
Commun. Comput. Phys.
doi: 10.4208/cicp.281011.020212s

Vol. 13, No. 3, pp. 916-928
March 2013

Non-Newtonian Effect on Hemodynamic Characteristics

of Blood Flow in Stented Cerebral Aneurysm

Changsheng Huang, Zhenhua Chai and Baochang Shi∗

School of Mathematics and Statistics, Huazhong University of Science and
Technology, Wuhan 430074, P.R. China.

Received 28 October 2011; Accepted (in revised version) 2 February 2012

Available online 29 August 2012

Abstract. Stent placement is considered as a promising and minimally invasive tech-
nique to prevent rupture of aneurysm and favor coagulation mechanism inside the
aneurysm. Many scholars study the effect of the stent on blood flow in cerebral
aneurysm by numerical simulations, and usually regard blood as the Newtonian fluid,
blood, however, is a kind of non-Newtonian fluid in practice. The main purpose of the
present paper is to investigate the effect of non-Newtonian behavior on the hemody-
namic characteristics of blood flow in stented cerebral aneurysm with lattice Boltz-
mann method. The Casson model is used to describe the blood non-Newtonian char-
acter, which is one of the most popular models in depicting blood fluid. In particular,
hemodynamic characteristics derived with Newtonian and non-Newtonian models are
studied, and compared in detail. The results show that the non-Newtonian effect gives
a great influence on hemodynamic characteristics of blood flow in stented cerebral
aneurysm, especially in small necked ones.

AMS subject classifications: 76A05, 76M28, 76D05, 92C35, 74F10

Key words: Cerebral aneurysm, lattice Boltzmann, non-Newtonian fluid, Casson model.

1 Introduction

Cerebral aneurysms are localized dilation or ballooning of the brain blood vessel caused
by disease or weakening of the walls. They are particularly dangerous for the risk of
permanent brain damage, disability or death when they rupture. A new therapy to treat
aneurysm is implanting a porous stent across the neck of the aneurysm, which is viewed
as a promising and minimally invasive treatment modality. Many hemodynamic factors,
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such as flow patterns, velocity and wall shear stress, are thought to play an important
role in the pathogenesis and treatment of cerebral aneurysms [1].

Some studies have investigated the effect of the stent on hemodynamics by experi-
mental methods [2–4]. Lieber et al. [2] investigated the influence of the stent filament
size on the intra-aneurysmal flow dynamics in a sidewall aneurysm model in vitro using
particle image velocimetry. Their results showed that stenting significantly reduces intra-
aneurysmal vorticity and the reduction of mean flow circulation varies depending on the
strut diameter. Liou et al. [3] investigated the effect of stent shapes (helix versus mesh)
on the changes of intra-aneurysmal hemodynamics. They found both stents can induce
favorable changes in the intra-aneurysmal flow stasis as well as direction and undulation
of wall shear stresses, but the helix stent was more competitive.

Compared to experimental studies, more numerical works examining stent effects
on hemodynamics also have been carried out in the past years [5–7]. Aenis et al. [5]
conducted a finite element simulation of stented and nonstented aneurysm models in a
three-dimensional configuration. The results of the stented versus the nonstented model
showed a significant diminution of flow activity inside the stented aneurysm pouch. A
high-pressure zone at the distal neck and the dome of the aneurysm prior to stenting
decreases after stent placement. Hirabayashi et al. [6] investigated the effect of the stent
structure and its positioning on hemodynamics using lattice Boltzmann method (LBM),
and found the effects of strut diameter, positioning and aneurism geometry must be taken
into account to fully quantify the role of the stent. Appanaboyina et al. [7] studied the
effect of stent design, treatment options, stent positioning and partial stent modeling,
demonstrated that their methodology based on unstructured embedded grids was useful
in simulation of intracranial aneurysm stenting.

The aforementioned studies have provided valuable information on the flow in stented
aneurysms, however, most of them assume blood flow to be a Newtonian fluid. It is
well accepted that blood behaves as a Newtonian fluid in large arteries where the shear
rates above 100 s−1 [8]. Nevertheless, the non-Newtonian effect may become impor-
tant in aneurysms, especially in stented aneurysms with stagnant flow and low shear
rates. Some studies have investigated the non-Newtonian effect on hemodynamics in
nonstented cerebral aneurysm [9–11]. Bernsdorf et al. [9] simulated blood flow in cerebral
aneurysms with lattice Boltzmann method, and showed that there was an overestimation
of the wall shear stress results when the non-Newtonian effects were neglected. Accord-
ing to hemodynamic analysis of cerebral aneurysm models with realistic anatomies using
Newtonian and non-Newtonian approximations, Cebral et al. [10] showed that the main
flow characteristics are not significantly affected by the viscosity model. The results of
Fisher and Rossmann’s work [11] on the effect of non-Newtonian behavior suggested the
blood’s non-Newtonian behavior was considerable, but they were not as significant as
various aneurysm morphologies, thus the assumption of Newtonian blood is quite rea-
sonable. Furthermore, for stented aneurysm, Kim et al. [12] studied the effect of stent
porosity and stent strut shape with a non-Newtonian fluid model for blood, but without
a systematic comparison between Newtonian and non-Newtonian blood model.



918 C. Huang, Z. Chai and B. Shi / Commun. Comput. Phys., 13 (2013), pp. 916-928

From discussions previously, it is found that more researches are still required to
study the effect of non-Newtonian blood properties on the hemodynamics of flow in
stented cerebral aneurism. The objective of this paper is to present a detailed study on the
non-Newtonian effect on hemodynamic characteristics of blood flow in stented cerebral
aneurysm. For simplicity, we only consider two-dimensional cerebral aneurysm geome-
tries. The vessel walls are assumed to be rigid, which is partially because some available
works have shown that there is no apparent difference on the basic vortex pattern be-
tween rigid and distensible saccular aneurisms [13]. The no-slip boundary conditions are
used on the vessel walls and the stent surfaces. In addition, we adopt a steady velocity
condition as an inlet boundary condition, and consider blood flow to be incompressible.

2 Mathematical model and numerical method for

non-Newtonian fluid

2.1 Mathematical model for non-Newtonian fluid

The mathematical model for non-Newtonian fluid flows can be written as

∇·u=0, (2.1a)

∂u

∂t
+u·∇u=−∇P+∇·τ, (2.1b)

where u is fluid velocity, P is the pressure; τ=µ(|γ̇|)γ̇ is shear stress, µ is local dynamic
viscosity and related to the kinematic viscosity, γ̇ is shear rate and defined as

γ̇=2ε=∇u+(∇u)T , |γ̇|=
√

2(ε:ε), (2.2)

where ε is strain rate tensor, T denotes the transposition operator. Compared with the
Navier-Stokes equations for the Newtonian fluid flows, the dynamics viscosity µ in
Eq. (2.1) is a function of shear rate γ̇ rather than a constant.

Although there are many types or models of non-Newtonian fluid [14], here we will
use Casson model since this model shows both yield stress and shear-thinning non-
Newtonian viscosity, and also broadly used to describe the shear thinning behavior of
blood [15, 16]. The shear stress of Casson model can be described as [14, 17]







τ=
(
√

τC

|γ̇|+
√

µC

)2
γ̇, |τ|>τC,

γ̇=0, |τ|<τC,

(2.3)

where τC is the Casson yield stress, µC is the plastic viscosity, the magnitude of the shear
stress is defined as

|τ|=
√

1

2
(τ : τ). (2.4)
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Following the approach proposed by Papanastasiou [18], one can derive a continuous
expression on shear stress [17, 19]

τ=

[√
µC+(1−e−

√
m|γ̇|)

√

τC

|γ̇|

]2

γ̇, (2.5)

which can be used to eliminate the difficulties induced by discontinuity of Eq. (2.3). Pa-
rameter m is a constant, for m>100, Eq. (2.5) gives a good approximation to Eq. (2.3), as
reported in [19]. Additionally Eq. (2.5) also can be used to describes a Newtonian fluid if
τC =0.

Based on Eq. (2.5), the apparent or effective viscosity for Casson model can be written
as follow,

µCS =

[√
µC+(1−e−

√
m|γ̇|)

√

τC

|γ̇|

]2

. (2.6)

2.2 The lattice Boltzmann method for non-Newtonian fluid

The lattice Boltzmann method has been proved to be a very efficient simulation tool
to model complex fluids [20, 21], and has been widely used in simulation of blood
flow [22, 23]. A popular lattice Boltzmann model is the so-called Bhatnagar-Gross-Krook
(BGK) model with a single relaxation time approximation. The evolution equation of
BGK model can be given as [24]

fi(x+ciδt,t+δt)− fi(x,t)=− 1

τBGK

[

fi(x,t)− f
(eq)
i (x,t)

]

, (2.7)

where τBGK is the dimensionless relaxation time, fi(x,t) is the density distribution func-

tion for the particle moving with velocity ci at position x and time t, f
(eq)
i (x,t) is the

local equilibrium distribution function. For the two-dimensional case considered in the
present work, a two-dimensional lattice Boltzmann model with nine velocities (D2Q9
model) will be used. The local equilibrium distribution function in the D2Q9 model is
defined as [24]

f
(eq)
i (x,t)=ωiρ

[

1+
ci ·u
c2

s

+
(ci ·u)2

2c4
s

−
∣

∣u2
∣

∣

2c2
s

]

, (2.8)

where ωi is the weighting factor given by ω0=4/9, ωi=1/9(i=1 :4), ωi=1/36(i=5 :8),
ρ, u are the fluid density and velocity, cs is the sound speed. The discrete velocities ci are
defined as

ci =















(0,0), i=0,

(cos[(i−1)π/2],sin[(i−1)π/2])c, i=1−4,

(cos[(2i−9)π/4],sin[(2i−9)π/4])
√

2c, i=5−8,

(2.9)
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where c=δx/δt, and δx and δt are the lattice spacing and time step. The relation between
cs and c can be expressed as cs = c/

√
3. The flow density, velocity and kinetic viscosity

are given by

ρ(x,t)=
8

∑
i=0

fi(x,t), (2.10a)

ρ(x,t)u(x,t)=
8

∑
i=0

ci fi(x,t), (2.10b)

ν=(τBGK−1/2)c2
s δt. (2.10c)

As reported in some published works [14, 25, 26], the strain rate tensor ε in D2Q9
model can be computed locally at each node by

εαβ =− 1

2ρc2
s τBGKδt

8

∑
i=0

ciαciβ

[

fi(x,t)− f
eq
i (x,t)

]

, (2.11)

and the shear stress can be further derived

ταβ=−
(

1− 1

2τBGK

) 8

∑
i=0

ciαciβ

[

fi(x,t)− f
eq
i (x,t)

]

, (2.12)

3 Results and discussions

In this work, we only consider two types of aneurysm geometry with different neck size,
and show them in Fig. 1. We note that the two ideal models have been widely used in
some previous works [6, 27] for its simplicity and good approximation to realistic cases
observed in clinical experiments. The aneurysm diameter is 10mm, the orifice diameters
of the large-necked aneurysm (La model) and the small-necked aneurysm (Sa model) are
10mm and 5mm, respectively. The parent vessel is assumed to be a straight tube, the
diameter is 4mm and the length is 40mm. Two kinds of stent with different porosities
(metal free area/total unit area) represented in Table 1 are used in our simulations. The
length and diameter of them are 25mm and 0.1mm. We note that these parameters of
stents are also adopted in the work of Hirabayashi et al. [6] and Kim et al. [12].

Table 1: Stent parameters for the simulation (in lattice units).

Stent model Pore size Porosity(%)

Ls 35 95.51

Ss 15 89.53

The density of the blood, Casson viscosity and yield stress are 1.087×103kg/m3,
3.695×10−3 pa·s and 0.05dyn/cm2, respectively. To simplify numerical study, the follow-
ing non-dimensionalized parameters are used in the present work. The average density
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Figure 1: The geometry of aneurysms; (a) the large-necked (La) model, (b) the small-necked (Sa) model.

is ρ=1.0, Casson viscosity υ=0.026, and yield stress is 6.73×10−7. The non-equilibrium
extrapolation method [28] is applied to treat pressure conditions at the inlet and outlet
with constant pressure gradient dP/dx=4.17×10−6. For the stent surfaces as well as the
vessel walls, the half-way bounce-back condition [29] is used.

3.1 Validation

Firstly, to validate the capacity of present numerical method in studying non-Newtonian
behavior, the problem of fully developed channel flow driven by a constant pressure
gradient is used here. The reason for choosing such problem is that it has an analytical
solution. The exact solution of channel flow with the Casson model is [30]

u(y)=
1

µc

dP

dx

(

y(y−L)

2
+yc

(

∣

∣

∣
y− L

2

∣

∣

∣
− L

2

)

− 4

3

√
yc

(

√

(

y− L

2

)3

−
√

L3
)

)

, (3.1)

where yc =−τC/( ∂P
∂x ) denotes the point at which the material yields. In the simulations,

the lattice size used is Nx×Ny = 33×17. The simulation parameters is the same that
represent in previous paragraph. Fig. 2 shows that the numerical results agree well with
the analytical solutions for both Newtonian and Casson models. The second validation is
presented in Fig. 3(b) where we simulated the aneurysm model demonstrated in Fig. 3(a)
where the porosity of stent is 95.51%, and compared with the numerical results given
by Kim et al. [12]. The results presented in Fig. 3(b) show that the present results are in
good agreement with the work of Kim et al. [12]. The grid-independence study shows
that 1600×576 lattice size is enough to give accurate results, and this lattice size is used
in following simulations.

3.2 Non-Newtonian effect on flow patterns and vortex

The variation of the flow patterns in stented and nonstented aneurysms under the as-
sumption of Newtonian fluid is shown in Fig. 4. Fig. 4(a)-(c) show the streamline in
aneurysm La model, and Fig. 4(d)-(f) show that in Sa model. Fig. 4(a) and Fig. 4(d) are
cases without stent, while Fig. 4(b), Fig. 4(e) and Fig. 4(c), Fig. 4(f) are cases with high-
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Figure 2: A comparison between numerical and exact velocity profiles for Newtonian and Casson models.
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Figure 3: (a)The geometry of the aneurysm model used by Kim et al.; (b) A comparison of the velocity
magnitude at the neck of the aneurysm with Kim’s results.

and low-porosity stents. As seen from Fig. 4, the flow pattern in the aneurysm with stent
is more complex compared to the case without stent, and it seems that the change of flow
pattern is more significant for large-necked aneurysm. We also find that the strength of
vortex appeared in the aneurysm with stent is much smaller than the cases without stent.
In addition, we also note that our results do not agree with the work of Hirabayashi et
al. [6] well, this may be because the lattice size they used in their simulations is not large
enough, and thus, a large error is induced when the standard bounce-back condition is
used on the stent surfaces.

In what follows, we also study the non-Newtonian effect on flow patterns. The nu-
merical results using Casson model for the same cases in Fig. 4 are shown in Fig. 5. As
presented in this figure, we find the strength of the vortex is also reduced after the place-
ment of stent, which is similar to the results in Fig. 4. However, many differences are also
observed in comparison with the results derived with Newtonian model. Although the
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Figure 4: Streamline of the flow inside different aneurisms (Newtonian model). (a) and (d) are non-stented
cases, (b), (e) and (c), (f) are cases with high- and low-porosity stents. The aneurysm presented in Fig. 4(a)-(c)
is La model, while in Fig. 4(d)-(f) is Sa model.
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Figure 5: Streamline of the flow inside different aneurisms (non-Newtonian model). (a) and (d) are non-stented
cases, (b), (e) and (c), (f) are cases with high- and low-porosity stents. The aneurysm presented in Fig. 5(a)-(c)
is La model, while in Fig. 5(d)-(f) is Sa model.

flow patterns in Fig. 5(a), (b) and (d) are very similar to those in Fig. 4, the rest results
in Fig. 5(c), (e) and (f) are very different with corresponding cases in Fig. 4. At the dome
of the aneurysm in Fig. 5(c), Fig. 5(e) and Fig. 5(f), there is no streamline since the ve-
locity is zero. This means the stagnancy of blood, which is beneficial to the formation of
thrombosis in the aneurysm. While in Fig. 4, this phenomenon doesn’t appear. The most
significant differences is found between the cases with low-porosity stent. In Fig. 5(c) and
(f), the vortex disappeared while for the same cases in Fig. 4(c) and (f), the vortex still ex-
isted. The flow entered the aneurysm sac through the proximal neck, while in Fig. 4(c)
and (f), the flow into the aneurysm from the distal neck.

The most apparent changes taking place for the cases with low-porosity suggest that,
as the porosity of the stent become lower, the effect of non-Newtonian behavior become
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more significant, this maybe partially because the velocity of blood is greatly reduced and
thus, the shear rates become lower. The little difference between Fig. 4(b) and Fig. 5(b)
gives an implication that large-necked aneurysm is less sensitive to the non-Newtonian
behavior than small-necked aneurysm, as expected.

3.3 Non-Newtonian effect on velocity and flow reduction

To quantitatively evaluate non-Newtonian effect, the mean and the maximum velocity
magnitudes inside the aneurysm are computed with Newtonian and Casson models, and
reported in Table 2. Based on the data in this table, we find that the velocity of the flow
in the aneurysm is reduced after the stent implantation for both Newtonian and Casson
models. However, the mean and the maximum velocity magnitudes of Casson model are
smaller than these of Newtonian model. This suggest that there is an overestimation of
the velocity magnitude inside the aneurysm when blood is treated as Newtonian fluid.
In addition, we also observed that the difference between Newtonian and Casson models
is more obvious for small-necked aneurysm than that for large-necked aneurysm, which
also indicates that the blood is more likely to behave as a non-Newtonian fluid in small-
necked aneurysm.

Table 2: The mean and the maximum velocity magnitude calculated inside the aneurysm, and the mean velocity
reduction for both models.

Aneurysm Large-necked Small-necked

Stent - Ls Ss - Ls Ss

Max (Newtonian) 0.0415 0.0228 0.0181 0.0255 0.0150 0.0077

Max (Casson) 0.0395 0.0225 0.0164 0.0238 0.0136 0.0066

Relative difference 5% 1% 9% 6% 9% 14%

Mean (Newtonian) 0.00819 0.00273 0.00091 0.00184 0.00082 0.00023

Mean (Casson) 0.00608 0.00201 0.00085 0.00114 0.00040 0.00010

Relative difference 26% 26% 6% 38% 51% 57%

Reduction (Newtonian) - 66.7% 88.9% - 55.4% 87.5%

Reduction (Casson) - 66.7% 86.0% - 64.9% 91.2%

To measure the effect of stent, the mean velocity reduction is a widely used indicator,
and defined as

Vr =
Vns−Vst

Vns
×100, (3.2)

where Vst and Vns are the average velocity in the stented and non-stented aneurysm sac,
respectively. The mean velocity reduction is also shown in Table 2. As seen from this ta-
ble, we also find that the placement of stent indeed reduces the velocity in the aneurysm,
it’s more distinct for the case of Ss.
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3.4 Non-Newtonian effect on wall shear stress

Wall shear stress (WSS) is one of the main pathogenic factors correlated with aneurysm
expansion and rupture. In this part, we also study WSS of large-necked aneurysm, and
show its distribution in Fig. 6. Four cases are shown in the figure: the case with high-
porosity stent or without stent, using Newtonian or Casson model. From this figure, it is
found that the value of WSS is very small and close to zero except for the regions near the
proximal and distal necks, where two peaks appear. The maximum WSS appears at the
distal neck region, this may be caused by the impact of the inflow. Compared with the
aneurysm without stent, the magnitude of WSS of the stented case is reduced particularly
at the zone close to the distal neck. These phenomenons were also observed in the work
of Yu et al. [31]. In addition, high WSS is also found on the surface of the stent, which is
induced by a large velocity gradient.
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Figure 6: Wall shear stress for large-necked aneurysm in four cases: the case with high-porosity stent or without
stent, using Newtonian or Casson model.

Similar to the result of Bernsdorf et al. [9] and Xiang et al. [32], a smaller value of
WSS appeared in nonstented case where the Casson model is used. The most significant
difference between Newtonian and Casson models is observed at the zone near the distal
neck (see Fig. 6), which is due to the fact that abrupt change of velocity as the inflow
impacted on the distal neck region and a flatter velocity profile when considering non-
Newtonian behavior. While in the stented cases, the difference is much smaller between
the two models, this maybe as a result of lower velocity magnitude, which is caused by
the stent. The results for small-necked aneurysm exhibit the same phenomenon as those
for large-necked aneurysm, and are not shown here.

4 Conclusions

In this paper, we preliminarily studied the hemodynamic characteristics of stented cere-
bral aneurysm in simplified two-dimensional geometries, and focus on the effect of non-
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Newtonian behavior. The results derived with Newtonian and non-Newtonian models
were compared, and many differences were found. Firstly, the flow pattern is changed
greatly for the cases with low-porosity stent after taking into account the effect of non-
Newtonian behavior, while for the non-stented aneurysm, or the aneurysm with high-
porosity stent implanted, the difference is very small. Secondly, the mean and the maxi-
mum velocity magnitudes in the aneurysm sac were also compared, the values derived
with Casson model is much smaller than that obtained with Newtonian model. Thirdly,
the value of wall shear stress derived with Casson model is lower than that of Newto-
nian model, and the maximum difference appeared at the region close to the distal neck.
While for the stented cases, a much smaller difference was observed between Newtonian
and Casson models.

Our research shows that, it may be not appropriate to treat blood as a Newtonian
fluid in the stented aneurysm, this is because the flow pattern and velocity magnitude of
the Newtonian and non-Newtonian models present some apparent differences. We also
find that the small-necked aneurysm is more sensitive to non-Newtonian behavior since
there is a more significant change in flow pattern and velocity magnitude. Our future
work will consider three-dimensional, patient-specific aneurysm models and pulsating
flow, which will be more realistic.
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[13] M. Löw, K. Perktold and R. Raunig, Hemodynamics in rigid and distensible saccular
aneurysms: a numerical study of pulsatile flow characteristics, Biorheology, 30 (1993), 287-
298.

[14] Z. Chai, B. Shi, Z. Guo and F. Rong, Multiple-relaxation-time lattice Boltzmann model for
generalized Newtonian fluid flows, J. Non-Newton. Fluid Mech., 166 (2011), 332-342.

[15] Y. Ji, X. Kang and D. Liu, Simulation of non-Newtonian blood flow by lattice Boltzman
method, Chinese Phys. Lett., 27 (2010), 94701-94704.

[16] R. Ouared and B. Chopard, Lattice Boltzmann simulations of blood flow: non-Newtonian
rheology and clotting processes, J. Stat. Phys., 121 (2005), 209-221.

[17] P. Neofytou, A 3rd order upwind finite volume method for generalised Newtonian fluid
flows, Adv. Eng. Softw., 36 (2005), 664-680.

[18] T. C. Papanastasiou, Flows of materials with yield, J. Rheol., 31 (1987), 385-404.
[19] T. V. Pham and E. Mitsoulis, Entry and exit flows of Casson fluids, Can. J. Chem. Eng., 72

(1994), 1080-1084.
[20] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid

Mech., 30 (1998), 329-364.
[21] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University

Press, USA, 2001.
[22] S. Melchionna, M. Bernaschi, S. Succ, E. Kaxiras, F.J. Rybicki, D. Mitsouras, A.U. Coskun

and C.L. Feldman, Hydrokinetic approach to large-scale cardiovascular blood flow, Comput.
Phys. Comm., 181 (2010) 462-472.

[23] S. Melchionna, A model for red blood cells in simulations of large-scale blood flows, Macro-
mol. Theory and Sim., 20 (2011) 548-561.

[24] Y. H. Qian, D. D’Humieres and P. Lallemand, Lattice BGK model for Navier-Stokes equation,
Europhys. Lett., 17 (1992), 479-484.

[25] J. Boyd, J. Buick and S. Green, A second-order accurate lattice Boltzmann non-Newtonian
flow model, J. Phys. A: Math. Gen., 39 (2006), 14241-14247.

[26] G. H. Tang, X. F. Li, Y. L. He and W. Q. Tao, Electroosmotic flow of non-newtonian fluid in
microchannels, J. Non-Newton. Fluid Mech., 157 (2009), 133-137.
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