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Abstract. A multi-dimensionally upwind conservative Residual Distribution algorithm
for simulating viscous axisymmetric hypersonic flows in thermo-chemical nonequilib-
rium on unstructured grids is presented and validated in the case of the complex flow-
field over a double cone configuration. The resulting numerical discretization com-
bines a state-of-the-art nonlinear quasi-monotone second order blended scheme for
distributing the convective residual and a standard Galerkin formulation for the dif-
fusive residual. The physical source terms are upwinded together with the convective
fluxes. Numerical results show an excellent agreement with experimental measure-
ments and available literature.

PACS: 47.40.Ki, 47.70.Nd, 47.11.-j, 47.11.Fg
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1 Introduction

During the last three decades, remarkable progress has been made in the development
of algorithms for the numerical simulation of complex fluid dynamic phenomena, while
the concurrent growth of resources for parallel and distributed computing have pushed
researchers to devote their efforts towards more challenging applications. The accurate
simulation of high-enthalpy hypersonic flows in thermal and chemical nonequilibrium,
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however, still remains extremely challenging from a computational point of view, par-
ticularly on unstructured grids. For this kind of application, the Finite Volume (FV)
method [3, 11, 25, 31] has consolidated itself as the de facto standard technique and a reli-
able alternative to it has yet to be found.

Over the past decade, however, multi-dimensional upwind Residual Distribution
(RD) schemes have proved to be an attractive alternative to the classical FV upwind ap-
proach based on one-dimensional Riemann solvers for the simulation of compressible
flows [4,7,9,14,32]. The main advantages of RD schemes include (1) an outstanding shock
capturing (due to the lower cross diffusion associated to a truly multi-dimensional up-
winding and to the positivity property) and (2) a compact stencil for ensuring a linearity
preserving resolution. The latter does not require expensive polynomial reconstructions
based on enlarged stencils in order to guarantee second order accuracy and supports an
easy and efficient parallelization [6, 36, 37].

Following a previous unique attempt to apply RD schemes to 2D inviscid chemi-
cal nonequilibrium high-speed flows [8], in this paper, the RD method is extended and
adapted for simulating viscous flows in thermal and chemical nonequilibrium in com-
plex 2D axisymmetric cases with a two-temperature model.

Unlike in [8], the convective terms of the equations are discretized by means of a
strictly conservative formulation of the standard RD method, denominated Contour Resid-
ual Distribution (CRD) [5, 32], which is based on a redefinition of the positive system N
scheme, the so-called Nc scheme. The latter conveniently does not require a specific set
of variables (e.g. Roe parameter vector in [8]) for the linearization of the flux jacobian,
at the price of an additional contour integration of the convective flux in each compu-
tational cell. Second order accuracy is obtained by means of a blended Nc/LDAc (Bxc)
scheme [9,10], where the blending coefficient depends on a shock capturing sensor based
on a user-defined flow variable. This second order scheme, which is presented to the
reader in Section 3, is as compact as the first order one, which make it really suitable for
a parallel solver. Since only the closest cell neighbors are needed, parallelization only re-
quires one single layer of cells in the overlap region between contiguous processors. The
diffusive fluxes are discretized with a standard Galerkin approach [6], while the source
terms are upwinded together with the convective fluxes.

The resulting system of discrete equations is driven to steady state convergence by
means of a fully implicit first-order accurate in time backward Euler scheme, which
employs a preconditioned Generalized Minimum Residual (GMRES) algorithm [30] to
solve linear systems arising from the corresponding Newton linearization. The paral-
lel implicit numerical solver has been implemented within COOLFluiD†, a collaborative
multi-physics platform [16, 17] developed at the Von Karman Institute for Fluid Dynam-
ics during the last ten years.

The article will be organized as follows: first, the multi-temperature thermo-chemical
nonequilibrium model is reviewed; second, the residual distribution method is described

†Computational Object Oriented Libraries for Fluid Dynamics
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in details; third, some numerical results of the RD method on a challenging double cone
configuration are discussed and validated against experimental data. A comparison
against a reference numerical solution available in literature, corresponding to a state-
of-the-art cell-centered FV code [26], is also addressed.

2 Thermo-chemical nonequilibrium model

The system of governing equations for a gas mixture in thermal and chemical nonequi-
librium in an axisymmetric case can be expressed as follows:

∂U

∂P

∂P

∂t
+

∂Fc

∂x
+

∂Gc

∂r
=

∂Fd

∂x
+

∂Gd

∂r
+S, (2.1)

with the following definitions for the conservative U and the natural P variables:

U=[ρs ρu ρv ρE ρev]
T , P=[ρs u v T Tv]

T , (2.2)

where ρs are the partial densities, ρ is the mixture density, u and v are the longitudinal and
radial velocity components, E the total energy per unit mass, ev the vibrational energy per
unit mass, T and Tv the roto-translational and vibrational temperatures respectively. The
convective fluxes Fc and Gc are given by

Fc=









ρsu
ρuu+p

ρuv
ρuH
ρuev









, Gc=









ρsv
ρuv

ρvv+p
ρvH
ρvev









, (2.3)

where H=E+p/ρ is the total enthalpy per unit mass and p is the mixture pressure which
is given by Dalton’s law, assuming that each species behaves as a perfect gas:

p=∑
s

ps =R T∑
s

ρs

Ms
, (2.4)

with R being the universal gas constant and Ms the species molar masses.
The diffusive fluxes Fd and Gd read

Fd=









−ρsus

τxx

τxr

τxxu+τxrv−(qx+qv
x)−∑s ρsushs

−qv
x−∑s ρsush

v
s









, (2.5)

Gd =









−ρsvs

τxr

τrr

τxru+τrrv−(qr+qv
r )−∑s ρsvshs

−qv
r −∑s ρsvsh

v
s









, (2.6)
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where r is the radius, which in the present case coincides with the y distance from the
symmetry axis. Finally, the source term S is defined as

S=−1

r









ρsv
ρuv
ρv2

ρvH
ρvev









+
1

r









ρsvs

τrx

τrr−τθθ

τrx u+τrr v−(qr+qv
r )−∑s ρsvshs

−qv
r −∑s ρsvsh

v
s









+









ω̇s

0
0
0

ω̇v









. (2.7)

Under Stokes’ hypothesis of negligible bulk viscosity effects, the viscous stresses can be
expressed as follows:

τij =µ

(
∂uj

∂xi
+

∂ui

∂xj

)

, (2.8)

τii =2µ
∂ui

∂xi
− 2

3
µ

(
∂u

∂x
+

∂v

∂r
+

v

r

)

, (2.9)

τθθ =−2

3
µ

(
∂u

∂x
+

∂v

∂r
−2

v

r

)

, (2.10)

where τθθ are the viscous stress components in the circumferential direction θ. The heat
fluxes appearing in (2.5)-(2.7) are defined as

qj =−(λt+λr)
∂T

∂xj
, qv

j =−λv
∂Tv

∂xj
. (2.11)

The modified Chapman-Enskog pertubative analysis for partially ionized plasmas pre-
sented in [20] is the basis for the computation of transport coefficients and fluxes. Efficient
iterative algorithms presented in [19] are used to solve the linear systems for the shear-
viscosity µ and the translational thermal conductivity λt. This is not only more accurate
but also computationally cheaper than using mixture rules such as Yos’ [38] as is the case
in many high Mach number high-enthalpy solvers. The rotational λr and vibrational λv

thermal conductivities are modelled by means of the Eucken approximation [13]. Mass
diffusion fluxes ρsus are computed by solving the Stefan-Maxwell equations as in [1].

The mass production/destruction term for chemical species ω̇s which appears in (2.1)
is formulated as follows:

ω̇s =Ms

Nr

∑
r=1

(

ν
′′
sr−ν

′
sr

)






k f r

Ns

∏
j=1

(
ρj

Mj

)ν
′
jr

−kbr

Ns

∏
j=1

(
ρj

Mj

)ν
′′
jr






, (2.12)

where ν are stoichiometric coefficients and the forward reaction rates coefficients

k f r =A f ,rT
n f ,r

1 exp(−E f ,r/k T1), (2.13)

are expressed by means of Arrhenius’ law. In the latter, the constants A f ,r, n f ,r and E f ,r

are provided by chemical kinetic models such as [12, 28] in the case of air mixtures and



A. Lani, M. Panesi and H. Deconinck / Commun. Comput. Phys., 13 (2013), pp. 479-501 483

T1 is the rate controlling temperature which is empirically defined as T1 =
√

TTv in [28].
The backward reactions rates are computes as

kb,r = k f ,r/K
eq
c,r, (2.14)

where K
eq
c,r is the equilibrium reaction rate constant.

As far as energy transfer is concerned, in the two-temperature model for neutral mix-
tures used in this work, ω̇v reads

ω̇v=∑
s

ρs
(e∗v,s−ev,s)

τs
+∑

s

D̃sω̇s. (2.15)

This includes two contributions: (1) the energy exchange between vibrational and trans-
lational modes according to Landau Teller formulation and (2) the vibrational energy
lost or gained due to molecular depletion (dissociation) or production (recombination).
In (1), e∗v,s is the equilibrium vibrational energy of the molecule evaluated at the roto-
translational temperature and τs are the relaxation times given by Millikan and White [21]
with Park’s correction for high temperatures [29]:

τs =τMW
s (p,T)+

τPark
︷ ︸︸ ︷

(σscsns)
−1, (2.16)

where σs is the effective cross section for vibrational relaxation processes, cs is the average
molecular velocity of molecule s and ns is the number density.

The quantity D̃s in (2) is imposed equal to the vibrational energy of the molecule,
namely

D̃s= ev,s. (2.17)

For a broader introduction to the thermodynamic and transport properties modeling em-
ployed in this work, the reader may refer to [1, 2, 11, 19, 20, 31, 35].

3 Residual distribution method

3.1 General concepts

Let the computational domain be subdivided into linear triangles with unknowns de-
fined at the vertexes. Assuming a Finite Element (FE) framework, the solution inside a
triangle can be represented as

Ph(x,t)=
3

∑
j=1

Pj(t)Nj(x), Nj(xk)=δjk, (3.1)

where an example of linear shape functions Nj(x) is depicted in Fig. 1 (left).
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Figure 1: Linear shape function associated to a triangle (left) and median dual cell surrounding a node (right)
in a vertex centered discretization.

The basic idea of the RD algorithm consists in distributing fractions of the residual,
defined by integrating the spatial part of (2.1) over a given cell (or element), to the nodes
of the same cell, taking into account the directions of propagation of the physical signals,
according to an upwind philosophy. The semi-discretized form of (2.1) for a vertex l,
assuming a lumped mass matrix [37], becomes:

∂U

∂P
(Pl)

dPl

dt
Ωl+Φ

c
l =Φ

d
l +Φ

S
l , (3.2)

where Φ
c
l , Φ

d
l and Φ

S
l are the three different nodal residuals corresponding respectively

to convective, diffusive and source terms. Ωl is the area of the median dual cell, as shown
in Fig. 1 (right) for a mesh composed of triangles. Due to the lumping of the mass matrix,
accuracy in time is reduced to first order in (3.2). Each of the three residuals in (3.2) are
now analyzed in more detail.

3.2 Convective term discretization

Consider the system of PDE’s in (2.1) and rewrite the convective term in quasi-linear
form:

∂Fc
i

∂xi
=Ai

∂U

∂xi
, (3.3)

where Ai are non-commuting N×N jacobian matrices, if N is the size of the state vector
U. For a given node in a triangle, the generalized upwind parameters Kl can be expressed
as follows [37]:

Kl =
1

2
Āinli

=
1

2
RlΛlLl , (3.4)

where Āinli
are the projected Jacobians evaluated in a conservative linearized state and

nli
is the i component of the inward normal scaled with the area of the face opposite
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Figure 2: Inward scaled normals in a triangle.

to node l. In the case of a triangle with counter clockwise node numbering, the three
normals are shown in Fig. 2 and are defined by:

n1=(y2−y3)~1x+(x3−x2)~1y, (3.5)

n2=(y3−y1)~1x+(x1−x3)~1y, (3.6)

n3=(y1−y2)~1x+(x2−x1)~1y. (3.7)

Since the system is hyperbolic in time, the so-called upwind matrix Kl has a complete
set of real eigenvalues and eigenvectors. The columns of Rl contain the right eigenvec-
tors, Λl is a diagonal matrix of the eigenvalues and Ll =R−1

l . The analytical expressions
for Rl, Ll , Λl in the specific case of a mixture of perfect gases in thermal and chemical
nonequilibrium can be found in [11, 31]. The split matrices K+

l and K−
l are defined as:

K+
l =

1

2
RlΛ

+
l Ll, K−

l =
1

2
RlΛ

−
l Ll, (3.8)

with Λ
+
l and Λ

−
l containing the positive and negative eigenvalues.

The nodal residual is computed by gathering the contributions of all neighbor cell
residuals:

Φ
c
l = ∑

Ω∈Ξl

BΩ
l Φ

c,Ω, (3.9)

where Ξl is the set of neighboring cells sharing node l and BΩ
l are the so-called distribution

matrices, which define the fraction of residual Φ
c,Ω sent to node l inside each element

with area Ω, i.e. ∑l∈Ω BΩ
l = I. The actual expression for B depends on the split upwind

matrices defined in (3.8) and varies from one to another distributive scheme. Herein, the
convective cell residual Φ

c,Ω in (3.9) is given by

Φ
c,Ω=

∫

Ω

Ai
∂U

∂xi
dΩ=

∮

∂Ω

Ain
ext
i Ud∂Ω. (3.10)
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The original RD formulation [6,7,36], a.k.a. Linear Residual Distribution (LRD), assumes
Ai is constant per cell and a linear variation of U on each element, which leads to the
following simplified expression for the convective cell residual:

Φ
c,Ω=

3

∑
j=1

KjUj = Φ̃
c,Ω. (3.11)

3.2.1 Conservative residual distribution

LRD can be employed only if a conservative linearization based on a Roe-like average
state vector is available for the Jacobians of the convective fluxes, but unfortunately this
is not applicable to our case. However, it has been demonstrated [5, 32] that the RD
schemes can be reformulated so that conservation is retained independently from the
variables chosen to linearize the cell Jacobians. The novel formulation, denominated CRD
(Contour Residual Distribution), requires an additional contour integration of the fluxes
in the element, i.e. the calculation of the residual by means of an appropriate quadrature
rule:

Φc,Ω =
∮

∂Ω

~Fc ·~n d∂Ω. (3.12)

As demonstrated in [4], the CRD version of the first order positive system N scheme can
be expressed as the LRD counterpart with a generally non conservative linearization plus
a conservation correction, defined in terms of an upwinded quantity

δΦ
c,Ω=Φ

c,Ω−Φ̃
c,Ω 6=0, (3.13)

expressing the difference between (3.11) and (3.12):

ΦNc
l = Φ̃N

l −B̃LDA
l (Φ̃c,Ω−Φc,Ω), (3.14)

Φ̃N
l = K̃+

l (U
c
l −Uin). (3.15)

Since a distribution coefficient cannot be explicitly defined for the N scheme, the conser-
vation error in Eq. (3.13) is distributed with the second order LDA scheme in Eq. (3.14),
whose distribution coefficient is given by:

B̃LDA
l = K̃+

l

(
3

∑
j=1

K̃+
j

)−1

. (3.16)

Uc
l , appearing in Eq. (3.15), indicates the consistent nodal values of the distribution vari-

ables Ul and can be expressed as:

Uc
j =

∂U

∂Z
(Z̄) Zj, (3.17)
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where Z are the arbitrary variables chosen for the jacobian linearization. This definition,
first introduced in [37], satisfies

∂Uc

∂xi
=

∂U

∂Z
(Z̄)

∂Z

∂xi
(3.18)

at the cell level. The inflow parameter vector Uin appearing in (3.15) is defined as

Uin =

(
3

∑
j=1

K̃−
j

)−1(
3

∑
j=1

K̃−
j Uc

j

)

. (3.19)

All upwind matrices are evaluated in a linearized state, i.e. K̃±
l =K±

l (Z̄).
The resulting Nc scheme, blending together a strictly monotone scheme (the LRD

version of the N scheme) applied to the residual and a non-monotone scheme (LDA) used
for distributing the conservation error, is non-strictly positive (i.e., quasi-posive) but fully
conservative. The use of the CRD method allows us not to resort to relatively complex
linearization techniques like those presented in [8] or [31] (in a FV context) which extend
the usage of the Roe parameter vector to the case of gas mixtures in nonequilibrium.
As an effect of the conservative nature of the Nc scheme, at least in principle, one can
choose either the natural, or the primitive or the conservative variables to perform the
flux jacobian linearization and still maintain conservation. In our experience, however,
the linearization in conservative variables has shown to be more robust.

In the present work, B̃LDA
l is also employed for the distribution of the source term

which is subtracted from Φc,Ω:

ΦNc
l = Φ̃N

l −B̃LDA
l

[

Φ̃c,Ω−
(

Φc,Ω−ΦS,Ω
)]

. (3.20)

3.2.2 Bxc scheme

By using a non-linear blending of the distribution coefficients of a linearity preserving lin-
ear scheme like LDAc (which is second-order but non-positive) with the Nc-scheme (lin-
ear and quasi-monotone, but only first-order) a linearity preserving and quasi-monotone
scheme can be obtained. The fraction of the element residual distributed to node i is
defined as:

ΦBxc
l =(1−Θ)ΦLDAc

i +ΘΦNc
i , (3.21)

where Θ is based on an element-wise shock capturing sensor sc as proposed in [9, 10]:

Θ=min(1,sc2h), (3.22)

sc=

(∇w ·v
δwv

)+

≈
(

∑j wj(nj ·v)
d Ω δwv

)+

, (3.23)

where w is a flow variable but not necessarily the pressure as in [9, 10] (e.g. density has
been the preferred choice in the present work, since it can also detect contact disconti-
nuities); the term δwv ≈ (wmax−wmin) | V̄ | is a global variation scale for w multiplied by
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the magnitude of the mean velocity in the whole domain; h is the diameter of the circle
whose area equals the area Ω of the considered element.

Fig. 3 shows the isolines of the density-based shock-sensor for the Bxc scheme on the
double cone configuration. In most of the flowfield the pure second-order LDAc scheme
is active. With the settings used in the actual simulation (δρ=0.52), density gradients de-
tected by the sensor are only located on the starting portion of the strong oblique shock
on the leading edge, on the bow shock and on the transmitted shock region. This sharp
detection of discontinuities leads to an overall accurate solution, even though a few over-
shoots in nodal roto-translational temperature are present due to the non-strict positivity
of the Nc scheme. If more conservative settings for the shock-sensor are chosen (e.g. with
δρ=0.052, right picture in Fig. 3), the full shock structure can be clearly identified but the
solution tends to be more dissipative. The value of δρ is critical for robustness purposes:
in the present numerical experiments, δρ=0.52 was the maximum value that could pre-
vent the oscillatory behaviour of LDAc to manifest itself and instabilize the code at the
prescribed initial CFL number (=1).

Figure 3: Density-based shock-sensor isolines with δρ=0.52 (left) and with δρ=0.052 (right).

The second order Bxc scheme uses only the nearest neighbor stencil and is therefore as
compact as the first order Nc scheme, which makes it really suitable for parallel comput-
ing, since it only requires one single layer of shared cells in the overlap region between
contiguous processors, i.e. one layer less than state-of-the-art second order Finite Volume
algorithms.

3.3 Diffusive term discretization

As extensively explained in [6, 37], the whole residual distribution technique can be cast
into a Petrov-Galerkin FE. In this section, starting from this analogy, the discretization
of the diffusive terms is derived for the considered system of equations. The diffusive
term in (2.1) is transformed into an equivalent variational formulation by multiplying it
by the weight functions wl(x) associated to an arbitrary node l and integrating the result
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by parts over the whole domain Ξ:

Φ
d
l =

∫

Ξ
wl

∂Fd
i

∂xi
dΞ=

∫

Ξ

∂

∂xi
(wlF

d
i ) dΞ−

∫

Ξ
Fd

i

∂wl

∂xi
dΞ

=
∮

∂Ξ
wl Fd

i ·n d∂Ξ−
∫

Ξ
Fd

i

∂wl

∂xi
dΞ, (3.24)

where Φ
d
l is the fraction of diffusive flux which is distributed to node l. In particular,

the last relation is due to the application of the Gauss theorem to the first volume inte-
gral, and the boundary integral vanishes for all interior nodes if homogeneous Dirichlet
boundary conditions are assumed (as in our case). The remaining volume integral in
(3.24) can be calculated as a summation over the individual elements in which the com-
putational domain is subdivided, leading to the following definition for Φ

d
l in (3.2):

Φ
d
l =− ∑

Ω∈Ξl

∫

Ω
Fd

i

∂wΩ
l

∂xi
dΩ. (3.25)

If wl are chosen to be Petrov-Galerkin weights, defined as

wl(x)= ∑
Ω∈Ξl

wΩ
l (x)=Nl(x) I+ ∑

Ω∈Ξl

(

BΩ
l − 1

3
I

)

αΩ(x), (3.26)

where Nl(x) is the nodal basis function in (3.1), BΩ
l are the distribution matrices and

αΩ(x)=1 inside element Ω and 0 outside, then ∂wl
∂xi

≡ ∂Nl
∂xi

I.

Here we assume a standard Galerkin method with wl(x) = Nl(x). If the geometric

relation ∂Nl
∂xi

= nl i
2Ω

, which holds inside a linear simplex element, is taken into account, then
(3.25) can be expressed as:

Φ
d
l =− ∑

Ω∈Ξl

1

2Ω

∫

Ω
Fd ·nl dΩ=− ∑

Ω∈Ξl

1

2
(Fd ·nl)(ν̄,nl,P̄,∇P̃), (3.27)

where ν̄ and P̄ represent respectively the array of transport properties and the update
variables computed in the only quadrature point corresponding to a 1-point Gauss in-
tegration applied to the element. In this case, such a state also corresponds to the cell-
averaged state which is used for the linearization of the jacobian matrices [27]. Moreover,
nl is the inward nodal normal and ∇P̃ are the gradients of primitive variables. The latter
are calculated with a standard linear FE interpolation in each element:

∇P̃=
1

2Ω

∂P̃

∂P

3

∑
j=1

Pj nj, (3.28)

where ∂P̃
∂P is the jacobian of the transformation from the update variables P (the ones in

which the solution is stored, i.e. the ones for which a linear representation in the element
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is assumed) to the primitive variables P̃, whose gradients appear in the definition of the
physical diffusive flux. For example, in the case of flows in thermo-chemical nonequilib-
rium, the physical diffusive fluxes require the gradients of mass fractions ys, while the
update variables provide the partial densities ρs, together with the velocity components
and the temperatures:

P=[ρs u T Tv], P̃=[ys u T Tv]. (3.29)

As a result, given that ys =ρs/ρ, the matrix ∂P̃
∂P reduces to:

∂P̃

∂P
=







(δij−yi)/ρ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







. (3.30)

An alternative approach consists in computing the gradient of P̃ directly from the nodal
values of P̃:

∇P̃=
1

2Ω

3

∑
j=1

P̃(Pj) nj. (3.31)

The latter way of calculating the gradient is more straightforward and computationally
efficient than the former, but, in our opinion, formally less consistent, because it does
not use directly the variables P, actually storing the solution. Moreover, since P̃(P) is
nonlinear in P, the two formulations in (3.28) and (3.31) cannot be considered equivalent.

Recently, different methods have been proposed for discretizing diffusive terms more
consistently within a Residual Distribution framework. In [33], for example, a blended
discretization based on the local Peclet number is designed in order to preserve uniform
second order accuracy at low Peclet numbers, corresponding to diffusion-dominated
flows. In [9], a value of Peclet number equal to 7 is suggested as threshold for deter-
mining when the use of the blending may be beneficial in compressible Navier-Stokes
computations. As shown in Fig. 4, the local cell-based Peclet number is almost every-
where bigger than 7 in the numerical solution over the double cone, so that the use of an
unmodified standard Galerkin approximation appears to be reasonably well motivated
in this case. The latter assumption is confirmed by the high accuracy in the numerical
prediction of the quantities of interest, in particular of the surface heat flux, as presented
in the results section.

A more innovative and interesting idea has been introduced in [22,23] where the orig-
inal equations for scalar advection-diffusion problems are recast into a first order system
and a unified discretization is applied to the resulting fully hyperbolic system. An appli-
cation to the Navier-Stokes equations has been already presented in [24] within a Finite
Volume framework and shows promising results. However, an extension to more com-
plex systems of equations, like the ones considered in this paper, if ever possible, might be
far from trivial and not necessarily advantageous, due to an expected significant increase
in number of equations to solve (i.e. one additional equation per diffusion coefficient).
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Figure 4: Cell Peclet number contours superposed on Mach isolines in the computed flowfield over the analyzed
double cone configuration. The red region corresponds to a Peclet number ≥7.

Moreover, it is not clear yet how to integrate the discretization of nonlinear source terms
into this approach consistently.

3.4 Source term discretization

If a variational formulation is applied to the source term S in (2.7) within the computa-
tional domain Ξ, its contribution to the nodal residual, as in the semi-discretized form in
(3.2), can be expressed as [8]:

Φ
s
l = ∑

Ω∈Ξl

∫

Ω
wΩ

l S dΩ. (3.32)

A quadrature rule for discretizing the volume integral in (3.32) must be specified. The
simplest possible choice is a one-point quadrature rule which leads to:

Φ
s
l = ∑

Ω∈Ξl

wΩ
l (xc) S(xc) Ω= ∑

Ω∈Ξl

BΩ
l Sc Ω, (3.33)

where xc is the centroid of the simplex element and BΩ
l = 1

Ω

∫

Ω
wΩ

l dΩ is the distribution
matrix. (3.33) shows that the source term can be distributed exactly like the convective
term, at least if a distribution matrix can be defined for the convective scheme. Typically,
the LDA distribution matrix is applied to distribute the source term [8]:

Φ
s
l = ∑

Ω∈Ξl

BLDA,Ω
l Sc Ω. (3.34)
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In the case of the Nc and the Bxc schemes, the latter choice also corresponds to upwind
the source term together with the convective fluctuation. To demonstrate this for the
Nc scheme, the sum of the nodal convective and source term residuals distributed from
one element is considered. After having recalled (3.13) and (3.15), the following relation
holds:

(Φc
l −Φ

s
l )

Ω=Φ
Nc
l |

Φc,Ω −BLDA
l Sc

=Φ
N
l +BLDA

l δΦ
c,Ω−BLDA

l Sc

=Φ
N
l +BLDA

l (Φc,Ω−Φ̃
c,Ω)−BLDA

l Sc

=Φ
N
l +BLDA

l (Φc,Ω−Sc−Φ̃
c,Ω)

=Φ
Nc
l |

Φc,Ω−Sc
. (3.35)

This result is indeed identical to (3.20). The same analogy holds for the Bxc scheme:

(Φc
l −Φ

s
l )

Ω=Φ
Bxc
l |

Φc,Ω −BLDA
l Sc

=(1−Θ)Φ
LDAc
l +ΘΦ

Nc
l −BLDA

l Sc

=(1−Θ)BLDA
l Φ

c,Ω+ΘΦ
Nc
l −BLDA

l Sc

=(1−Θ)BLDA
l (Φc,Ω−Sc)+Θ(ΦNc

l −BLDA
l Sc)

=(1−Θ)Φ
LDAc
l |

Φc,Ω−Sc
+ΘΦ

Nc
l |

Φc,Ω−Sc

=Φ
Bxc
l |

Φc,Ω−Sc
. (3.36)

3.5 Backward Euler time integration

After having applied the CRD discretization to the spatial term of (3.2), the system can
be rewritten as

∂U

∂P

∂P

∂t
+RCRD(U)=0= R̃(P), (3.37)

where R̃(P) is a pseudo-steady residual and P is the previously introduced vector of natural
variables, which represents a convenient way for storing the solution. The choice of a
Backward Euler time integrator leads to the following expression for the residual R̃(P):

R̃(P)=
U(P)−U(Pn)

∆t
Ω+RCRD(P), (3.38)

where Ω is the area of the median dual cell and U=U(P) is an explicit analytical relation,
i.e. the transformation from natural to conservative variables. The application of a one
step Newton method yields the following linear system:

[
∂R̃

∂P
(Pn)

]

∆Pn =−R̃(Pn), (3.39)
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where the jacobian matrix ∂R̃
∂P is computed as:

∂R̃

∂P
=

∂U

∂P
(P)

Ω

∆t
+

∂RCRD

∂P
. (3.40)

Herein, the jacobian matrix of the spatial part of the residual, ∂RCRD
∂P , is evaluated numeri-

cally by perturbing the space residual R with respect to each one of the natural variables.
The solution update is also performed in natural variables.

3.5.1 Strong implicit boundary conditions

All boundary conditions, namely supersonic inlet, symmetry and no-slip isothermal wall
are enforced strongly, so that each nodal state b on the boundary obeys the prescribed
conditions. In particular, in the case of the no-slip wall with imposed temperature, the
condition to impose is

ub=0, Tb =Tv
b =Tw. (3.41)

Since the natural variables P are used for both the solution update and the numerical per-
turbation of the residual, the implicit treatment of such a boundary condition translates
into replacing the rows corresponding to the variables u,T,Tv for the wall nodes b of the

jacobian matrix ∂R̃
∂P with

Kb ∆ub =0, Kb ∆Tb =0, Kb ∆Tv
b =0, (3.42)

where Kb is the coefficient used to enforce the CFL condition for the corresponding ex-
plicit scheme [6], including both an advective and a diffusive contributions, and is calcu-
lated as

Kb=
Ωb

∆t
=

1

CFL

(

∑
Ω∈Ξb

1

2
(λ̄+

max)
Ω
b ‖nΩ

b ‖+ ∑
Ω∈Ξb

ν̄‖nΩ
b ‖2

22 Ω

)

. (3.43)

In (3.43), (λ̄+
max)

Ω
b is the linearized maximum positive eigenvalue, ν̄ is the cell averaged

kinematic viscosity, nΩ
b is the inward normal corresponding to node b inside cell Ω. Kb

is used for scaling purposes here, in order to keep a good conditioning number of the
system matrix when approaching convergence, since lim∆t→∞ Kb=0.

If a non-catalytic condition is used, as in the present case, the jacobian rows corre-
sponding to the partial densities of the wall nodes do not need any modification.

4 Numerical results

The Residual Distribution based model presented so far has been targeted towards the
the simulation of axisymmetric double cone flows in thermo-chemical nonequilibrium
conditions. In order to validate the method, the high-enthalpy (9.17 MJ/kg) and high-
speed (M∞ =11.5) nitrogen flow over a double cone with semi angles of 25o and 55o and
a base diameter of 10.3 inches, as shown in Fig. 5 (left), was chosen.
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Figure 5: Double cone geometry with lengths given in inches (left) and schematic of double-cone flowfield in
run 42 (right) at high free stream enthalpy conditions (courtesy from [26]).

This configuration has been analyzed within the RTO Task Group 43 (topic no 2) [15],
which focused on a further assessment of CFD for the specific issue of shock interactions
and control surfaces in nonequilibrium flows. Extensive experimental studies have also
been conducted for this case in the LENS I shock tunnel at Calspan University of Buffalo
Research Center (CUBRC) to obtain detailed surface and flow characteristics.

A sketch of a typical hypersonic flowfield around a double cone is depicted in Fig. 5
(right). The oblique shock generated by the first cone strongly interacts with the detached
bow shock created on the second one and the resulting transmitted shock impinges on
the surface downstream of the cone-cone juncture. Here, the adverse pressure gradient
forces the boundary layer to separate. This causes the appearance of a separation shock,
which interacts with the bow shock and causes a shift of the interaction point, which in
turns alters the separation zone. This process feeds back on itself until the flow reaches
a steady state, if such a state exists. Moreover, a supersonic jet forms along the surface
of the second cone, downstream of the impingement point, and it undergoes a series of
compressions and expansions [26].

An accurate prediction of the aerodynamic field and related quantities (heat flux)
for hypersonic double cone flows requires thermo-chemical nonequilibrium effects to be
taken into account, as demonstrated in [18, 25, 26]. All those effects have indeed been ac-
counted for in the present work, thanks to the state-of-the-art two-temperature nonequi-
librium model described in Section 2. Both reference literature and experimental data
were available for the selected testcase, indicated as run 42 in [26]. The nominal free
stream conditions are listed in Table 1. Additionally, the wall temperature was set to
294.7 K.

The two-species (N−N2) nitrogen mixture described in [26] was used to model the
chemistry. Only the second order accurate results, computed with the Bxc scheme de-
fined in (3.21), are discussed here. Since the CRD method is based on simplex cells (tri-
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Table 1: Free stream conditions for double cone (run 42).

ρ∞[kg/m3] U∞[m/s] T∞[K] Tv
∞[K] yN yN2

0.001468 3849.3 268.7 3160 0 1

angles in 2D or tetrahedra in 3D), the original intermediate structured mesh used in [26]
(256×512 cells) has been split into triangles. With regard to this, some details of a coarser
computational mesh (half grid points in both directions) are presented in Fig. 6, show-
ing the regions around the tip of the first cone and around the junction between the two
cones respectively.

Figure 6: Mesh views around the tip of the first cone (left) and around the junction between the two cones
(right).

From the Mach number and roto-translational temperature contours/isolines in Fig. 7
the excellent shock capturing properties of the CRD method can be seen. The vibrational
temperature of molecular nitrogen is shown in Fig. 8, clearly indicating a non-negligible
presence of thermal nonequilibrium in the flow, particularly in the boundary layer and
downstream the bow shock, where the roto-translational temperature is higher. Only a
moderate dissociation of molecular nitrogen into atoms occurs, as highlighted from the
contours/isolines of atomic nitrogen mass fractions. Because of the effect of the vibration-
dissociation coupling, the regions characterized by the highest vibrational temperature
exhibit more chemical dissociation.

Figs. 9 and 10 (left) show the comparison between experimental and computed heat
flux and surface pressure. Specifically the latter quantities, which are of actual engineer-
ing interest, demonstrate the accurate prediction capabilities of the CRD solver. Those
results are competitive with the grid-converged results provided by [26] (right pictures
in Figs. 9 and 10) obtained with a state-of-the-art second order FV solver on a much finer
mesh (512×1024 quadrilateral cells), containing approximately four times more degrees
of freedom than in our case.
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Figure 7: Contours/isolines of Mach number (left) and roto-translational temperature (right) computed with
Bxc scheme on the double cone.

Figure 8: Contours/isolines of vibrational temperature of N2 (left) and mass fraction of atomic nitrogen N
(right) computed with Bxc scheme on the double cone.

A partial grid convergence has been performed by comparing the previously dis-
cussed results with those obtained on a coarser mesh (half grid points in both directions).
In both cases, first and second order solutions are considered and they are shown in
Fig. 11 in terms of surface pressure and heat flux distribution. The solution computed
with the Bxc scheme is significantly closer to the experimental data than the results given
by the Nc scheme, on both meshes, except for the peak pressure on the coarse mesh,
which is excessively high in the second order solution. Both schemes provide a consider-
ably more accurate solution on the fine mesh which demonstrates a correct trend towards
grid convergence. This is particularly evident in the size of the separation bubble, the
peak pressure and the peak heat flux.
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Figure 9: Computed surface pressure vs. experimental measurements, Bxc (left) on 256×512 DOF mesh of
triangles vs. [26] (right) on 512×1024 DOF mesh of quadrilaterals.
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Figure 10: Computed surface heat flux vs. experimental measurements, Bxc (left) on 256×512 DOF mesh of
triangles vs. [26] (right) on 512×1024 DOF mesh of quadrilaterals.

Fig. 12 shows the convergence history for the computation with the first order Nc
scheme on the fine mesh in terms of roto-translational and vibrational temperatures, sur-
face pressure and heat flux: this computation took approximately 10 hours running on
64 CPUs and converged nicely in about 8,000 iterations. As shown in the same picture,
the CFL was progressively increased from 0.5 to 200.

The resulting solution was fed as initial field to the second order simulation. In the
latter case, the residuals quickly stalled after a drop of 1-2 orders of magnitude (depend-
ing on the variable). The total run took about a month on 128 CPUs and was stopped after
more than 2,000,000 iterations, once the surface pressure distribution (and in particular
the separation bubble size) and the surface heat flux stopped changing. The maximum
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Figure 11: Grid convergence study showing surface pressure (left) and heat flux (right) on coarse (128×
256 DOFs) and fine (256×512 DOFs) meshes. Solutions with first order Nc scheme, second order Bxc and
experiments are compared.

Figure 12: Convergence histories in terms of CFL law, temperatures, surface pressure and heat flux residuals
versus number of iterations.

allowable CFL was limited to 15. Such a long running time is not due to the method itself,
but to some computationally expensive (but supposedly more accurate) models used for
computing transport (e.g. Stefan-Maxwell’s diffusion fluxes) and thermodynamic prop-
erties.

In the second order simulation (both on the coarse and fine meshes), probably due to
the non-strictly positive nature of the scheme, overshoots in temperature appeared in a
few grid points located near the bow shock on the second cone. Therefore, the minimum
allowable temperature had to be fixed to a positive value to prevent the simulation to
blow up. This behaviour clearly contributed to severely hamper the convergence, whose
improvement remains an open issue to be tackled by future research. This is mandatory
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in order to make the CRD method fully competitive with standard numerical discretiza-
tions for those kind of applications.

5 Conclusion

A multidimensional upwind CRD method for simulating steady 2D axisymmetric vis-
cous flows in thermo-chemical nonequilibrium on unstructured meshes has been pre-
sented in this paper. A second-order accurate scheme, based on the conservative, quasi-
monotone, nonlinear Bxc scheme for distributing advective and source terms and a stan-
dard Galerkin approximation for discretizing the diffusive terms, has been applied to
analyze a high-enthalpy double cone configuration for which both experimental mea-
surements and scientific literature was available.

The promising numerical results here presented show the high accuracy of the RD
algorithm, even on relatively coarse meshes, and, therefore, its high potential for bet-
ter resolving hypersonic chemically reacting flows characterized by complex shock wave
boundary layer interactions (SWBLI). This confirms RD as a possible valid alternative to
FV for those kind of applications. Future work will be focused on improving the conver-
gence of the Bxc scheme, which has showed some deficiencies.
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[5] Ćsik, Á., Ricchiuto, M., Deconinck, H., A conservative formulation of the multidimensional
upwind residual distribution schemes for general nonlinear conservation laws, J. Comput.
Phys., Vol. 179, No. 2 (2002), pp. 286–312.

[6] Deconinck, H., Ricchiuto, M., Sermeus, K., Introduction to residual distribution schemes
and stabilized finite elements, VKI LS 2003-05, 33rd Computational Fluid Dynamics Course,
von Karman Institute for Fluid Dynamics, 2003.

[7] Deconinck, H., Roe, P. L., Struijs, R., A multidimensional generalization of Roe’s difference
splitter for the Euler equations, Computer and Fluids, Vol. 22, No. 2/3 (1993), pp. 215–222.

[8] Degrez, G., van der Weide E., Upwind residual distribution schemes for chemical non-
equilibrium flows, Paper 99-3366, 14th AIAA Computational Fluid Dynamics Conference,
Norfolk, USA, June 28–July 1, 1999.



500 A. Lani, M. Panesi and H. Deconinck / Commun. Comput. Phys., 13 (2013), pp. 479-501

[9] Dobes̆ J., Numerical Algorithms for the Computation of Unsteady Compressible Flows over
Moving Geometries. Applications to Fluid-Structure Interaction, PhD thesis submitted at
Czech Technical University, Prague, Czech Republic, Université Libre de Bruxelles, Belgium,
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