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Abstract. We study efficient spectral-collocation and continuation methods (SCCM)
for rotating two-component Bose-Einstein condensates (BECs) and rotating two-compo-
nent BECs in optical lattices, where the second kind Chebyshev polynomials are used
as the basis functions for the trial function space. A novel two-parameter continuation
algorithm is proposed for computing the ground state and first excited state solutions
of the governing Gross-Pitaevskii equations (GPEs), where the classical tangent vec-
tor is split into two constraint conditions for the bordered linear systems. Numerical
results on rotating two-component BECs and rotating two-component BECs in opti-
cal lattices are reported. The results on the former are consistent with the published
numerical results.
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bifurcation.

1 Introduction

Quantized vortex lattices in a rotating Bose-Einstein condensate (BEC) have been ob-
served experimentally in the past decade [1–4]. Since then the study of quantized vor-
tices plays a key role in superfluidity and superconductivity. While many interesting
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phenomena have been observed in single rotating component BEC [1–4], it is expected
that a rich variety of static and dynamic phenomena will be found in rotating two compo-
nent BECs. In this paper, we impose the effect of optical lattices on the physical system.
At extremely low temperature, the mathematical model of rotating two-component BECs
in optical lattices is described by the macroscopic wave functions Ψj(x,t) (j=1,2) whose
evolution is governed by the coupled Gross-Pitaevskii equations (GPEs):

i
∂

∂t
Ψj =−

1

2
∆Ψj+V(x)Ψj+P(x)Ψj+

(

2

∑
l=1

ηjl |Ψl |
2

)

Ψj−ωLzΨj, x∈Ω⊂R
2, (1.1a)

Ψj(x,t)=0, t≥0, x∈∂Ω, j=1,2, (1.1b)

where V(x)= (γ2
xx2+γ2

yy2)/2 is the trapping potential with γx and γy the trap frequen-

cies in the x- and y- direction, respectively, P(x)= a1sin2(πx/d1)+a2sin2(πy/d2) is the
periodic potential with a1 and a2 the recoil energies, and d1 and d2 are the distance be-
tween neighbor wells (lattice constants) in the x- and y- axis, respectively, Ω ⊂R

2 is a
bounded domain with piecewise smooth boundary ∂Ω, ω is an angular velocity, and
Lz=xpy−ypx=−i(x∂y−y∂x) is the z-component of the angular momentum L=x×P with
the momentum operator P=−i∇=(px ,py,pz)T. The intra-component interactions and
inter-component interactions in the two-component BECs are represented by ηjj (j=1,2)
and ηjl (j 6= l, j,l=1,2) respectively. An important invariant of the GPEs is the normaliza-
tion of the wave functions

∫

Ω
|Ψj(x,t)|2dx=1, j=1, 2, t≥0. (1.2)

Mueller and Ho [5] investigated the vortex lattice structure of (1.1) by assuming the
lowest Landau level approximation and a perfect lattice. Kasamatsu et al. [6, 7] stud-
ied the vortex states structure of (1.1) with equal intra-component interaction strengths
η11 =η22 by varying the inter-component interaction constants η12 and η21 [7]. They also
studied vortex states with and without internal Josephson coupling [8]. Recently, they
studied the vortex sheet structure in rotating immiscible two-component BECs [9]. Zhang
et al. studied the dynamics of (1.1) both analytically and numerically [10]. Recently, Wang
studied numerical simulations for computing the ground state solutions of (1.1) [11].

Substituting the formula

Ψj(x,t)= e−iλjtψj(x), j=1,2,

into (1.1), we obtain a system of two stationary state nonlinear eigenvalue problems

λjψj(x)=−
1

2
∆ψj(x)+V(x)ψj(x)+P(x)ψj(x)+

(

2

∑
l=1

ηjl |ψl(x)|
2

)

ψj(x)

−ωLzψj(x), x∈Ω, (1.3a)

ψj(x)=0, on ∂Ω, j=1,2, (1.3b)
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where λj are the chemical potential associated with the complex wave functions ψj(x),
j=1,2. In this paper, we study spectral collocation methods (SCM) combined with a two-
parameter continuation algorithm for computing the ground state and first excited state
solutions of (1.1), where the second kind Chebyshev polynomials described in [12] are
used as the basis functions for the trial function space. Also see [13] for a more recent
monograph on spectral methods. We will follow the first two solution curves of (1.1) as
in [14–17]. That is, we will use the first two minimal eigenvalues of the linear eigenvalue
problem associated with (1.3) as initial guesses to approximate the counterparts of (1.3).
The constraint condition (1.2) is used as a target point in the curve-tracking. We stop the
curve-tracking whenever the target point is reached. Since the two components ψ1 and
ψ2 represent two different matters, the associated chemical potentials λ1 and λ2 should
be different. The discretization of (1.3) is a system of nonlinear equations involving state
variables ψ1, ψ2, and parameters λ1 and λ2.

We recall in differential topology the normalization of a tangent vector is called a
parametrization via arc length, which is used as the constraint condition in the continua-
tion method, and plays a key role as the normalization of the wave functions (1.2). Our
aim here is to propose a two-parameter continuation algorithm for computing numerical
solutions of (1.3), where the chemical potentials λ1 and λ2 are treated as the continua-
tion parameters simultaneously. Since both λ1 and λ2 play the same role in the physical
system, the constraint conditions for the bordered linear systems used in the continua-
tion method should be equally chosen. Instead of using (1.2) as the second constraint
condition [18], we split the tangent vector (ψ̇1,ψ̇2,λ̇1,λ̇2)T into two constraint conditions,
namely, (ψ̇1,0,λ̇1,0)T and (0,ψ̇2,0,λ̇2)T for the bordered linear systems. To the best of our
knowledge, the numerical study of rotating two-component BECs in optical lattices has
never been reported in the literature.

This paper is organized as follows. In Section 2 we use the second kind Chebyshev
polynomials to study the SCM for (1.1). In Section 3 we describe a two-parameter contin-
uation algorithm for computing numerical solutions of (1.1). The numerical results are
reported in Section 4. Finally, some concluding remarks are given in Section 5.

2 A SCM method using the second kind Chebyshev

polynomials

We express the complex functions ψj(x) in (1.3), j = 1, 2, as ψ1(x) = uR(x)+iuT(x) and
ψ2(x)=vR(x)+ivT(x), where uR(x), uT(x), vR(x) and vT(x) are real functions. Thus (1.3)
becomes a real system of four nonlinear GPEs, which are expressed as

−
1

2
∆uR+VuR+PuR+

[

η11(u
2
R+u2

T)+η12(v
2
R+v2

T)
]

uR

+ω
(

−x(uT)y+y(uT)x

)

=λ1uR, in Ω, (2.1a)



Y.-S. Wang, B.-W. Jeng and C.-S. Chien / Commun. Comput. Phys., 13 (2013), pp. 442-460 445

−
1

2
∆uT+VuT+PuT+

[

η11(u
2
R+u2

T)+η12(v
2
R+v2

T)
]

uT

+ω
(

x(uR)y−y(uR)x

)

=λ1uT, in Ω, (2.1b)

−
1

2
∆vR+VvR+PvR+

[

η21(u
2
R+u2

T)+η22(v
2
R+v2

T)
]

vR

+ω
(

−x(vT)y+y(vT)x

)

=λ2vR, in Ω, (2.1c)

−
1

2
∆vT+VvT+PvT+

[

η21(u
2
R+u2

T)+η22(v
2
R+v2

T)
]

vT

+ω
(

x(vR)y−y(vR)x

)

=λ2vT , in Ω, (2.1d)

uR(x)=uT(x)=vR(x)=vT(x)=0, on ∂Ω, (2.1e)

where (uR)x, (uT)x, (vR)x, (vT)x and (uR)y, (uT)y, (vR)y, (vT)y denote the partial deriva-
tives of uR, uT, vR, and vT with respect to x and y, respectively.

The second kind Chebyshev polynomials was first used in [16] for computing sym-
metry-breaking solutions of the GPE. In this section we study spectral collocation meth-
ods using the same basis functions for numerical solutions of (1.1). Similar to using
Fourier sine functions as the basis functions for the spectral method [17], the second kind
Chebyshev polynomials also can supply accurate numerical solutions for the GPE with
exponential rate of convergence [16]. Let Uk(x) be the second kind Chebyshev polyno-
mial of degree k, which is defined as

Uk(x)=
sin(k+1)θ

sinθ
when x=cosθ, θ∈ [0,π] ⇐⇒ x∈ [−1,1], k=1,2,3,··· .

Let S1
N be the subspace spanned by {U0(x),U1(x),··· ,UN(x)}. We choose the trial func-

tion space V1
N as

V1
N ={v∈S1

N : v(±1)=0}.

Since Uk(±1)=(±1)k(k+1), it is clear that the functions Uk(x) do not satisfy the boundary
conditions of the GPE. Thus we construct a set of basis functions φk(x) for V1

N by setting

φk(x)=
Uk(x)

k+1
−

Uk+2(x)

k+3
, k=0,1,··· ,N−2.

It follows that φk(x)∈V1
N and {φk(x)}N−2

k=0 are linearly independent. Thus V1
N=span{φ0(x),

φ1(x),··· ,φN−2(x)} with dimV1
N =N−1.

Let V2
N=span{φk(x)φj(y):k, j=0,1,··· ,N−2} be the 2D trial function space. We choose

the roots of the second kind Chebyshev polynomials as the collocation points. The SCM
for solving (2.1) is to find the approximate solutions

uN
R (x,y)=

N−2

∑
k,j=0

αkjφk(x)φj(y)∈V2
N , uN

T (x,y)=
N−2

∑
k,j=0

βkjφk(x)φj(y)∈V2
N , (2.2a)

vN
R (x,y)=

N−2

∑
k,j=0

γkjφk(x)φj(y)∈V2
N , vN

T (x,y)=
N−2

∑
k,j=0

δkjφk(x)φj(y)∈V2
N , (2.2b)
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such that

−
1

2
∆uN

R (xl ,ym)+[V(xl,ym)+P(xl,ym)−λ1]u
N
R (xl ,ym)+

[

η11

(

(uN
R )

2(xl ,ym)+(uN
T )

2(xl,ym)
)

+η12

(

(vN
R )

2(xl ,ym)+(vN
T )

2(xl,ym)
)]

uN
R (xl ,ym)+ω

[

−xl(u
N
T )y+ym(u

N
T )x

]

=0, (2.3a)

−
1

2
∆uN

T (xl ,ym)+[V(xl,ym)+P(xl,ym)−λ1]u
N
T (xl ,ym)+

[

η11

(

(uN
R )

2(xl ,ym)+(uN
T )

2(xl,ym)
)

+η12

(

(vN
R )

2(xl ,ym)+(vN
T )

2(xl,ym)
)]

uN
T (xl ,ym)+ω

[

xl(u
N
R )y−ym(u

N
R )x

]

=0, (2.3b)

−
1

2
∆vN

R (xl,ym)+[V(xl ,ym)+P(xl,ym)−λ2]v
N
R (xl,ym)+

[

η21

(

(uN
R )

2(xl,ym)+(uN
T )

2(xl ,ym)
)

+η22

(

(vN
R )

2(xl ,ym)+(vN
T )

2(xl,ym)
)]

vN
R (xl ,ym)+ω

[

−xl(v
N
T )y+ym(v

N
T )x

]

=0, (2.3c)

−
1

2
∆vN

T (xl,ym)+[V(xl ,ym)+P(xl,ym)−λ2]v
N
T (xl,ym)+

[

η21

(

(uN
R )

2(xl,ym)+(uN
T )

2(xl ,ym)
)

+η22

(

(vN
R )

2(xl ,ym)+(vN
T )

2(xl,ym)
)]

vN
T (xl ,ym)+ω

[

xl(v
N
R )y−ym(v

N
R )x

]

=0, (2.3d)

where l,m=0,1,··· ,N−2. We denote φkj=φj(xk), φ′
kj=φ′

j(xk), φ′′
kj=φ′′

j (xk), vlm=V(xl,ym),

plm =P(xl,ym), and define the matrices

Φ=(φkj)0≤k,j≤N−2, Φ′=(φ′
kj)0≤k,j≤N−2, Φ′′=(φ′′

kj)0≤k,j≤N−2,

V=diag(v0,0,v1,0,··· ,vN−2,0,v0,1,v1,1,··· ,vN−2,1,··· ,vN−2,N−2),

P=diag(p0,0,p1,0,··· ,pN−2,0,p0,1,p1,1,··· ,pN−2,1,··· ,pN−2,N−2),

I(N−1)2 ∈R
(N−1)2×(N−1)2

is the identity matrix, and

X=diag(x0,x1,··· ,xN−2), Y=diag(y0,y1,··· ,yN−2).

Let ”⊗” and ”◦” denote the matrix tensor product and the vector Hadamard product,
respectively. For any vector v∈R

n, we define v
©2 =v◦v. Denote

α̃=(α0,0,α1,0,··· ,αN−2,0,α0,1,α1,1,··· ,αN−2,1,··· ,αN−2,N−2)
T,

β̃=(β0,0,β1,0,··· ,βN−2,0,β0,1,β1,1,··· ,βN−2,1,··· ,βN−2,N−2)
T,

γ̃=(γ0,0,γ1,0,··· ,γN−2,0,γ0,1,γ1,1,··· ,γN−2,1,··· ,γN−2,N−2)
T,

δ̃=(δ0,0,δ1,0,··· ,δN−2,0,δ0,1,δ1,1,··· ,δN−2,1,··· ,δN−2,N−2)
T.

The SCM analogue of (2.1) is a nonlinear system of equations involving parameters λ1

and λ2 and is given as

F(α̃, β̃,γ̃, δ̃,λ1,λ2)=













F1(α̃, β̃,γ̃, δ̃,λ1,λ2)

F2(α̃, β̃,γ̃, δ̃,λ1,λ2)

F3(α̃, β̃,γ̃, δ̃,λ1,λ2)

F4(α̃, β̃,γ̃, δ̃,λ1,λ2)













=0, (2.4)
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where F :R4(N−1)2
×R

2→R
4(N−1)2

is a smooth mapping with

F1(α̃, β̃,γ̃, δ̃,λ1,λ2)

=−
1

2
(Φ⊗Φ′′+Φ′′⊗Φ)α̃+(V+P−λ1 I(N−1)2)(Φ⊗Φ)α̃

+
{

η11

[

((Φ⊗Φ)α̃)©2+((Φ⊗Φ)β̃)©2
]

+η12

[

((Φ⊗Φ)γ̃)©2+((Φ⊗Φ)δ̃)©2
]

}

(Φ⊗Φ)α̃

+ω
[

−(IN−1⊗X)(Φ′⊗Φ)β̃+(Y⊗ IN−1)(Φ⊗Φ′)β̃
]

, (2.5a)

F2(α̃, β̃,γ̃, δ̃,λ1,λ2)

=−
1

2
(Φ⊗Φ′′+Φ′′⊗Φ)β̃+(V+P−λ1 I(N−1)2)(Φ⊗Φ)β̃

+
{

η11

[

((Φ⊗Φ)α̃)©2+((Φ⊗Φ)β̃)©2
]

+η12

[

((Φ⊗Φ)γ̃)©2+((Φ⊗Φ)δ̃)©2
]

}

(Φ⊗Φ)β̃

+ω
[

(IN−1⊗X)(Φ′⊗Φ)α̃−(Y⊗ IN−1)(Φ⊗Φ′)α̃
]

, (2.5b)

F3(α̃, β̃,γ̃, δ̃,λ1,λ2)

=−
1

2
(Φ⊗Φ′′+Φ′′⊗Φ)γ̃+(V+P−λ2 I(N−1)2)(Φ⊗Φ)γ̃

+
{

η21

[

((Φ⊗Φ)α̃)©2+((Φ⊗Φ)β̃)©2
]

+η22

[

((Φ⊗Φ)γ̃)©2+((Φ⊗Φ)δ̃)©2
]

}

(Φ⊗Φ)γ̃

+ω
[

−(IN−1⊗X)(Φ′⊗Φ)δ̃+(Y⊗ IN−1)(Φ⊗Φ′)δ̃
]

, (2.5c)

F4(α̃, β̃,γ̃, δ̃,λ1,λ2)

=−
1

2
(Φ⊗Φ′′+Φ′′⊗Φ)δ̃+(V+P−λ2 I(N−1)2)(Φ⊗Φ)δ̃

+
{

η21

[

((Φ⊗Φ)α̃)©2+((Φ⊗Φ)β̃)©2
]

+η22

[

((Φ⊗Φ)γ̃)©2+((Φ⊗Φ)δ̃)©2
]

}

(Φ⊗Φ)δ̃

+ω
[

(IN−1⊗X)(Φ′⊗Φ)γ̃−(Y⊗ IN−1)(Φ⊗Φ′)γ̃
]

. (2.5d)

For simplicity, we let

u1=[α̃T , β̃T]T, u2=[γ̃T, δ̃T]T, E=−
1

2
(Φ⊗Φ′′+Φ′′⊗Φ),

G=Φ⊗Φ, W=ω
[

−(IN−1⊗X)(Φ′⊗Φ)+(Y⊗ IN−1)(Φ⊗Φ′)
]

.

And (2.5) is simplified as

F1(u1,u2,λ1,λ2)=Eα̃+(V+P−λI(N−1)2)Gα̃+
{

η11

[

(Gα̃)©2+(Gβ̃)©2
]

+η12

[

(Gγ̃)©2+(Gδ̃)©2
]

}

Gα̃+W β̃, (2.6a)

F2(u1,u2,λ1,λ2)=Eβ̃+(V+P−λI(N−1)2)Gβ̃+
{

η11

[

(Gα̃)©2+(Gβ̃)©2
]

+η12

[

(Gγ̃)©2+(Gδ̃)©2
]

}

Gβ̃−Wα̃, (2.6b)
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F3(u1,u2,λ1,λ2)=Eγ̃+(V+P−λI(N−1)2)Gγ̃+
{

η21

[

(Gα̃)©2+(Gβ̃)©2
]

+η22

[

(Gγ̃)©2+(Gδ̃)©2
]

}

Gγ̃+Wδ̃, (2.6c)

F4(u1,u2,λ1,λ2)=Eδ̃+(V+P−λI(N−1)2)Gδ̃+
{

η21

[

(Gα̃)©2+(Gβ̃)©2
]

+η22

[

(Gγ̃)©2+(Gδ̃)©2
]

}

Gδ̃−Wγ̃. (2.6d)

The Jacobian matrix DF=[Du1 F,Du2 F,Dλ1
F,Dλ2

F]∈R
4(N−1)2×(4(N−1)2+2) is a block matrix

of the following form

DF=









L1+M11 W+η11 M12 η12M13 η12M14 −Gα̃ 0
−W+η11 M12 L1+M22 η12M23 η12M24 −Gβ̃ 0

η21 M13 η21M23 L2+M33 W+η22M34 0 −Gγ̃
η21 M14 η21M24 −W+η22 M34 L2+M44 0 −Gδ̃









,

where

L1=E+(V+P−λ1 I(N−1)2)G, L2=E+(V+P−λ2 I(N−1)2)G,

M11=
[

3η11diag((Gα̃)©2 )+η11diag((Gβ̃)©2 )+η12diag((Gγ̃)©2 )+η12diag((Gδ̃)©2 )
]

G,

M22=
[

η11diag((Gα̃)©2 )+3η11diag((Gβ̃)©2 )+η12diag((Gγ̃)©2 )+η12diag((Gδ̃)©2 )
]

G,

M33=
[

η21diag((Gα̃)©2 )+η21diag((Gβ̃)©2 )+3η22diag((Gγ̃)©2 )+η22diag((Gδ̃)©2 )
]

G,

M44=
[

η21diag((Gα̃)©2 )+η21diag((Gβ̃)©2 )+η22diag((Gγ̃)©2 )+3η22diag((Gδ̃)©2 )
]

G,

M12=2diag(Gα̃)diag(Gβ̃)G, M13=2diag(Gα̃)diag(Gγ̃)G,

M14=2diag(Gα̃)diag(Gδ̃)G, M23=2diag(Gβ̃)diag(Gγ̃)G,

M24=2diag(Gβ̃)diag(Gδ̃)G, M34=2diag(Gγ̃)diag(Gδ̃)G.

We will incorporate the SCM in a predictor-corrector continuation algorithm, and
obtain the spectral-collocation and continuation algorithm (SCCM), which will be used
to compute the ground state as well as first excited state solutions of the GPEs, where the
block GMRES cited in [19] will be used as the linear solver.

3 A two-parameter continuation algorithm

During the past years, various numerical continuation algorithms have been proposed
[20–26] for computing numerical solutions of the GPE, or the so-called nonlinear Schrö-
dinger equation (NLS). In particular, Chen et al. [22] used the coupling coefficient as the
continuation parameter in the context of a predictor-corrector continuation algorithm for
computing the ground states and excited states of spin-1 BEC. In this section, we will
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use the chemical potential as the continuation parameter. Then the eigenvalues of the
associated linear Schrödinger equation (LS) are just bifurcation points of the NLS on the
trivial solution curve {(0,0,λ1,λ2)|λ1,λ2 ∈ R

+}. To compute the ground state and first
excited-state solutions of the GPE, we use a predictor-corrector continuation algorithm to
trace the solution curves branching from the first two minimal eigenvalues of the LS. We
stop the curve-tracking whenever the constraint condition (1.2) is satisfied. That is, we
use the energy levels and wave functions of the LS as initial guesses to approximate the
counterparts of the NLS. The main purpose of this section is to describe a two-parameter
continuation algorithm for computing the ground state and first excited state solutions of
rotating two-component BECs and rotating two-component BECs in optical lattices. The
nonlinear systems of equations (2.4) can be expressed as

F(u1,u2,λ1,λ2)=0, (3.1)

where F : R
4(N−1)2

×R
2 →R

4(N−1)2
is a smooth mapping with u1 = [α̃T, β̃T ]T ∈R

2(N−1)2
,

u2 = [γ̃T, δ̃T]T ∈R
2(N−1)2

, λ1, λ2 ∈R. We denote the Jacobian matrix of the operator F by
DF=[Du1 F,Du2 F,Dλ1

F,Dλ2
F], where A=[Du1 F,Du2 F] is the linearization of the mapping

F at the equilibrium u
0
1=u

0
2=[0,··· ,0]T ∈R

2(N−1)2
, i.e.,

[Du1
F,Du2 F](0,0,λ1,λ2)=









L1 W 0 0
−W L1 0 0

0 0 L2 W
0 0 −W L2









=K−λ1









G 0 0 0
0 G 0 0
0 0 0 0
0 0 0 0









−λ2









0 0 0 0
0 0 0 0
0 0 G 0
0 0 0 G









,

where

K=









E+VG W 0 0
−W E+VG 0 0

0 0 E+VG W
0 0 −W E+VG









,

and L1, L2, W, E, V, G are defined in Section 2. We recall that the number of linearly
independent eigenvectors associated with an eigenvalue λ is called the geometric mul-
tiplicity of λ. Denote the geometric multiplicity and algebraic multiplicity of λ by ρ(λ)
and σ(λ), respectively. We have the following result.

Lemma 3.1. All the eigenvalues of the matrix K are at least quadruple.

Proof. Let [αT
1 ,βT

1 ,γT
1 ,δT

1 ]
T be an eigenvector of K associated with the eigenvalue λ which

satisfies βT
1 α1δT

1 γ1 6=0 and βT
1 γ1−αT

1 δ1 6=0. Note that α1,β1,γ1,δ1∈R
(N−1)2×1. It is clear that
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[−α1,−β1,γ1,δ1]
T, [γ1,δ1,α1,β1]

T , and [γ1,δ1,−α1,−β1]
T are also eigenvectors of K associ-

ated with λ. Since these eigenvectors are linearly independent, the geometric multiplicity
ρ(λ) of λ is 4. Since ρ(λ)<σ(λ) [27, p. 316], the result follows immediately.

Denote the solution curves of (3.1) by

c=
{

y(s)=(u1(s),u2(s),λ1(s),λ2(s))
T |F(y(s))=0,s∈ I

}

,

where I is any interval in R
1. Assuming that a parametrization via arc length is avail-

able on c, we will trace the solution curve c by predictor-corrector continuation meth-

ods [28,29]. Let y(i)=(u
(i)
1 ,u

(i)
2 ,λ

(i)
1 ,λ

(i)
2 )T∈R

4(N−1)2+2 be a point which has been accepted

as an approximating point for c, and ẏ(i)=(u̇
(i)
1 ,u̇

(i)
2 ,λ̇

(i)
1 ,λ̇

(i)
2 )T ∈R

4(N−1)2+2 be a tangent

vector to c at y(i). Since the two components of the BECs have different physical proper-
ties, the associated chemical potentials λ1 and λ2 should be treated as the continuation
parameters simultaneously. Instead of implementing the classical predictor-corrector
continuation methods, we propose a novel two-parameter continuation algorithm as fol-

lows. We split the tangent vector ẏ(i) into ẏ(i)= ẏ
(i)
1 + ẏ

(i)
2 , where ẏ

(i)
1 =(u̇

(i)
1 ,0,λ̇

(i)
1 ,0)T and

ẏ
(i)
2 =(0,u̇

(i)
2 ,0,λ̇

(i)
2 )T. Next, we set ||ẏ

(i)
1 ||= ||ẏ

(i)
2 ||=1. A new point z(i+1,1) is predicted by

the Euler predictor

z(i+1,1)=y(i)+δ(i)v(i),

where δ(i)>0 is the step length, and v(i) is the unit tangent vector at y(i), which is obtained
by solving the linear system







Du1
F(y(i)) Du2 F(y(i)) Dλ1

F(y(i)) Dλ2
F(y(i))

u̇
(i−1)
1 0 λ̇

(i−1)
1 0

0 u̇
(i−1)
2 0 λ̇

(i−1)
2






v(i)=









0̃
0̃
1
1









. (3.2)

The accuracy of approximation to the solution curve must be improved via a corrector
process. In practice, the modified Newton’s method with constraint







Du1
F(z(i+1,j)) Du2 F(z(i+1,j)) Dλ1

F(z(i+1,j)) Dλ2
F(z(i+1,j))

u̇
(i)
1 0 λ̇

(i)
1 0

0 u̇
(i)
2 0 λ̇

(i)
2






w(j)

=





−F(z(i+1,j))
0
0



, (3.3)

is solved, and we set z(i+1,j+1)=z(i+1,j)+w(j), j=1,2,··· . If y(i) lies sufficiently near c, then
the modified Newton’s method will converge if the step size δ(i) is small enough. We
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simplify (3.2) or (3.3) as





A p̃1 p̃2

q̃T
1 r1 0

q̃T
2 0 r2









x̃
λ1

λ2



=





f̃
g1

g2



, (3.4)

where

A∈R
4(N−1)2×4(N−1)2

, p̃1 =Dλ1
F(z(i+1,j)), p̃2 =Dλ2

F(z(i+1,j)), q̃1=(u̇
(i)
1 ,0),

q̃2=(0,u̇
(i)
2 ), f̃ ∈R

4(N−1)2
, r1= λ̇

(i)
1 , r2 = λ̇

(i)
2 , g1,g2∈R.

Note that the block elimination algorithm [30] can be used to solve (3.4), which involves
solving linear systems with multiple right hand sides. Thus we can apply the Block
GMRES (BGMRES) [19] to solve (3.4).

4 Numerical results

We used the SCCM with N = 20 to compute the ground state and first excited state so-
lutions of rotating two-component BECs and rotating two-component BECs in optical
lattices, where we chose V(x)=(x2+y2)/2 and Ω=(−6,6)2 in (1.3). In the captions, λj,1

and λj,2 denote the first two minimum eigenvalues of the discrete nonlinear eigenvalue
problem, λ∗

j,1 and λ∗
j,2 denote the energy levels of the ground state solution and first ex-

cited state solution of the j-th component, respectively, and nj, j=1,2, denote the number
of vortices of the wave function |ψj|

2. The accuracy tolerance for the Newton corrector is
10−9. Let

M=

[

η11 η12

η21 η22

]

=η ·

[

η̃11 η̃12

η̃21 η̃22

]

be the interaction matrix, where ηij are defined in (1.1), and η̃ij are approximately nor-
malized to the unit. When η=10,102,103, which corresponds to the fact that the particle
number of BECs approximately equals to 104,105, and 106, respectively. In Examples 4.2-
4.3 we studied how the vortices of the two components varied with respect to the angular
velocity, and the particle numbers of the BECs. In Examples 4.4-4.5 we studied how the
vortices of the two components were affected by the strength of the periodic potential.
All computations were executed on an Intel©R CoreTM2 Quad PC using MATLAB.

Example 4.1. The eigenpairs of the linear eigenvalue problem

−∆u=λu, in Ω=(−1,1)2, (4.1a)

u=0, on ∂Ω, (4.1b)
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Table 1: The first eigenvalues of (4.1) and the first bifurcation points of (4.2) with respect to various values of
N.

Linear Nonlinear

N eigenvalue error bifurcation point error
4 4.9336434125297322 1.1588E-003 4.9336434105653225 1.1588E-003
6 4.9348156646332884 1.3464E-005 4.9348156646332930 1.3464E-005
8 4.9348021294696700 7.1075E-008 4.9348021294696723 7.1075E-008

10 4.9348022008156356 2.7096E-010 4.9348022008156291 2.7095E-010
12 4.9348022005439454 7.3430E-013 4.9348022005439098 7.6916E-013
14 4.9348022005446754 3.5527E-015 4.9348022005446620 1.6875E-014

are of the following form:

λm,n=
(m2+n2)π2

4
,

um,n(x,y)=sin

(

mπ(x+1)

2

)

sin

(

nπ(y+1)

2

)

, m,n=1,2,··· .

In this example, we verified numerically that the convergence rate of the SCM is expo-
nential. We used the SCCM to discretize (4.1), and detected the first bifurcation point of
the 2D semilinear elliptic eigenvalue problem [31, 32]

−∆u=λsinhu, in Ω=(−1,1)2, (4.2a)

u=0, on ∂Ω. (4.2b)

Eq. (4.2) describes a model for the equilibrium of a set of point vortices or a guiding center
plasma in the domain Ω. Table 1 lists the first eigenvalue of (4.1) and (4.2) with N =

0 2 4 6 8 10 12 14 16
−16

−14

−12

−10

−8

−6

−4

−2

0

N

lo
g 10

|λ
1,

1−
λN 1,

1|

 

 
Eq. (4.1): Linear
Eq. (4.2): Nonlinear

Figure 1: The convergence diagram of the spectral collocation method applied to (4.1) and (4.2), where

λ1,1=2π2/4=4.934802200544679.
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4,6,8,10,12,14. Fig. 1 shows how the errors of the spectral collocation method decrease
with respect to N, which also shows that the convergence rate is exponential.

Example 4.2 (The ground state solutions of rotating two-component BECs.). We used the
SCCM to trace the first solution curves of (1.3) with P(x)= 0. The following cases were
implemented: (i) η11 =110, η22 =90, and η12 = η21 =70. Note that the matrix M=(ηij) is
symmetric and positive definite, and diagonally dominant. Fig. 2(a) shows the solution
curves of the ground state solutions of ψ1 and ψ2 with ω=0.7, where λ1,1≈1.0001, λ2,1≈
1.0001, λ∗

1,1 ≈3.3678, and λ∗
2,1 ≈3.3536. Fig. 2(b) shows the solution curves of the ground

state solutions of ψ1 and ψ2 with ω=0.85, where λ1,1≈1.0001, λ2,1≈1.0001, λ∗
1,1≈3.1094,

and λ∗
2,1 ≈ 3.0538. Fig. 3 shows that the numbers of vortices of the wave functions |ψ1|

2

and |ψ2|2 increase with respect to the angular velocity ω. Table 2(a) lists the locations
of the first bifurcation points, and the energy levels of the ground state solutions for
the wave functions |ψ1|

2 and |ψ2|2. (ii) We fixed ω = 0.7 and chose various scales of
coefficients ηij, Fig. 4 shows that the numbers of vortices of the wave functions |ψ1|

2 and
|ψ2|2 increase with respect to the values of the coefficients ηij. Table 2(b) lists the locations
of the first bifurcation points, and the energy levels of the ground state solutions for the
wave functions |ψ1|

2 and |ψ2|2.

Table 2: The first bifurcation points and associated energy levels of (1.3) with P(x)=0.

(a) η11=110, η22=90, η12=η21=70.

ω 0.7 0.85 0.9 0.95
λ1,1=λ2,1 1.0001 1.0001 1.0001 1.0001

λ∗
1,1 3.3678 3.1094 2.6189 2.4085

λ∗
2,1 3.3536 3.0538 2.5755 2.2761

n1 4 4 8 8
n2 4 4 4 8

(b) ω=0.7, η11=110, η22=90, η12=η21 =70.

ηij 0.5M 2M 5M 10M

λ1,1=λ2,1 1.0001 1.0001 1.0001 1.0001
λ∗

1,1 2.8126 4.4858 6.7478 9.2885

λ∗
2,1 2.6932 4.4730 6.6491 9.2780

n1 4 4 8 12
n2 4 4 8 8

Example 4.3 (The first excited state solutions of rotating two-component BECs.). We used
the SCCM to trace the second solution curves of (1.3) with P(x)=0. The following cases
were implemented: (i) η11=110, η22=90, and η12=η21=70. Fig. 5 shows that the numbers
of vortices of the wave functions |ψ1|

2 and |ψ2|2 increase with respect to the angular
velocity ω. Table 3(a) lists the locations of the second bifurcation points, and the energy
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(a) ω=0.7. (b) ω=0.85.

Figure 2: The solution curves of the ground state solutions of (1.3) with P(x)= 0, where η11 = 110, η22 = 90,
η12=η21 =70, and ω=0.7, 0.85.

levels of the first excited state solutions for the wave functions |ψ1|
2 and |ψ2|2. (ii) We

fixed ω = 0.7 and chose various scales of coefficients ηij, Fig. 6 shows that the numbers
of vortices of the wave functions |ψ1|

2 and |ψ2|2 increase with respect to the values of
the coefficients ηij. Table 3(b) lists the locations of the second bifurcation points, and the
energy levels of the first excited state solutions for the wave functions |ψ1|

2 and |ψ2|2.

Table 3: The second bifurcation points and associated energy levels of (1.3) with P(x)=0.

(a) η11=110, η22=90, η12=η21=70.

ω 0.7 0.8 0.9 0.95
λ1,2=λ2,2 1.2991 1.1991 1.0991 1.0491

λ∗
1,2 3.3528 3.0375 2.5995 2.2759

λ∗
2,2 3.3494 3.0261 2.5725 2.2551

n1 5 5 5 9
n2 1 5 5 9

(b) ω=0.7, η11=110, η22=90, η12=η21 =70.

ηij 0.5M 2M 5M 10M

λ1,2=λ2,2 1.2991 1.2991 1.2991 1.2991
λ∗

1,2 2.6069 4.4612 6.7209 9.2306

λ∗
2,2 2.5785 4.4589 6.6247 9.2207

n1 1 5 9 13
n2 1 5 9 9

Example 4.4 (The ground state solutions of rotating two-component BECs in optical
lattices.). We used the SCCM to trace the first solution curves of (1.3) where ω = 0.7,
η11=1100, η22=900, η12=η21=700 and d1=d2=d=3. Fig. 7 shows the peaks of the wave
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Figure 3: The contours of the ground state solutions of (1.3) with P(x)= 0, upper: |ψ1|
2, low: |ψ2|

2, where
ω=0.7, 0.85, 0.9, and 0.95, η11 =110, η22 =90, and η12 =η21=70.
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Figure 4: The contours of the ground state solutions of (1.3) with P(x)= 0, upper: |ψ1|
2, low: |ψ2|
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ω=0.7, M=(ηij) with η11 =110, η22=90, η12=η21 =70, and various scales of M.

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.02
0.04

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.02
0.04

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.02
0.04

xy

|ψ
2
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.02
0.04

xy

|ψ
2
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
2
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
2
|2

ω=0.7 0.85 0.9 0.95

Figure 5: The contours of the first excited state solutions of (1.3) with P(x) = 0, upper: |ψ1|
2, low: |ψ2|

2,
where ω=0.7, 0.8, 0.9, and 0.95, η11=110, η22 =90, and η12 =η21=70.



456 Y.-S. Wang, B.-W. Jeng and C.-S. Chien / Commun. Comput. Phys., 13 (2013), pp. 442-460

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.02
0.04

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.005

0.01

xy

|ψ
1
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.02
0.04

xy

|ψ
2
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
2
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.01
0.02

xy

|ψ
2
|2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0
0.005

0.01

xy

|ψ
2
|2

0.5M 2M 5M 10M

Figure 6: The contours of the first excited state solutions of (1.3) with P(x) = 0, upper: |ψ1|
2, low: |ψ2|
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Figure 7: The contours of the ground state solutions of (1.3), upper: |ψ1|
2, low: |ψ2|

2, where ω=0.7, η11=1100,
η22=900, η12 =η21=700, d=3, and various scales of a.
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Figure 8: The contours of the first excited state solutions of (1.3), upper: |ψ1|
2, low: |ψ2|

2, where ω = 0.7,
η11=1100, η22 =900, η12=η21 =700, d=3, and various scales of a.
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Table 4: The first bifurcation points and associated energy levels of (1.3), where ω=0.7, η11=1100, η22=900,
η12 =η21=700, and d=3.

a 1 3 5 7
λ1,1=λ2,1 1.6120 2.6411 3.5638 4.4440

λ∗
1,1 10.5138 12.4021 14.2589 16.0501

λ∗
2,1 10.4179 12.3636 14.2113 15.9738

Table 5: The second bifurcation points and associated energy levels of (1.3), where ω=0.7, η11=1100, η22=900,
η12 =η21=700, and d=3.

a 1 3 5 7
λ1,2=λ2,2 2.2392 3.7519 4.9062 5.9082

λ∗
1,2 10.3578 12.3959 14.2240 15.9543

λ∗
2,2 10.3124 12.3888 14.2010 15.8673

functions |ψ1|
2 and |ψ2|2 is clear when the value of a1 = a2 = a is large. The number of

peaks agree with the formula ∏
2
j=1(12/dj−1) in [17].

Example 4.5 (The first excited state solutions of rotating two-component BECs in optical
lattices.). We used the SCCM to trace the second solution curves of (1.3) where ω= 0.7,
η11 = 1100, η22 = 900, η12 = η21 = 700 and d = 3. Fig. 8 shows the contours of the wave
functions |ψ1|

2 and |ψ2|2 with various values of a.

5 Conclusions

We have developed a two-parameter continuation algorithm combined with the SCM
for computing numerical solutions of rotating two-component BECs and rotating two-
component BECs in optical lattices, where the second kind Chebyshev polynomials were
used as the basis functions for the trial function space. Based on the performance of
the numerical methods we proposed and the numerical results, we wish to give some
concluding remarks as follows.

(i) Since the two components ψ1 and ψ2 have different physical properties, the asso-
ciated chemical potentials λ1 and λ2 are also different. Therefore, we must treat λ1 and
λ2 as the different continuation parameters simultaneously. In addition, the classical unit
tangent vector should be split into two unit tangent vectors of equal weight with respect
to ψ1 and ψ2, and served as the constraint conditions. This fact has been verified by the
numerical experiments.

(ii) The second kind Chebyshev polynomials can supply accurate numerical solutions
for the GPE with exponential rate of convergence. See Table 1 and Fig. 1.

(iii) For the ground state solutions of rotating two-component BECs, Figs. 3-4 show
that when the two components have the same number of vortices, the first component
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has vortices at which the second component has peaks. The results are consistent with
those in [11]. Moreover, as we increased the angular velocity from ω = 0.7 to 0.95, the
number of vortices also evolved gradually from 4 to 8. However, the two component
may not have the same number of vortices if we use large scale of intra-component and
inter-component interactions, where the inter-component interactions are the same. For
instance, when we chose the interaction matrix equals 10M, the first component has 12
vortices but the second one only has 8 vortices. See Table 2(b). The result is consistent
with the report in [11], and is different from the prediction of Mueller et al. [5].

(iv) For the first excited state solutions of rotating two-component BECs, Figs. 5-6
show that the two components may not have the same number of vortices when the an-
gular velocity ω=0.7 but the interaction matrix equals M or 10M. See Table 3. Moreover,
the number of vortices increased when we increased the angular velocity or used a large
scale of interaction matrix, say 10M, where the total number of particles approximately
equals 106. Additionally, Figs. 5-6 also show that the first component has vortices at
which the second component has peaks when they have the same number of vortices.

(v) In Examples 4.4-4.5 we studied the competition between the periodic potential
and the cubic nonlinearities. The numerical results show that if the effect of the periodic
potential is weak, the vortices in the ground state and first excited state solutions of a
rotating two-component BECs in optical lattices are visible. As we increased the effect
of the periodic potential, pairs of neighboring vortices of the two components gradually
pinned together. When the effect of the periodic potential was strong enough, the vortices
of the ψ1 component remained unchanged, and those of the ψ2 component became large.
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