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Abstract. Weighted interior penalty discontinuous Galerkin method is developed to
solve the two-dimensional non-equilibrium radiation diffusion equation on unstruc-
tured mesh. There are three weights including the arithmetic, the harmonic, and the
geometric weight in the weighted discontinuous Galerkin scheme. For the time dis-
cretization, we treat the nonlinear diffusion coefficients explicitly, and apply the semi-
implicit integration factor method to the nonlinear ordinary differential equations aris-
ing from discontinuous Galerkin spatial discretization. The semi-implicit integration
factor method can not only avoid severe timestep limits, but also takes advantage of
the local property of DG methods by which small sized nonlinear algebraic systems
are solved element by element with the exact Newton iteration method. Numerical re-
sults are presented to demonstrate the validity of discontinuous Galerkin method for
high nonlinear and tightly coupled radiation diffusion equation.
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1 Introduction

Non-equilibrium radiation diffusion systems have been used to simulate problems in in-
ertial confinement fusion, Z-pinch experiments, and astrophysical problems [1–3]. From
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the standpoint of partial differential equations, these systems are highly nonlinear and
tightly coupled and exhibit multiple time and space scales.

In recent years, a great deal of literatures gave various numerical algorithms for the
non-equilibrium radiation diffusion systems. Mostly of them are finite volume method.
Knoll et al. have studied this problem in a series of papers [4–8]. Sheng et al. constructed
a monotone finite volume scheme on distorted meshes for multimaterial non-equilibrium
radiation diffusion equations [9], then applied the Picard iteration to the nonlinear alge-
braic systems. Yuan et al. presented the recent progress in numerical methods for radia-
tion diffusion equation [10]. Their works focus on the construction of the nonlinear solver
for the large nonlinear algebraic systems. Recently, Yue et al. proposed Picard-Newton
iterative method to avoid the low efficiency of Picard iteration [11].

The finite element methods were also applied to the radiation diffusion systems.
Mavriplis discretized the radiation diffusion systems by standard finite element method
and employed the multigrid method to the nonlinear systems [12]. Kang presented P1

nonconforming finite element for the radiation equation [13]. However, whether the fi-
nite element method or the nonconforming finite element method, they are not “local”
method because the load vector will involve the nearest neighbor stencil. Their methods
comprise a non-linear solver which is used to solve the non-linear equations directly and
a linear solver which is used to solve the linear system arising from the linearization of
the non-linear system.

In this paper, we present a weighted discontinuous Galerkin (DG) method for numer-
ically solving radiation diffusion equation. Since their introduction over 30 years ago [14],
DG methods have emerged as an attractive tool in various fields because of the flexibil-
ity for arbitrarily unstructured meshes, suitability for hp-adaptive implementation, and
high parallelizability. For diffusion problems, various DG methods have been analyzed,
including local discontinuous Galerkin method (LDG) [15], the diffusive generalized Rie-
mann problem DG method (dGRP) [16, 17], the direct discontinuous Galerkin method
(DDG) [18, 19], and interior penalty (IP) method [20]. Recently, Ern et al. [21] proposed
weighted interior penalty (WIP) method for advection-diffusion equations with discon-
tinuous diffusivity. The numerical flux in WIP method depends on the harmonic average
weight instead of original arithmetic average. Cai et al. proposed three numerical fluxes
based on the arithmetic, the harmonic, and the geometric average weight for elliptic in-
terface problems [22]. In this paper, we evaluate the diffusion coefficients as constants
on the element center and then construct weighted interior penalty method based on the
above three weights.

For the time discretization, the implicit time integration methods rather than ex-
plicit methods, are often used for non-equilibrium radiation diffusion equations which
have strong nonlinear transients. Previous researches include Knoll et al. [4] who com-
pared three time integration methods: the semi-implicit method, the fully implicit Picard
method, and the Newton-Krylov method. Lowrie [23] considered Beam and Warming
scheme, Crank-Nicolson scheme, and predictor-corrector scheme etc. and compared the
efficiency and accuracy of these methods. Ref. [24] studied linearly implicit and implicitly
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balanced method. Mousseau et al. [25] studied a variety of first- and second-order time-
integration methods for two-dimensional non-equilibrium radiation diffusion equation
and compared their accuracy and efficiency. However the time integration methods men-
tioned above would introduce large scale algebraic systems which need the construction
of linear and nonlinear solvers.

Verwer and Sommeijer have proposed an implicit-explicit (IMEX) Runge-Kutta-
Chebyshev (RKC) scheme for radiation diffusion equations in [26]. This is a kind of
semi implicit time discretization method. They treat the reaction terms implicitly and
diffusion terms explicitly. This decoupling can make sure that the implicit terms have
no underlying spatial grid connectivity, then the local nonlinear algebraic systems can
be solved by modified Newton method. Although the IMEX RKC method is a local time
discretization, it will need a very large number of stages per time step to achieve stability.

The DG method discretizes the spatial variables and leads to a relatively large num-
ber of degrees of freedom in comparison to other discretization methods. For example,
assuming about the linear triangular elements, the DG systems involves 3 times the num-
ber of unknowns of the corresponding finite volume method. Solving these large systems
implicitly would cause enormous computational cost. It is essential to construct a suit-
able time discretization techniques which have good stiffness stability and preserve the
“local” property of the DG method. Nie et al. [27] proposed implicit integration factor
(IIF) method for the stiff reaction-diffusion equations. A novel feature of IIF method is
that the nonlinear algebraic systems can be solved element by element. Then the IIF
method can be regarded as a local time discretization. Chen and Zhang [28] developed
Krylov implicit integration factor methods for DG spatial discretization on unstructured
meshes. However, these calculations depend on the fact that the diffusion coefficients are
constant. The main difficulty in implementing integration factor type method is how to
treat the nonlinear diffusion coefficients.

In this paper, we address this problem by using the semi-implicit method as in [4, 24]
and develop semi-implicit integration factor (SIIF) method to solve the radiation diffu-
sion systems. The idea is to evaluate the nonlinear diffusion coefficients at previous time
level n and keep the reaction terms at the present time level n+1. There are some difficul-
ties in applying the IF method which require the calculation of exponentials of the matri-
ces. We apply the Krylov subspace method to the computation of the matrix exponential
operator as in the [29]. The SIIF method is much easier to implement and demands much
less computational effort than the fully implicit time discretization methods. Meanwhile
this method can also allow for a large time step size which is proportional to the spa-
tial grid size. The main advantage of this method is that it is a local time discretization
method and the nonlinear algebraic systems can be solved element by element.

The outline of the paper is as follows. In Section 2, we present the weighted interior
penalty method for the non-equilibrium radiation diffusion systems. The semi-implicit
integration factor time discretization scheme is carried out in Section 3. Numerical ex-
amples are presented in Section 4. We end our presentation in Section 5 with concluding
remarks.



1290 R. Zhang et al. / Commun. Comput. Phys., 14 (2013), pp. 1287-1303

2 Discontinuous Galerkin approximation

2.1 Non-equilibrium radiation diffusion systems

Under the assumption of an optically thick medium, a first-principles statement of ra-
diation transport reduces to the radiation diffusion limit. The idealized dimensionless
equation for non-equilibrium diffusion coupled to material conduction, known as the
“2T” model, can be written as

∂E

∂t
−∇·(Dr∇E)=σa(T

4−E), (2.1)

∂T

∂t
−∇·(Dt∇T)=−σa(T

4−E). (2.2)

The problem consists of two strongly nonlinear diffusion equations with a highly stiff
reaction term. The dependent variables are E and T, representing, respectively, radiation
energy and material temperature. The energy exchange is controlled by the photon ab-

sorption cross section σa, which is defined by σa=
z3

T3 . The energy diffusion coefficient Dr

with flux limiter is as follows

Dr =
1

3σa+
|∇E|

E

, (2.3)

where |∇E| is the Euclidean norm of the gradient ∇E. The limiter term |∇E|
E is an artificial

means of ensuring physically meaningful energy propagation speeds (i.e. no faster than
the speed of light). In addition to the non-linear behavior resulting from the governing
equations, the flux-limited form of the diffusion coefficient introduces an extra degree of
non-linearity to the system. The material conduction coefficient is defined as

Dt=κT
5
2 , (2.4)

with κ=0.01. The atomic number z is a material coefficient of being a function of position
(x,y).

The computational domain Ω is assumed to be a unit square domain. We represent
the boundary x = 0,0 ≤ y ≤ 1 and x = 1,0 ≤ y ≤ 1 by Γ0, and otherwise by Γ1, i.e. that
∂Ω = Γ0∪Γ1. To be consistent with previous works [13], the boundary conditions are
defined as follows:

E

4
+

1

6σa

∂E

∂n
= g, on Γ0, (2.5a)

∂E

∂n
=0, on ∂Ω−Γ0, (2.5b)

∂T

∂n
=0, on ∂Ω, (2.5c)

where n is the local outward normal vector to the boundary.



R. Zhang et al. / Commun. Comput. Phys., 14 (2013), pp. 1287-1303 1291

2.2 Weighted interior penalty method

We consider a triangulation Th of Ω which consists of non-overlapping triangles Th =
⋃Ne

m=1△m, where Ne denotes the number of triangular elements. We denote by Eh =
Ein

h

⋃

E0
h

⋃

E1
h the set of all edges of Th where Ein

h is the set of all interior edges, and E0
h

and E1
h are the sets of boundary faces belonging to the respective Γ0 and Γ1. For each

e∈Eh, we denote he as the length of the edge e and associate a unit normal vector ne to e.
Denote hmin as the minimum length of all triangular edges. If e∈E0

h

⋃

E1
h , ne is taken to be

unit outward vector normal to ∂Ω.
If e∈Ein

h , let △e
1 and △e

2 be the two elements sharing the common edge e, we assume
that the normal vector ne is oriented from △e

1 to △e
2. There are two traces of function u

along e:

ue
1={u(x,y) : (x,y)∈△e

1, (x,y)→ e}, ue
2={u(x,y) : (x,y)∈△e

2, (x,y)→ e}.

Now we define the jump of a function u over edge e as

[u]=ue
1−ue

2.

We also define the following weighted averages

{u}w =we
2ue

1+we
1ue

2

with the weights satisfying

we
2∈ [0,1], we

1∈ [0,1], we
2+we

1=1. (2.6)

We define the DG approximation space as

Vh={v∈L2(Ω) : v|△m
∈Pk(△m), m=1,2··· ,Ne}. (2.7)

where Pk(△m) denotes the space of polynomials of total degree less than or equal to k on
element △m. Then the weighted interior penalty DG method is defined as follows, find
E,T∈Vh, such that

Ne

∑
m=1

∫

∆m

Etφdxdy+aθ (E,φ)=
Ne

∑
m=1

∫

∆m

σa(T
4−E)φdxdy+ ∑

e∈E 0
h

∫

e
2gφds, (2.8)

Ne

∑
m=1

∫

∆m

Ttψdxdy+bθ(T,ψ)=−
Ne

∑
m=1

∫

∆m

σa(T
4−E)ψdxdy, (2.9)

for all (φ,ψ)∈Vh. The DG bilinear forms aθ(E,v) in (2.8) are defined as

aθ(E,φ)=
Ne

∑
m=1

∫

∆m

Dr∇E·∇φdxdy+ ∑
e∈E in

h

∫

e

γθ

he
We[E][φ]ds+ ∑

e∈E 0
h

∫

e

E

2
φds

− ∑
e∈E in

h

∫

e
{Dr∇E·n}w[φ]ds+θ ∑

e∈E in
h

∫

e
{Dr∇φ·n}w[E]ds. (2.10)
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Note that we approximate the flux Dr
∂E
∂n by 1

3σa

∂E
∂n on the boundary E0

h , the same treatment
can be found in [13].

Similarly, we can define the DG bilinear forms bθ(T,ψ) in (2.9) as

bθ(T,φ)=
Ne

∑
m=1

∫

∆m

Dt∇T ·∇ψdxdy+ ∑
e∈E in

h

∫

e

γθ

he
We[T][ψ]ds

− ∑
e∈E in

h

∫

e
{Dt∇T ·n}w[ψ]ds+θ ∑

e∈E in
h

∫

e
{Dt∇ψ·n}w[T]ds. (2.11)

The penalty parameter γθ is set to be a positive constant. The bilinear form (2.8)-(2.9)
corresponding to θ =−1, 0, or 1 are the so-called symmetric interior penalty Galerkin
(SIPG), incomplete interior penalty Galerkin (IIPG), or nonsymmetric interior penalty
Galerkin (NIPG).

There are several possible choices of the weights in (2.10). Let e be the common edge
of elements △e

1 and △e
2: e=△e

1

⋂

△e
2. Denote by Dr,1,Dr,2 as the values of Dr on the center

of triangles △e
1 and △e

2. There are three choices of the weights we
1,2: the arithmetic weight,

the harmonic weight, and the geometric weight [22]

we
1=

1

2
, we

2=
1

2
, (2.12a)

we
1=

Dr,2

Dr,1+Dr,2
, we

2=
Dr,1

Dr,1+Dr,2
, (2.12b)

we
1=

√

Dr,2
√

Dr,1+
√

Dr,2

, we
2=

√

Dr,1
√

Dr,1+
√

Dr,2

. (2.12c)

Then We is the corresponding arithmetic, harmonic, and geometric averages on edge e:

We,a =
Dr,1+Dr,2

2
, We,h=

2Dr,1Dr,2

Dr,1+Dr,2
, We,g =

√

Dr,1Dr,2. (2.13)

These averages satisfy the following relations: We,h ≤We,g ≤We,a. The weights and aver-
ages in (2.11) are defined similarly. With the choices of weights in (2.13), the correspond-
ing DG methods in (2.8)-(2.9) are called the arithmetic, the harmonic, and the geometric
weighted interior penalty methods, respectively.

In this paper, we consider the linear element. The basis function on each element is
the linear function φi, i = 1,2,3 which takes the value 1 at the midpoint of the ith edge
and the value 0 at the mid-points of the two other edges. The approximate solution on
element ∆m can be represented by

E=
3

∑
i=1

Eiφi(x,y), (2.14)
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where the degrees of freedom Ei are values of the numerical solution at the midpoints of
the ith edge. To perform the integration in space, we use the three mid-point rule on each
triangle in Th. Hence the mass matrix on every triangle can be obtained by

∫

∆m

φiφjdxdy=
|∆m|

3
δij, i, j=1,2,3. (2.15)

And because ∇E is a piecewise constant on each triangle, we can compute the ∇E needed
in Dr exactly. Also, the volume integral for the nonlinear parts in (2.8) can be approxi-
mated by

∫

∆m

σa(T
4−E)φidxdy=

|∆m|

3
z3(Ti−

Ei

T3
i

), i=1,2,3 (2.16)

due to the properties of the basis functions. So we can easily compute the Jacobian in the
Newton iteration, as it will be shown in (3.9).

3 Semi-implicit integration factor time discretization

In this section, we first propose the SIIF method for the nonlinear ODEs generated by the
DG spacial discretization. Then we use the Newton method to solve the small nonlinear
algebraic system on every triangular element.

Denote ∆t as the time step and the superscript n as the time levels. To perform the
semi-implicit integration factor method in time, we write the semi-discrete schemes (2.8)-
(2.9) into the following global nonlinear ODE system by inverting the mass matrix:

dU

dt
=A(U)U+F(U), (3.1)

where U= (UT
1 ,UT

2 ,··· ,UT
Ne
)T is the vector of unknowns containing the degrees of free-

dom of E and T on every element with UT
m =(E1,E2,E3,T1,T2,T3)m. The stiffness matrix

A(U) is the nonlinear global sparse matrix which is determined by the nonlinear diffu-
sion coefficients Dr and Dt. The right hand side F(U)=(FT

1 ,FT
2 ,··· ,FT

Ne
)T, where each term

FT
m can be computed by (2.16) and boundary condition. Note that the superscript T in the

above formula represent the matrix transposition.

There are two difficulties in applying the implicit integration factor method for the
nonlinear radiation diffusion equation. The first obstacle is that the global matrix A(U)
depends on the nonlinear diffusion coefficients Dr and Dt. To overcome this obstacle, a
commonly used approach for radiation diffusion system is referred to as the semi-implicit
method [4]. In the semi-implicit method, the radiation diffusion coefficients Dr and Dt

are evaluated at time level n. In this way we get following ODE system:

dU

dt
=A(Un)U+F(U). (3.2)
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The matrix A(Un) can be thought as a constant matrix, we multiply (3.1) by the integra-
tion factor e−A(Un)t and integrate over one time step from tn to tn+1 to obtain

Un+1= eA(Un)∆tUn+eA(Un)∆t
∫ ∆t

0
eA(Un)τF(U(tn+τ))dτ. (3.3)

The integrand in (3.2) can be approximated by using an r−1th order Lagrange interpo-
lation polynomial with interpolation points at tn+1,tn,··· ,tn+2−r. Then we obtain the rth
order scheme

Un+1= eA(Un)∆tUn+∆t

(

α1F(Un+1)+
r−2

∑
i=0

α−ie
(i+1)A(Un)∆tF(Un−i)

)

, (3.4)

see [27] for the values of coefficients αj for schemes with different orders. In this paper
we use the following second order semi-implicit integration factor scheme

Un+1= eA(Un)∆t(Un+
△t

2
F(Un))+

△t

2
F(Un+1), n=0,1,··· . (3.5)

The second obstacle in implementing IF method for high dimensional problems lies
in the significantly expensive storage and calculation of exponentials of the matrixes,
eA(Un)∆t. Although the discretization matrix are sparse, their exponentials matrix will be
dense. So it is not practical to compute and store the exponentials matrix directly. We
address this problem by using the Krylov subspace approximations to the products of
the exponential matrix and vector, instead of computing the full exponential matrix itself.
The underlying principle is to approximate the product w=eA(Un)∆tv by an element of the

Krylov subspace Km(△t,v)= span
{

v,A(Un)∆tv,··· ,(A(Un)∆t)m−1
v
}

. The dimension m
of the Krylov subspace is much smaller than the dimension of the large sparse matrix
A(Un). We take m=25 in all numerical computations of this paper. The approximation
being used is

eA(Un)∆tv=βVm+1e△tHm+1e1, (3.6)

where e1 is the first unit basis vector, β=‖v‖2; Vm+1=(v1,··· ,vm+1) and Hm+1=[hij ] are,
respectively, the orthonormal basis and the upper Hessenberg matrix resulting from the
following well-known Arnoldi process:

Algorithm 3.1

Hm+2=zeros[m+2,m+2];

1. Compute the initial vector: v1=v/‖v‖2;

2. Perform iterations: Do j=1,2,··· ,m:

(1) Compute the vector p=A(Un)vj;

(2) Do i=1,2,··· , j:
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(2.1) Compute the inner product hij=(p,vi);

(2.2) Compute the vector p=p−hijvi;

(3) Compute hj+1,j=‖p‖2;

(4) If hj+1,j=0, then stop the iteration;

Else compute the next basis vector vj+1=p/hj+1,j.

3. H(m+2,m+1)=1.

In this paper we get the approximation of the product by means of the software pack-
age EXPOKIT developed by Sidge [29].

Applying the Krylov subspace approximation (3.6) to (3.5), we obtain the second or-
der semi-implicit IF schemes

Un+1=βnVn
m+1e△tH

n
m+1e1+

△t

2
F(Un+1), n=0,1,··· . (3.7)

where βn = ‖Un+△t
2 F(Un)‖2, Vn

m+1 and Hn
m+1 are generated by the above Arnoldi al-

gorithm with the initial vector Un+△t
2 F(Un) and the sparse matrix A(Un). This semi-

implicit IF scheme (3.7) separates the right hand sides into explicit and implicit parts. If

we assume that Qn = βnVn
m+1e△tH

n
m+1e1, where Q=(QT

1 ,QT
2 ,··· ,QT

Ne
)T. Then we can get

the following local nonlinear algebraic system

R(Un+1
m )=Un+1

m −Qn
m−

△t

2
Fm(Um

n+1)=0, m=1,··· ,Ne. (3.8)

We solve the nonlinear systems (3.8) element by element by the following Newton
iteration algorithm.

Algorithm 3.2

Give the initial value U0
m and compute Un+1

m from Un
m for m=1,2,···Ne.

1. Un+1,0
m =Un

m.

2. Compute the Jacobi matrix J of R(Un+1,k
m ) and solve the algebraic systems: JSk+1=−R(Un+1,k

m ),
k=0,1,2,···.

3. Un+1,k+1
m =Un+1,k

m +Sk+1.

4. Substituting Un+1,k+1
m into (3.8) and compute R(Un+1,k+1

m ),

If |R(Un+1,k+1
m )|<ǫ is satisfied, then stop and Un+1

m =Un+1,k+1
m .

Else Un+1,k
m =Un+1,k+1

m and go to step 2.

The threshold value ǫ for judging Newton iteration convergence is set to be small
enough, we take ǫ=10−13.
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For P1 DG finite element, the corresponding Jacobi matrix J in Algorithm 3.2 can be
easily calculated. We omit the subscript m for simplicity in the following matrix form.































1+ ∆t
2

z3

T3
1

0 0 − ∆t
2 z3

(

1+
3E1
T4

1

)

0 0

0 1+ ∆t
2

z3

T3
2

0 0 − ∆t
2 z3

(

1+
3E2
T4

2

)

0

0 0 1+ ∆t
2

z3

T3
3

0 0 − ∆t
2 z3

(

1+
3E3
T4

3

)

− ∆t
2

z3

T3
1

0 0 1+ ∆t
2 z3

(

1+
3E1
T4

1

)

0 0

0 − ∆t
2

z3

T3
2

0 0 1+ ∆t
2 z3

(

1+
3E2
T4

2

)

0

0 0 − ∆t
2

z3

T3
3

0 0 1+ ∆t
2 z3

(

1+
3E3
T4

3

)































(3.9)

Remark 3.1. Though we have not presented a numerical analysis, we would like to add
some comments concerning stability and accuracy of the proposed method. In the all nu-
merical experiments that we have performed we do not observed any stability problem
such as blow up or spurious oscillation of the numerical solution. This robust behavior
is due to the good stability and local properties of the DG finite element approximation
combined with the semi-implicit time integration method adopted here.

Remark 3.2. Concerning the choice of integration time step, in the examples consid-
ered here, we have observed that accuracy is more critical than stability. Since we have
adopted a semi-implicit scheme with a linearization of the diffusion coefficients on each
time step, for the proposed SIIF DG method with P1 elements we may expect first or-
der approximation in time and second order approximation in space in L2 norm. The
numerical results presented in next in Section 4.1 is in agreement with this conjecture.
A complete mathematical and numerical analysis of the model problem addressed here
will be presented in future works.

4 Numerical tests

In this section we will study the performance of the P1 weighted incomplete interior
penalty Galerkin method (θ = 0) for the non-equilibrium radiation diffusion problems.
Since these equations have no analytic solutions, we first consider a nonlinear parabolic
problem with analytic solution to give a convergence test and computational cost. Then
we will demonstrate our method on two test problems about non-equilibrium radiation
diffusion problems (2.1)-(2.2).

4.1 Numerical examples with analytic solution

Example 4.1. Consider the following nonlinear parabolic equation with the mixed
boundary condition
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ut−∇·(u∇u)= f (x,y,t) in Ω, (4.1a)

u= e−π2t(2+cos(πx)cos(πy)) on ∂ΩS

⋃

∂ΩN , (4.1b)

u∇u·n=0 on ∂ΩE

⋃

∂ΩW , (4.1c)

where Ω=(0,1)×(0,1). The exact solution for (4.1) is u=e−π2t(2+cos(πx)cos(πy)). The
initial condition and right hand side f (x,y,t) are determined by the exact solution. This
example has been used as a convergence test by Sheng [30] in which the fully implicit
scheme was adopted with time step ∆t = 10−5. We use the SIPG method on various
triangular meshes for spatial discretization, and the SIIF method for time integration
with a uniform time step ∆t = 5×10−6. The time step is sufficiently small so that the
spatial error dominates the computation. The computation is carried up to t=0.01 with
the dimension of the Krylov subspace m= 25. We give the CPU time, errors and order
of accuracy for four different levels meshes in Table 1 at time t= 0.01. From this table,
we can get the second-order convergence for the maximum and L2 norm error. Also, as
shown in the CPU time of the numerical tables, we can see that the computations are
very efficient. The CPU time approximately increases 4 times when the spatial mesh is
refined once. So the CPU time approximately depends linearly on the number of degrees
of freedom.

Table 1: CPU time, errors and order of convergence for Example 4.1.

Ne CPU(s) L2 error Order L∞ error Order

112 4.88 5.66E-3 - 1.42E−2 -

394 14.18 1.54E-3 1.87 4.92E−3 1.53

1460 50.00 4.48E-4 1.78 1.25E−3 1.98
5816 197.93 1.16E-4 1.95 3.15E−4 1.98

4.2 Application to non-equilibrium radiation diffusion equation

The weighted DG method with SIIF time discretization will now be demonstrated on two
classical model problems to test the validity of this method. The numerical results will be
presented in the form of contour and 3D views of radiation temperature which is defined
by Tr =E0.25.

Example 4.2. We first consider a two-dimensional problem (2.1)-(2.2) with Robin bound-
ary condition (2.5). This model describes a unit radiation flux impinging on an initially
cold slab. It includes two cases with only difference between the problems being homo-
geneity. One case is homogeneous material in which the atomic number z is constant
and equal to 1.0 everywhere. The other one is heterogeneous material with the atomic
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Figure 1: Contours and 3D views of radiation temperature of Example 4.2, Case 1 at t= 1, t= 2, and t= 3
(from left to right).
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Figure 2: (a) The sum of Newton iterations on all elements, and (b) the averages of Newton iterations on each
element for Example 4.2, Case 1.

number, z, a function of x and y. In the two cases, we use the same initial conditions with
E0=1.0×10−5, T0=(E0)0.25.

Case 1, the two-dimensional homogeneous problem, is the same with the one-
dimensional physics as in [4]. The domain is discretized using a triangular grid contain-
ing 5816 triangles. We apply the three weights in scheme (2.8)-(2.9) and get the similar
results. In Fig. 1, we plot the contours and 3D view of the radiation temperature Tr at
t = 1.0, t = 2.0, t = 3.0 based on the geometric weight. Fig. 1 show that the contours of
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Figure 3: Contours and 3D views of radiation temperature of Example 4.2, Case 2 at t= 1, t= 2, and t= 3
(from left to right).

temperature propagate parallel to the inlet boundary and reproduce the propagation of
this one-dimensional phenomenon [6].

In the numerical experiment of Case 1, the time step size is set as ∆t=C∗hmin where
C is taken to be 0.2. We plot the sum of iterations on all elements and the averages of
iterations on each element in Fig. 2. We can see that the iterations gradually increase as
the thermal front propagates through the unit square. The Fig. 2(b) also show that the
average Newton iteration on each element is no larger than 2.

For Case 2, we consider a unit square domain of two dissimilar materials, where
the outer region contains an atomic number of z= 1 and the inner circular regions (r ≤
0.25, with r=

√

(x−0.5)2+(y−0.5)2) contains an atomic number of z=10. This problem
was chosen to demonstrate how the method behaves when faced with a strong spatial
dependence of the radiation diffusion coefficient. Fig. 3 show the contour and 3D view of
the radiation temperature Tr at t=1, t=2, and t=3, respectively. At the beginning, as the
energy propagates, temperature rapidly change near the front. When the thermal front
propagates to the layer where the two different materials meet, the progress is impeded
by the region of higher atomic number z. At critical times in the simulation, the diffusion
coefficients can vary up to six orders of magnitude near the material interfaces. Results
show that the method works just as well in heterogeneous as it did in homogeneous case.

Example 4.3. The second model problem we are going to solve is taken from [9]. We solve
this problem on the unit square domain which contains two dissimilar materials. The



1300 R. Zhang et al. / Commun. Comput. Phys., 14 (2013), pp. 1287-1303

value for z is 1 everywhere, except in the two inner square regions 3
16 <x< 7

16 , 9
16 <y< 13

16

and 9
16 < x < 13

16 , 3
16 < y < 7

16 where the value for z is 10. As opposed to the first model
problem, we consider the solid wall boundary conditions for E and T, namely, all the
four walls are insulated with respect to radiation diffusion and material conduction:

Dr∇E·n=0, Dt∇T ·n=0. (4.2)

Remark 4.1. The solid wall boundary conditions (4.2), which is different with (2.5), will
lead to corresponding changes in the DG scheme (2.8) and (2.9). The terms ∑e∈E 0

h

∫

e 2gφds

and ∑e∈E 0
h

∫

e
E
2 φds in (3.8) will be omitted.

The initial radiation energy is given by

E0=1.0×10−3+100exp

(

−
( r

0.1

)2
)

, (4.3)

where r=
√

x2+y2. The initial material temperature is defined as in Case 1, i.e. that T0=
(E0)0.25. The computational domain is discretized into unstructured triangular elements
with 23274 triangles. Because there are 6 unknown variables on each elements for DG
scheme, the number of degrees of freedom of this problem is 6×23274= 139644. If we
solve the problem by the fully implicit scheme, the computation and storage costs are
very expensive. On the contrary, the SIIF method can assure that the nonlinear algebraic
system can be computed element by element.
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Figure 4: Contours and 3D views of radiation temperature of Example 4.3 at t= 0.5, t= 1.5, and t= 3 (from
left to right).



R. Zhang et al. / Commun. Comput. Phys., 14 (2013), pp. 1287-1303 1301

In Fig. 4 the contours and 3D views of radiation temperature are shown at time t=0.5,
t=1.5 and t=3, respectively. We have observed that the solution of the SIIF DG method
is very close to the solution presented in [9] using a finite volume method. Addition-
ally, we have also observed great accuracy and robustness of the SIIF DG solutions with
no spurious oscillation and preserving positivity of E and T approximations, differently
from other methods which are unable to preserve this important property (see [9]).

5 Conclusions

We have presented an new numerical method for the solution of non-equilibrium radia-
tion diffusion systems. This method is based on the space discretization by the weighted
interior penalty method, and the time discretization by semi-implicit integration factor
method. The DG method is shown to resolve very sharp changes of temperature on
heterogeneous domains. The semi-implicit integration factor method proved to be an ef-
ficient temporal numerical scheme which not only preserves the DG’s local property and
parallel flexibility but also avoids strict time step restriction required by explicit methods.
The obtained results confirm that our DG method is a powerful and reliable method for
the numerical solution of nonlinear diffusion problems.
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