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Abstract. The onset of cavitating conditions inside the nozzle of liquid injectors is
known to play a major role on spray characteristics, especially on jet penetration and
break-up. In this work, we present a Direct Numerical Simulation (DNS) based on
the Lattice Boltzmann Method (LBM) to study the fluid dynamic field inside the noz-
zle of a cavitating injector. The formation of the cavitating region is determined via a
multi-phase approach based on the Shan-Chen equation of state. The results obtained
by the LBM simulation show satisfactory agreement with both numerical and exper-
imental data. In addition, numerical evidence of bubble break-up, following upon
flow-induced cavitation, is also reported.

PACS: 47.11.-j, 47.65.Cb
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1 Introduction

The use of some form of liquid sprays is very common in industrial processes. Therefore,
there is a constant demand and a very high scientific interest in liquid atomization, as
the spray characteristics are crucial to the success of the particular industrial application.
A remarkable example is represented by direct injection internal combustion engines,
whose efficiency and pollutant emissions are significantly affected by the fuel spray char-
acteristics [1, 2]). However, the understanding and the numerical simulation of liquid
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spray formation is a very challenging task as it involves several complex phenomena. A
liquid spray is a collection of fine liquid dispersed droplets generated by injecting a liq-
uid fuel in a gaseous environment (i.e. fuel spray in an engine cylinder) through a nozzle.
The flow conditions inside the nozzle are deeply influenced by both injection pressure
and nozzle dimensions. Under particular conditions, as for example in diesel injection
systems, liquid velocity inside the nozzle may be very high and the static pressure may
locally drop below vapor pressure, leading to cavitation, which is to say the formation of
cavities or gas bubbles in the liquid. The simulation of this phenomenon is a very chal-
lenging task, but is crucial for a proper modeling of the subsequent spray. Experimental
works in literature, in fact, have demonstrated that the rising of cavitation significantly
influences the atomization process of a liquid spray [3–6]. On the other hand, due to the
complexity of the involved phenomena, only few theoretical and numerical studies of
nozzle flow cavitation are available in literature [7].

The aim of this work is to test the Lattice Botlzmann Method (LBM) as a possible
candidate to study the onset of cavitation inside a nozzle. LBM is a numerical method
to investigate fluid dynamic fields; it is not based on the continuum assumption as the
Navier-Stokes (NS) approach, but rather on the notion of particle distribution functions,
as developed Boltzmann’s kinetic theory. In recent years, LBM has been successfully em-
ployed to study both single-phase fluid dynamics and complex phenomena, like mul-
tiphase/reacting flows [8–11], fluid-structure interaction [12], and also bubble cavita-
tion [13, 14].

In a recent work, the authors successfully employed the LBM to model the break-up of
a liquid spray [15], for different values of Reynolds and Weber numbers. The multiphase
nature of the flow has been modeled through the approach proposed by Shan and Chen
[16, 17]. In this work, LBM coupled to Shan-Chen model is employed to simulate the
flow and the onset of cavitation inside a nozzle with simplified geometry under realistic
conditions, including the dynamics of the injector pintle. To the best of our knowledge,
this is the first Direct Numerical Simulation (DNS) of a flow-induced cavitation using the
LB method.

Different cavitation phenomena are reproduced, depending on the dynamic schedule
of the injector; in particular for the case where such dynamics takes into account the
fluid and pintle inertia, cavitation is found to be followed by break-up phenomena in the
nozzle.

2 Numerical method

The Lattice Boltzmann Method (LBM) is a numerical approach to investigate fluid dy-
namic phenomena based on a minimal discrete form of Boltzmann’s kinetic equation [18].
The basic equation of this method reads as follows,

fi(~r+~ciδt;t+δt)− fi(~r,t)=−ωδt ( fi− f
eq
i )+Fiδt (2.1)
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(a) (b)

Figure 1: Sketch of two typical lattices: (a) two dimensional, 9 speed-directions or D2Q9 lattice; (b) three
dimensional, 19 speed-directions or D3Q19 lattice. Both lattices include a rest particle.

in which i represents the set of discrete speeds. The left hand side of Eq. (2.1) describes
the streaming of force-free particles, where, in line with the mesoscopic nature of the
LB model, each particle represents a mesoscopic collection of physical molecules. The
first term at the RHS describes collisional interactions, in the form of a simple relax-
ation towards a local equilibrium, f

eq
i , in a time lapse τ= 1/ω. The second term on the

RHS describes the sources of mass, momentum and energy resulting the coupling of the
fluid with the environment. For simplicity, a simple single-time relaxation form, also
known as Bhatnagar-Gross-Krook (BGK) [19, 20] is used, although more sophisticated
multi-relaxation scattering matrix models are also available [21].

Following the Chapman-Enskog asymptotic expansion, the LBE can be shown to re-
produce the dynamics of an incompressible flow, whose density and velocity are given
by:

ρ(~r,t)=∑
i

fi(~r,t), (2.2)

u(~r,t)=
1

ρ(~r,t)∑
i

ci fi(~r,t). (2.3)

The local equilibria f
eq
i in Eq. (2.1) are typically chosen in the form of a second-order

expansion in the local mach number, Ma=u/cs, of the local Maxwell distribution [20]:

f
eq
i (~r;t)=wiρ

(

1+
~u ·~ci

c2
s

+
(~u·~ci)

2

2c4
s

−
~u·~u

2c2
s

)

. (2.4)

Finally, wi is a set of discrete weights obeying the following normalizations, ∑i wi=1,

∑i wic
2
ix =∑i wic

2
iy = c2

s =1/3, cs being the lattice speed of sound.

Since all fluid variables are defined in terms of kinetic moments of the discrete dis-
tribution, see Eqs. (2.2) and (2.3), the discrete forcing Fi can be designed in weak-form,
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i.e. by matching its contributions to mass-momentum and momentum-flux, to those of a
continuum source term in the form Su =~F/m·∂ f /∂~u [18].

This yields

Fi=wi

~F ·~ci

c2
s

. (2.5)

This uniquely specifies the discrete forcing in terms of the desired continuum force per
unit volume ~F. In actual practice, it is known that a more efficient and stable implemen-
tation of this force consists of using a shifted flow velocity in the expression (2.4) of the
local equilibria, namely

~u→~u ′=~u+
~Fτ

ρ
. (2.6)

Since these matters have been described at length in the LB literature, we shall not delve
into further details. Instead, we proceed by discussing the specific form of the pseudo-
forces/potentials to be employed in the present work.

2.1 Shan-Chen: single-range pseudo-potential model

We briefly revisit the main features of the standard, single-range, Shan-Chen model [16,
17].

The Shan-Chen force reads as follows

~F(~r;t)=Gψ(ρ(~r))∑
i

wi~ciδtψ[ρ(~r+~ciδt)], (2.7)

where G parametrizes the strength of the non-ideal interactions between neighbors in the
first Brillouin region (belt, for simplicity) spanned by the lattice vectors~r+~ciδt.

The pseudo-potential is chosen in the following form

ψ(ρ)=ρ0(1−e−ρ/ρ0), (2.8)

where ρ0 is a reference density (in the practice, usually ρ0 =1), below which the pseudo-
potential ψ reduces to the ordinary fluid density. In the high-density limit, ρ ≫ ρ0, the
above functional form saturates to a constant value, ρ0, so that the associated force be-
comes vanishingly small. This is required to prevent density collapse under attractive
interactions. Indeed, in the Shan-Chen model, phase-separation is triggered by attrac-
tive interactions (G < 0) between neighbors in the first belt. Attractive interactions en-
hance density gradients and promote a subsequent progressive steepening of the in-
terface, eventually taking the system to a density collapse. In dense fluids and liquids
such density collapse is prevented by hard-core repulsive forces, which stop the undefi-
nite build-up of density gradients, thereby stabilizing the fluid interface. As anticipated
above, in the Shan-Chen model, such a stabilizing effect is surrogated by imposing a
saturation of the intermolecular attraction for densities above a reference value, ρ0.
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Despite its simplicity, the Shan-Chen model encodes the two basic features of inter-
acting fluids, namely a non-ideal equation of state and a non-zero surface tension. The
former is given by

P(ρ)=ρc2
s +

1

2
Gc2

s ψ2 (2.9)

and shows a phase transition for G<Gcrit=−4. The surface tension is given by

σ ∝−Gc4
s

∫

(∂yψ)2 δy, (2.10)

where y runs across the liquid-vapor interface. To be noted that within this model, the
equation of state and surface tension cannot be varied independently. This is easily dis-
posed of by implementing multi-range potentials [9]. In this work, however, we shall
confine our attention to single-range potentials.

3 Simulations & results

From the thermodynamic point of view, cavitation is the process by which a liquid va-
porizes under the effect of a sudden pressure loss, typically due to mechanical flow con-
ditions (see Fig. 2). This is a non-thermal, flow-induced, strongly non-equilibrium phase
transition, which is hard to reproduce in a direct numerical simulation, without the use
of phenomenological models (i.e. VOF, bubble-model, Eulerian-Lagrangian coupling for
dispersed phase, etc.) [7, 22], because of the numerical difficulty in tracing the dynamic
instability leading to the phase transition. This is a significant advantage of LB multi-
phase approach, in which phase transition and the onset of the interface emerge directly
from phase-interaction term Fi in Eq. (2.1).

The operating regime inside a nozzle (e.g. diesel injectors) may be characterized by
two dimensionless parameters, the cavitation number, and the discharge number. The
former is defined as [23]

Cn=
pin−pout

pout−pvap
, (3.1)

where pin and pout are the fluid pressure at the inlet and outlet sections, respectively,
while pvap the vapor pressure in equilibrium, ρ the fluid density and U a reference ve-
locity. The discharge coefficient is related to the cavitation number by the following rela-
tion [24]

Cd∼0.67

√

1+
1

Cn
. (3.2)

By definition, cavitation occurs at Cn >1, whereas the discharge coefficient is a measure
of the dissipative effects associated with cavitation phenomena. Ideally, injectors should
work at high Cn and low Cd, corresponding to the production of highly atomized sprays
at a minimum energy cost.
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Figure 2: Thermodynamic sketch of flow-induced cavitation: the velocity increase due to the reduction of channel
section causes the pressure drop, driving the formation of non-equilibrium vapor bubbles. The snapshots provide
a qualitative idea of pressure and velocity fields inside the injector nozzle, in presence of cavitation.

Figure 3: The geometry of the simulation. The fluid flows into the injector from the inlet section and is
subsequently channeled into the nozzle duct, where it experiences the acceleration causing the pressure drop
which drives the cavitation at the inlet of the nozzle duct.

Our simulations are performed in the two-dimensional computational domain shown
in Fig. 3, using 103 grid points along each dimension and a standard D2Q9 lattice [20].
The inlet condition is fixed by imposing the magnitude of the fluid velocity (flat profile),
the outflow is a “zero-gradient” condition and the walls are all no-slip, i.e. zero velocity.
The inlet velocity is either a step function or a linear ramp-up function of time, corre-
sponding to a sudden and gradual opening of the nozzle, respectively. The correspond-
ing velocity time schedules are shown in Fig. 4.

The main parameters of the simulation set-up are given in Table 1.

With these reference values, we find p∼0.043, pvap∼0.015, corresponding to a cavita-

tion number is of the order of Cn∼
0.043−0.015

0.0169 ∼1.65, the regime of incipient cavitation.
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Figure 4: Time-schedule of the two considered inlet velocities. The dots correspond to time instants associated
with the snapshots of density and pressure, as shown in the subsequent figures.

Table 1: Flow characteristics.

Reynolds number
at inlet section, Re ∼780
Weber number
at inlet section, We ∼600
G parameter in the Shan-Chen EOS −5.0
liquid phase density 1.92 lu
vapour phase density (combustion chamber) 0.05 lu
liquid/gas density ratio ∼38
surface tension 0.056 lu
liquid phase inlet velocity 0.13 lu
nozzle radius 200 lu
grid spacing 2.5 10−7 m

total grid nodes 106

3.1 Constant inlet velocity

In Fig. 5, we report a time sequence of the density and pressure at t= 50, 500, 1000, for
the case of constant inlet velocity. From this sequence, the onset of a cavitating region at
the entrance of the nozzle can be observed. The cavitation number and the discharge co-
efficients for this case are Cn=1.65 and Cd=0.83, respectively. The dynamic morphology
of the cavitation bubble appears to be in satisfactory agreement with previous numerical
work, as well as experimental observations [7, 25].

In Fig. 6, we report the density configuration and corresponding velocity profiles at a
later stage of the evolution, t=2250. As one can appreciate, the cavitation bubble ruptures
under the effect of the local fluid flow, which exhibits a coherent vortex right after the
entrance of the nozzle, as visible from panel b) of Fig. 6, reporting the associated flow
velocity pattern at the same time instant. This is consistent with the values of the local
Reynolds Re=UinD/ν∼800 and Weber We=ρU2

inD/σ∼600 numbers, both values being
based on the height of the inlet duct. Since the Weber number measures the propensity
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(a) Density contours

(b) Pressure contours

Figure 5: Density (top panel) and pressure (bottom panel) configuration for the case of constant inlet velocity,
at t= 50, 500, 1000. The formation of a cavitation bubble at the inlet of the nozzle duct is well visible. The
corresponding pressure drop in correspondence of the bubble is also well visible from the contours in the bottom
panel. The axes report X and Y coordinates of the computational domain.

(a) (b)

Figure 6: Rupture of the cavitation bubble at t=1250: (a) density contours, (b) density iso-contours juxtaposed
to velocity vectors. The local cavitation number is Cn∼1.65. Locally inverted velocity profiles in correspondence
with the bubble position, are clearly visible. They are most likely bearing a significant contribution to the rupture
of the bubble. The axes report X and Y coordinates of the computational domain.

of droplets/bubbles to deform under fluid flow, one should more appropriately define
it in terms of actual size of the bubble rather than the inlet diameter, leading to a much
smaller value, of the order of We∼10, still large enough to allow significant deformations
and possibly breakup.

3.2 Dynamic inlet velocity

In Fig. 7, we report the same time sequence as above of the density and pressure distribu-
tion for the case of dynamic inlet velocity, typical of engine injection strategies. The main
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(a) (b) (c)

(d) (e) (f)

Figure 7: Density configuration for the case of dynamic inlet velocity, at t= 50,250,500,750,1000,1250 (a-f).
The formation of a cavitating region on the vertical wall of the sack is evident from panels (e) and (f). The
axes report X and Y coordinates of the computational domain.

Figure 8: Rupture of cavitation bubble with dynamic inlet velocity, at t=2500,2750,2900, i.e. within the flat-top
in Fig. 4(b). The breakup and consequent separation of a daughter bubble is apparent. The axes report X and
Y coordinates of the computational domain.

feature, as compared to the case in the previous section, is the formation of a cavitating
region on the vertical wall of the sack. This is in line with previous numerical findings,
where the inertia of the pintle was taken into account [26].

Finally, in Fig. 8, we show the density and pressure contours for the same case but at a
later stage, t=2500, 2750, 2900, corresponding to the flat-top of the inlet velocity profile in
Fig. 4(b). Remarkably, at variance with the case of constant inlet velocity, the cavitation
bubble not only shows rupture, but also gives rise to a secondary bubble (break-up),
which is then entrained by the mainstream flow. Since the basic parameters, and most
notably the cavitation number, are exactly the same as for the case in the previous section,
we conclude that the rupture of the bubble is a result of the dynamic schedule of the inlet
velocity. At the moment, we have no firm explanation for this dynamical phenomenon.

The presence of such secondary bubbles is of utmost practical importance for the op-
eration of the injector, since it is known that they have a major impact on spray formation
and break up at the nozzle exit [6, 7, 27].
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4 Conclusions

Summarizing, we have used the Shan-Chen model for the computational study of cavita-
tion phenomena inside the nozzle of a liquid injector, including static and dynamic injec-
tion strategies. Cavitation is observed under all conditions, and, in the case of dynamic
inlet velocity, break-up phenomena are also detected. To the best of our knowledge, this
is the first time that such flow-induced cavitation and break-up phenomena are observed
in direct simulation of multi-phase flows using LB. Future studies will explore the de-
pendence of the dynamic morphology of the bubbles on the details of the intermolecular
interactions [9] and on the nozzle geometry.
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