inner cylinder because of a
two-fold symmetry about the vertical center line at x=0.5. Figs. 5 and 6 show the force
distributions on the inner cylinder in the respective x and y directions for the case of
Ar=2.5 at different Rayleigh numbers. As shown in Fig. 5, it is obvious that the distribu-
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(a) 5Ar

(b) 5.2Ar

(c) 67.1Ar

610Figure 4: Streamlines (left) and isotherms (right) for Ra=106.

tion of the forces on the inner cylinder in the x-direction is behaved like a Sine function.
The amplitude of the force is larger around 50◦ and 140◦ than at other angles and also
increases with increasing Rayleigh number from 104 to 106. In the y-direction as shown
in Fig. 6, the distribution of forces is displayed like a Cosine function with a relative large
value on the bottom point of the inner cylinder. It is clearly observed that there exists an
up force due to the force difference between the lower and upper surfaces of the inner
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Figure 5: The force distributions acting on the in-
ner cylinder in the x-direction at different Rayleigh
number for Ar=2.5.
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Figure 6: The force distributions acting on the in-
ner cylinder in the y-direction at different Rayleigh
number for Ar=2.5.
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inner cylinder in the x-direction at different aspect
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Figure 8: The force distributions acting on the
inner cylinder in the y-direction at different aspect

ratio for Ra=105.

cylinder. The values of the buoyance force acting on the inner cylinder in our simula-
tion are 7.932×10−3, 8.799×10−3, 8.142×10−3 for Ra= 104, 105, 106, respectively. These
buoyance forces can be attributed to the contribution of the heat convection-induced the
flow in the cavity. Figs. 7 and 8 show the force distributions on the inner cylinder in the
respective x and y directions for the case of Ra=105 at different aspect ratios. As shown
in Figs. 7 and 8, the amplitude of the force increases with aspect ratio increasing from
1.67 to 5. This is mainly due to the strong convection flow in the cavity with increasing
Rayleigh number.

To verify the capacity of the current methods, we calculate the average Nusselt num-
bers and compare them with those given in [18,19]. The comparisons are listed in the Ta-
ble 2. As is shown in the Table 2, decreasing the aspect ratio and increasing the Rayleigh
number, the average Nusselt number increases, implying the heat transfer in the cav-
ity is enhanced. The consistency of the present results to [18, 19] demonstrates that the
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Table 2: Comparison of Computed average Nusselt numbers.

Cases References

Ra Ar Present Ref. [18] Ref. [19]

5 2.038 2.051 2.071

104 2.5 3.184 3.161 3.331
1.67 5.294 5.303 5.826

5 3.778 3.704 3.825
105 2.5 4.917 4.836 5.080

1.67 6.247 6.171 6.212

5 6.095 5.944 6.107
106 2.5 8.934 8.546 9.374

1.67 11.995 11.857 11.620

present boundary condition-enforced LBM is an efficient numerical tool in handling the
numerical simulation of natural convection problems with complex geometries.

4 Conclusions

In this paper, a boundary condition-enforced IBM is introduced into the LBM and the
solver is used to simulate the problem of natural convection in a concentric annulus. We
use LBM as a fluid field solver and thermal field solver, and make use of the boundary
condition-enforced IBM to deal with the cylinder boundary. The present method cor-
rectly captures the complicated physics of the natural convections in a concentric isother-
mal annulus between a square outer cylinder and a circular inner cylinder and all results
obtained agree well with the previous studies.
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