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Abstract. Recently, a new differential discontinuous formulation for conservation laws
named the Correction Procedure via Reconstruction (CPR) is developed, which is in-
spired by several other discontinuous methods such as the discontinuous Galerkin
(DG), the spectral volume (SV)/spectral difference (SD) methods. All of them can be
unified under the CPR formulation, which is relatively simple to implement due to its
finite-difference-like framework. In this paper, a different discontinuous solution space
including both polynomial and Fourier basis functions on each element is employed to
compute broad-band waves. Free-parameters introduced in the Fourier bases are opti-
mized to minimize both dispersion and dissipation errors through a wave propagation
analysis. The optimization procedure is verified with a mesh resolution analysis. Nu-
merical results are presented to demonstrate the performance of the optimized CPR
formulation.

AMS subject classifications: 76

Key words: CPR (correction procedure via reconstruction), hybrid discontinuous space, wave
propagation analysis, unstructured meshes.

1 Introduction

In the last two decades, there has been a surge of research activities on high-order meth-
ods capable of solving the Navier-Stokes equations on unstructured grids. For a re-
view of some of these activities, the readers can refer to [11, 44]. Many powerful high-
order numerical algorithms have been developed, e.g. the spectral element method [30],
multi-domain spectral method [20, 21], k-exact finite volume method [4], WENO meth-
ods [14], discontinuous Galerkin (DG) method [5, 8, 9], high-order residual distribution
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methods [1], spectral volume (SV) [27, 33, 43, 48, 49] and spectral difference (SD) meth-
ods [16, 26, 29, 34, 35, 50, 51]. A new discontinuous formulation named Correction Proce-
dure via Reconstruction (CPR) was recently developed in [17], and extended to simplex
meshes in [46]. The degrees-of-freedom (DOFs) are the state variables at solution points
(SPs) in the CPR formulation, where the differential form of the governing equation is
solved. As a result, explicit surface and volume integrals are avoided. The CPR for-
mulation is among the most efficient discontinuous methods in terms of the number of
operations.

The stability and accuracy of the discontinuous high-order methods depend on how
the solutions are approximated and the weighting functions are chosen. The piecewise
polynomial space is commonly chosen for convection problems. However, piecewise
polynomials may not provide the best approximation for some PDEs and initial/boundary
conditions. We now list some examples in the literature. The locally divergence-free
polynomial space was used in the DG method to solve the Maxwell equations and better
results were achieved compared to the classical piecewise polynomial space in [7,22–24].
Exponential functions were proposed to solve singular perturbation problems by Kadal-
bajoo and Patidar [19] and by Reddy and Chakravarthy [31]. Non-polynomial spaces
were used in the local essentially non-oscillatory (ENO) reconstruction for solving hy-
perbolic conservation laws in [6]. Another work is the use of exponential functions near
a boundary, and the use of trigonometric functions for highly oscillatory problems, as
shown by Yuan and Shu [52].

In the present study, a hybrid space including both polynomial and Fourier func-
tions are employed to resolve broadband wave propagation problems. Fourier func-
tions are used such that the method can exactly represent waves at certain wave num-
bers, while polynomial functions are employed to preserve a certain order of accuracy.
Free-parameters introduced in the Fourier functions are optimized by mimicking the
dispersion-relation-preserving (DRP) method to minimize both dispersion and dissipa-
tion errors [25, 32, 36, 37, 54, 55]. The basic idea of the DRP method is to optimize the
scheme coefficients for the high resolution of short waves with respect to the compu-
tation grid instead of the truncation errors. The present method is named a frequency
optimized CPR formulation (FOCPR) in the present paper.

Fourier analyses have been preformed to investigate the dispersive and dissipative
errors for finite difference and finite volume methods [25,32,36,37,54,55]. Hu [15] applied
it for the DG method, and Van den Abeele et al. [42] carried out such an analysis for the
1D spectral volume method. In this paper, the accuracy and stability properties of the
CPR method with the hybrid spaces are assessed by following similar techniques. A
mesh resolution analysis is also performed to study the points-per-wavelength (PPW)
requirement to achieve a certain accuracy following the procedure in [18, 53] in order to
verify the optimization procedure. Several numerical tests are performed, which show
that the FOCPR method can resolve broadband waves more accurately than the original
CPR method.

This paper is organized as follows. For the sake of completeness, the framework
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of the CPR method is given in Section 2. In Section 3, free-parameters introduced in
the Fourier bases are optimized by minimizing the integral dispersion and dissipation
errors. In addition, a mesh resolution analysis is carried out to verify the optimization
procedure. In Section 4, a two-dimensional wave propagation analysis is conducted for
quadrilateral grids with a tensor product basis. In Section 5, numerical tests are presented
to demonstrate the performance of the FOCPR method. Concluding remarks are given
in Section 6.

2 Review of the CPR method

The CPR formulation can be derived from a weighted residual method by transforming
the integral formulation into a differential one. The hyperbolic conservation law can be
written as

∂u

∂t
+∇·~F(u)=0, (2.1)

with proper initial and boundary conditions, where u is the state vector, and ~F is the
flux vector. The computation domain Ω is discretized into N non-overlapping triangular
elements {Vi}N

i=1. Let W be an arbitrary weighting function or test function. Multiplying
Eq. (2.1) with an arbitrary weighting function W and integrating over an element Vi, we
obtain
∫

Vi

(

∂u

∂t
+∇·~F(u)

)

WdV=
∫

Vi

∂u

∂t
WdV+

∫

∂Vi

W~F(u)·~nds−
∫

Vi

∇W ·~F(u)dV=0. (2.2)

Let ui be an approximate solution to the analytical solution u on element Vi. The
global solution is discontinuous across element interfaces. On each element, we assume
that the solution belongs to the space of polynomials of degree k or less, i.e., ui ∈Pk(Vi),
(or Pk if there is no confusion). Let the dimension of Pk be K=(k+1)(k+2)/2. In addition,
the numerical solution ui is required to satisfy Eq. (2.2)

∫

Vi

∂ui

∂t
WdV+

∫

∂Vi

W~F(ui)·~ndS−
∫

Vi

∇W ·~F(ui)dV=0. (2.3)

The surface integral is not properly defined because the numerical solution is discon-
tinuous across element interfaces. Following the idea used in the Godunov method, the
normal flux term in Eq. (2.3) is replaced with a common Riemann flux, e.g.,

Fn (ui)≡~F(ui)·~n≈Fn
com(ui,ui+,~n), (2.4)

where ui+ denotes the solution outside the current element Vi. Instead of Eq. (2.3), the
approximate solution is required to satisfy

∫

Vi

∂ui

∂t
WdV+

∫

∂Vi

WFn
com(ui,ui+,~n)dS−

∫

Vi

∇W ·~F(ui)dV=0. (2.5)
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Applying integration by parts again to the last term of the above LHS, we obtain

∫

Vi

∂ui

∂t
WdV+

∫

Vi

W∇·~F(ui)dV+
∫

∂Vi

W [Fn
com(ui,ui+,~n)−Fn (ui)]dS=0. (2.6)

Here, the test space has the same dimension as the solution space, and is chosen in a
manner to guarantee the existence and uniqueness of the numerical solution.

Note that the quantity ∇·~F(ui) involves no influence from the data in the neighboring
cells. The influence of these data is represented by the above boundary integral, which is
also called a ”penalty term”, penalizing the normal flux differences.

The next step is critical in the elimination of the test function. The boundary integral
above is cast as a volume integral via the introduction of a ”correction field” on Vi, δi ∈
Pk(Vi),

∫

Vi

WδidV=
∫

∂Vi

W [Fn]dS, (2.7)

where [Fn] = Fn
com(ui,ui+,~n)−Fn(ui) is the normal flux difference. The above equation

is sometimes referred to as the ”lifting operator”, which has the normal flux differences
on the boundary as input and a member of Pk(Vi) as output. Substituting Eq. (2.7) into
Eq. (2.6), we obtain

∫

Vi

[

∂ui

∂t
+∇·~F(ui)+δi

]

WdV =0. (2.8)

If the flux vector is a linear function of the state variable, then ∇·~F(ui)∈ Pk. In this
case, the terms inside the square bracket are all elements of Pk. Because the test space is
selected to ensure a unique solution, Eq. (2.8) is equivalent to

∂ui

∂t
+∇·~F(ui)+δi=0. (2.9)

For nonlinear conservation laws, ∇·~F(ui) is usually not an element of Pk. As a result,
Eq. (2.8) cannot be reduced to Eq. (2.9). In this case, the most obviously choice is to project
∇·~F(ui) into Pk. Denote Π(∇·~F(ui)) a projection of ∇·~F(ui) to Pk. Once choice is

∫

Vi

Π
(

∇·~F(ui)
)

WdV=
∫

Vi

∇·~F(ui)WdV. (2.10)

Then Eq. (2.8) reduces to
∂ui

∂t
+Π

(

∇·~F(ui)
)

+δi=0. (2.11)

With the introduction of the correction field δi, and a projection of Π(∇·~F(ui)) for nonlin-
ear conservation laws, we have reduced the weighted residual formulation to a different
formulation, which involves no explicit integrals. Note that for δi defined by Eq. (2.7),
if W ∈ Pk, Eq. (2.11) is equivalent to the DG formulation, at least for linear conservation
laws; if W belongs to another space, the resulting δi is different. We obtain a formulation
corresponding to a different method such as the SV method.
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Figure 1: Solution points (squares) and flux points (circles) for a triangular element of k=2.

Next, let the DOFs be the solutions at a set of solution points (SPs) {~rij} (j varies from
1 to K), as shown in Fig. 1. Then Eq. (2.11) holds true at the SPs, i.e.,

∂ui,j

∂t
+Πj

(

∇·~F(ui)
)

+δi,j=0, (2.12)

where Πj(∇·~F(ui)) denotes the values of Π(∇·~F(ui)) at SP j. The efficiency of the CPR

approach hinges on how the correction field δi and the projection Π(∇·~F(ui)) are com-
puted. To compute δi, we define k+1 points named flux points (FPs) along each interface,
where the normal flux differences [Fn] are computed, as shown in Fig. 1. We approximate
(for nonlinear conservation laws) the normal flux difference [Fn] with a degree k interpo-
lation polynomial along each interface,

[Fn] f ≈ Ik[F
n] f ≡∑

l

[Fn] f ,l L
FP
l , (2.13)

where f is an face (or edge in 2D) index, and l is the FP index, and LFP
l is the Lagrange

interpolation polynomial based on the FPs in a local interface coordinate. For linear tri-
angles with straight edges, once the solutions points and flux points are chosen, the cor-
rection at the SPs can be written as

δi,j=
1

|Vi| ∑
f∈∂Vi

∑
l

αj, f .l[F
n] f ,lS f , (2.14)

where αj, f .l are lifting constants independent of the solution, S f is the face area, |Vi| is
the volume of Vi. Note that the correction for each solution point, namely δi,j, is a linear
combination of all the normal flux differences on all the faces of the cell. Conversely,
a normal flux difference at a flux point on a face, say ( f ,l) results in a correction at a
solution point j of an amount αj, f .l [F

n] f ,lS f /|Vi|.
Substituting Eq. (2.14) into Eq. (2.12) we obtain the following CPR formulation

∂ui,j

∂t
+Πj

(

∇·~F(ui)
)

+
1

|Vi| ∑
f∈∂Vi

∑
l

αj, f .l[F
n] f ,lS f =0. (2.15)
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The 1D CPR formulation can be deduced from Eq. (??) as

∂ui,j

∂t
+Πj

(

∂F(ui)

∂x

)

+
1

|∆xi|
(αR,j[F

n]R+αL,j[F
n]L)=0, (2.16)

where ∆xi is the length of element i, which has two interfaces, the left one and right one,
with unit face areas and unit face normals of −1 and 1 respectively, [Fn]R and [Fn]L are the
normal flux differences at the left and right interfaces, and αR,j and αL,j are the constant
correction coefficients. It is often more convenient to transform the physical element in x
to the standard element [−1,1] with coordinate ξ resulting in the following transformed
equation

∂u

∂t
+ξx

∂F(u)

∂ξ
=0. (2.17)

The CPR formulation can be applied to (2.17) in a similar fashion.

3 Optimized CPR formulation with hybrid basis functions

Before we introduce the optimized CPR formulation, a Fourier analysis of the CPR method
is performed to reveal its dispersive and dissipative characteristics. Then the basic idea
for the optimized CPR method will be presented.

3.1 Fourier analysis of the CPR formulation

The scalar 1D wave equation is used as the model problem with a periodic boundary
condition and a harmonic initial solution

∂u

∂t
+a

∂u

∂x
=0, (3.1)

u(x,0)= eiκx , (3.2)

where a is a positive wave speed, and K the wave number. A Fourier component of the
form

u(x,t)= ûeI(κx−ωt)+ϑRt, (3.3)

is considered as a solution of this linear advection equation, which represents a sinusoidal
wave train with an angular frequency ω, and dissipation rate θR, where I=

√
−1. Eq. (3.3)

is substituted into Eq. (3.1), and it is found that the exact dispersion relation is

ϑR=0 and ω= aκ. (3.4)

Non-dimensional quantities are introduced in this analysis. Suppose we employ a uni-
form mesh with mesh size ∆x. The reference length scale is set as ∆x and the time scale
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is ∆x/a. The dimensionless parameters are expressed as

Z=κ∆x, (3.5)

Ω=ω
∆x

a
, (3.6)

where Z and Ω are the non-dimensional wave number and frequency, respectively. The
exact dispersion relation is then

Ω=Z. (3.7)

We can also substitute (3.3) into a numerical scheme, and obtain the numerical dis-
persion relation, which should be different from (3.7) and called the modified dispersion
relation. This modified dispersion relation is close to the exact one. The difference is a
measure of accuracy of the spatial discretization. The modified dissipation rate should
be non-positive. Otherwise the solution will grow exponentially and the simulation be-
comes unstable.

We consider the standard element ξ ∈ [−1,1]. The approximation solution can be
written as

ui=
K

∑
j=1

Wj(ξ)ui,j, (3.8)

where Wj(ξ) is the Lagrange polynomial. In 1D, K= k+1. On the interface between two
elements, say i and i+1, a Riemann solver is used to compute the common flux

FRiemann(ui(1),ui+1(−1))= a

(

1+β

2
ui(1)+

1−β

2
ui+1(−1)

)

. (3.9)

In Eq. (3.9), β= 0 corresponds to a central flux and β= 1 corresponds to the upwind
flux. Upwind flux is employed in this paper. For the 1D scalar advection equation, the
CPR scheme can be written in the following matrix form

dui,m

dt
+

k+1

∑
j=1

N−1
mj ui−1,j+

k+1

∑
j=1

N0
mjui,j=0, m=1,··· ,k+1. (3.10)

The matrices N−1 and N0 are given in Appendix A. Substituting Eq. (3.3) into Eq. (3.10),
we obtain the numerical dispersion relation for the CPR method

det
(

−IΩ+e−IZN−1+N0
)

=0. (3.11)

Eq. (3.11) has k+1 solutions, corresponding to the k+1 eigenmodes of the numerical
system. The quantity −IΩ is called the Fourier footprint R. Let R=RRe+ IRIm, and
the imaginary part RIm is a measure of dispersive properties of the scheme, whereas the
real part RRe represents the diffusive behavior which should be non-positive for a stable
scheme.
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Figure 2: Diffusion and dissipation errors of the 4th order CPR schemes (RRe and RIm versus Z).

For a classic finite volume method, the wave number range is −π < Z < π, which
corresponds to one degree of freedom (DOF) per element, while with a CPR scheme, the
wave range is −(k+1)π < Z< (k+1)π, which is related to k+1 DOFs per element. To
make a fair comparison between the finite volume and CPR schemes, the plot for the CPR
method should be downscaled with a factor k+1 to take into account the higher number
of DOFs per element.

In Fig. 2, the dispersive RIm and diffusive RRe properties are plotted versus the wave
number for k= 3 with a uniform solution point distribution. For this scheme, Z ranges
from −4π to 4π. It is clear that the scheme is stable, because RRe is always non-positive.
Note that the scheme becomes less accurate for increasing wave numbers. The present
4th order CPR scheme with a piece-wise polynomial basis has good wave propagation
properties for dimensionless wave number up to Z≈5.

3.2 Frequency optimized CPR method

3.2.1 Basic idea

From Fig. 2(b), it is obviously that the higher the frequency, the more severely the waves
are damped. Therefore higher frequency waves have more dissipative errors. In order to
maximize the range of waves that can be resolved accurately, we need to reduce the error
at higher frequency. The idea is to introduce Fourier components of certain frequencies
(α1,α2,···) etc into the basis functions such that these frequencies can be resolved exactly.
By properly choosing the frequencies, we try to resolve waves at the broadest range given
a certain error threshold. For each element, we define the following three spaces: poly-
nomial, Fourier and hybrid

B= span(1,x,x2,x3,···), (3.12)

B= span(sin(α1∗x),cos(α1∗x),sin(α2∗x),cos(α2∗x),···), (3.13)

B= span(1,x,x2,x3,··· ,sin(α1∗x),cos(α1∗x),sin(α2∗x),cos(α2∗x),···), (3.14)
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Figure 3: Dispersion error (RRe−Z) and dissipation error RIm versus Z for B=(1,x,sin(2∗x),cos(2∗x)).

where (α1,α2,···) are free-parameters. The motivation to use the hybrid space instead
of polynomial spaces is to obtain better approximation for broadband wave propagation,
because a Fourier basis can exactly represent waves with certain wave numbers, while the
polynomial basis is used in order to achieve a certain order accuracy with mesh refine-
ment. The free-parameters are optimized to minimize both dispersion and dissipation
errors over a specified range of wave numbers.

Due to the introduction of the Fourier component into the basis, the exact dispersion
relation Ω=Z is exactly satisfied at a certain Z. In Fig. 3, both the dispersion (RRe−Z)
and dissipation RIm errors are plotted with a hybrid basis B=(1,x,sin(2∗x),cos(2∗x)).
It shows that dispersion and dissipation errors are equal to zero at the non-dimensional
wave number 4 (Ω=Z=κ∗∆x=2∗2=4). Clearly the use of the hybrid basis reduces the
errors at higher frequencies.

3.2.2 Dispersion-Relation-Preservation (DRP) Method

As stated in [36, 37], the wave propagation characteristics are encoded in the dispersion
relation of the governing equations. The main idea of DRP schemes is to optimize high-
order finite difference schemes not only to meet the usual conditions of consistency, sta-
bility and convergence, but also to have the same or almost the same dispersion relation
as the original partial differential equations. The DRP methodology is reviewed here
briefly.

The approximation of the first-order spatial derivative ∂u/∂x on a uniform grid for a
finite difference scheme is given by

(

∂u

∂x

)

i

≈ 1

∆x

M

∑
j=−L

aju(xi+ j∆x), (3.15)

with M values to the right and L values to the left of the current point i. The finite
difference scheme will be called the standard scheme if the coefficients aj are determined
from a Taylor series expansion. In the DRP scheme, the coefficients aj are chosen by
requiring the Fourier transform of the finite difference scheme on the right of Eq. (3.15)
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to be a close approximation of the partial derivative on the left side. The finite difference
Eq. (3.15) is a special case of the following equation in which x is a continuous variable:

∂u

∂x
(x)≈ 1

∆x

M

∑
j=−L

aju(x+ j∆x). (3.16)

The Fourier transform and its inverse are related by

ũ(α)=
1

2π

∫ ∞

−∞
u(x)e−Iαxdx, (3.17)

u(x)=
1

2π

∫ ∞

−∞
ũ(α)eIαxdα. (3.18)

The Fourier transform of the both sides of Eq. (3.16) is

Iαũ≈
(

1

∆x

M

∑
j=−L

aje
Iαj∆x

)

ũ, (3.19)

or equivalently

ᾱ=
−I

∆x

M

∑
j=−L

aje
Iαj∆x. (3.20)

The left side is the effective wave number and ᾱ∆x is a function of α∆x with the period 2π.
The coefficients aj were chosen to minimize the integrated error E defined in Eq. (3.21)
in order to assure that the Fourier transform of the finite difference scheme is a good
approximation of the partial derivative over the range of wave numbers of interest

E=
∫ π/2

−π/2
|α∆x− ᾱ∆x|2d(α∆x)=

∫ π/2

−π/2

∣

∣

∣

∣

∣

IZ−
M

∑
j=−L

aje
IjZ

∣

∣

∣

∣

∣

2

dZ. (3.21)

The condition that E is a minimum are

∂E

∂aj
=0, j=−L,··· ,M. (3.22)

Eq. (3.22) provides a system of linear algebraic equations by which the coefficients aj can
be determined.

3.2.3 Optimization of free-parameters of hybrid approximation space

Free-parameters in the hybrid basis for the CPR method are optimized by mimicking
the idea of DRP to maximize the resolvable wave number range given a certain error
threshold. The following two criteria are utilized.
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The optimization process has to allow the normalized value of ΩIm/K−Z/K and
ΩRe/K to be as close to zero as possible for certain integration wave numbers. K is the
number of DOFs

E=
∫ e

0
|ΩIm/K−Z/K|2 dZ+λ

∫ e

0
|ΩRe/K|2dZ. (3.23)

The weight λ is set as 0.2 to balance the L2 norm of the truncated dispersion and dissipa-
tion errors. e is a predetermined range of wave numbers.

In order to quantify the resolution of the scheme, we set the dispersion and dissipa-
tion errors to less than 0.5%, i.e. [52]

|ΩIm−Z|<0.005 and |ΩRe|<0.005. (3.24)

In Table 1, the optimized parameters are displayed for the hybrid basis (1,x,sin(α∗
x),cos(α∗x)). E-dispersion represents the integrated dispersion error, and E-dissipation
represents the integrated dissipation error. Free-parameters α are found to minimize the
integration error E for a certain wave number integration range e. In other words, the
CPR schemes with shown in Table 1 have the minimum integration dispersion errors
with respect to a given range e.

In Table 2, the maximum resolvable non-dimensional wave numbers Zc are deter-
mined using Eq. (3.24) for each α with respect to a certain integration wave number e.
This means when the non-dimensional wave numbers are smaller than Zc, Eq. (3.24) is
satisfied. In other words, when the non-dimensional wave number is greater than Zc, the
dispersion and dissipation errors are greater than 0.5%. So Zc is called the maximum re-
solvable non-dimensional wave number. We can see that Zc increases and then decreases
as the integration range e increases. α= 2.1 is referred as the optimized free-parameter,
which minimizes the integration error E over a relatively large wave number integration

Table 1: Optimized free-parameter α of hybrid basis for B=(1,x,sin(α∗x),cos(α∗x)).

Integration range (e) α E-Dispersion E-diffusion E
π≈3.14 1.4 2.1477e−09 2.7483e−08 7.6444e−09

5∗π/4≈3.93 1.7 1.6503e−07 1.0139e−06 3.6781e−07
3∗π/2≈4.71 2.1 3.8702e−06 2.4832e−05 8.8367e−06
7∗π/4≈5.50 2.4 6.1540e−05 2.6556e−04 1.1465e−04

2∗π≈6.28 2.7 6.5403e−04 2.1424e−03 1.0825e−03

Table 2: Maximum resolvable wave number Zc for a given error threshold B=(1,x,sin(α∗x),cos(α∗x)).

Integration range α Zc

π≈3.14 1.4 3.9336
5∗π/4≈3.93 1.7 4.2336
3∗π/2≈4.71 2.1 4.8336
7∗π/4≈5.50 2.4 2.0336

2∗π≈6.28 2.7 1.6336
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range 4.71, and at the same time the resolvable wave number Zc reaches 4.83, with which
both dispersion and dissipation errors are less than 0.5%. The same procedure is applied
to schemes with more DOFs per element. For example, α = 4.0 is the optimized free-
parameter with the integration wave number range 8.60 for the base of (1,x,x2,x3,sin(α∗
x),cos(α∗x)), and α1=4.5 and α2=3.0 are the optimized free-parameters with the integra-
tion wave number 9.42 for the base of (1,x,sin(α1∗x),cos(α1∗x),sin(α2∗x),cos(α2∗x)).

The upwind CPR schemes with the optimized hybrid space are compared with the
corresponding polynomial spaces, Tam & Webb’s central DRP and Zhuang & Chen up-
wind DRP in terms of dispersion and dissipation errors next.

In Fig. 4, the upwind CPR scheme with the optimized hybrid bases B=(1,x,sin(2.1∗
x),cos(2.1∗x)) shows less dispersion errors than the polynomial basis and the Tam &
Webb’s central DRP scheme, but a little bit larger dispersion errors than Zhuang & Chen’s
upwind DRP scheme.

In Fig. 5, the optimized CPR scheme with 6 DOFs per element using hybrid basis
(1,x,x2,x3,sin(4.0∗x),cos(4.0∗x)) has less dispersion errors than the corresponding CPR
scheme with a polynomial bases, central DRP and upwind DRP schemes.

It also has less dissipation error than the upwind DPR scheme. Note that it is able to
resolve waves with non-dimensional wave number as high as 1.6.

In Fig. 6, a FOCPR scheme with 2 Fourier components is compared with several other
CPR schemes with 6 DOFs per element, and the two DPR schemes. The bases are also
shown in these figures. The optimized CPR scheme with the hybrid basis (1,x,sin(3.0∗
x),cos(3.0∗x),sin(4.5∗x),cos(4.5∗x)) has less dispersion and dissipation errors than the
CPR scheme with one Fourier component (1,x,x2,x3,sin(4.0∗x),cos(4.0∗x)). It is able
to resolve waves with a non-dimensional wave number as high as about 1.8. From the
above analysis, it appears that more Fourier components in the hybrid basis result in a
scheme with less dispersion and dissipation errors.

3.3 Mesh resolution analysis

In this section, the mesh resolution analysis is performed to verify the optimization pro-
cedure for the FOCPR method following the ideas in [18,53]. The number of grid points-
per-wavelength (PPW) is used as the main parameter to judge the performance of the
various schemes in simulating wave propagation over long distances, e.g., for 200 wave-
lengths. In the following analysis, we employ the first order explicit Euler time discretiza-
tion scheme with a very small time step so that the error is dominated by the spatial
operator.

In one dimension, the error produced by the numerical scheme depends on the non-
dimensional wave number Z and the courant number C= a∆t/∆x. In multi-dimensions,
the error also depends on the wave direction relative to the grid. The mesh resolution
analysis is based on the amplification factor ω(Z,C)=um+1/um, where m is the time step
index, and PPW=wavelength/(∆x)=2π/(K∆x).
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Figure 4: Comparison of normalized dispersion errors (RIm−Z)/K and dissipation errors RRe/K versus Z/K
between DRP and CPR schemes with 4 DOFs per element.
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Figure 5: Comparison of normalized dispersion errors (RIm−Z)/K and dissipation errors RRe/K versus Z/K
between DRP and CPR schemes with 6 DOFs per element.
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Figure 6: Comparison of normalized dispersion errors (RIm−Z)/K and dissipation errors RRe/K versus Z/K
between DRP and CPR schemes with 6 DOFs with more Fourier components per element.
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The local amplitude and phase errors are, respectively

Errora = |σ|−1, (3.25)

Errorp =− φ

ZC
−1, (3.26)

where φ= tan−1(σIm/σRe), and σIm and σRe are the real and imaginary part of σ, respec-
tively. The criterion for comparing schemes is based on the global amplitude and phase
errors which are

Errora =
∣

∣

∣
|σ|PPW∗n/C−1

∣

∣

∣
<10%, (3.27)

Errorp =n∗
∣

∣

∣

∣

PPW∗φ

C
+2π

∣

∣

∣

∣

<10%, (3.28)

where n is the number of the wavelength travelled. In the following figures, the various
methods are compared in terms of the PPW required to keep both the global amplitude
and phase errors less than 10% as a function of the number of wavelength traveled. The
dependence of the PPW requirements on the number of wavelengths is a reasonable mea-
sure for selecting a grid density and reveals the implication of the optimization.

In Fig. 7, the PPW requirements for FOCPR scheme with a hybrid basis of the form
(1,x,sin(α∗x),cos(α∗x)) are presented. With α=2, the scheme performs well up to a dis-
tance of about 45 wavelengths based on a 10% global phase error criterion and about 15
wavelengths based on a 10% global amplitude error criterion and requires about less than
5.0 PPW. This behavior is typical of optimized schemes. Usually aggressive optimization
leads to excellent performance for short distances of propagation but poor performance
for longer distance. This property agrees with the previous analysis with the optimized
free-parameter α=2.1, which is close to 2.

In Fig. 8, the PPW requirements for FOCPR schemes with a hybrid basis of the form
(1,x,x2,x3,sin(α∗x),cos(α∗x)) are presented. With α = 4, the scheme shows a typical
behavior for optimized schemes. With this scheme at a resolution of 4.5 PPW, the waves
can travel about 40 wavelengths with 10% phase error, and about 25 wavelengths with
10% amplitude error.

In Fig. 9, the PPW requirements for FOCPR schemes with a hybrid basis of the form
(1,x,sin(α1∗x),cos(α1∗x),sin(α2∗x),cos(α2∗x)) are presented. With α1=3.0 and α2=4.0,
the scheme shows the typical behavior too. The waves can travel 125 wavelengths with
a resolution of 4.0 PPW, for 10% phase error, and 40 wavelengths with a resolution of
5.0 PPW for 10% amplitude error. The PPW analysis agrees well with the optimization
analysis, and they can be used to verify each other.

4 Two-dimensional wave propagation analysis

The extension of the wave propagation analysis to 2D is described in this section. We
consider the 2D linear advection equation and follow the ideas by Hu [15] and Van den
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Figure 7: Grid resolution requirements based on the globe amplitude and phase errors for hybrid basis (1,x,sin(α∗
x),cos(α∗x)).
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Figure 8: Grid resolution requirements based on globe amplitude and phase errors for hybrid basis
(1,x,x2,x4,sin(α∗x),cos(α∗x)).
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Figure 9: Grid resolution requirements based on globe amplitude and phase errors for hybrid basis (1,x,sin(α1∗
x),cos(α1∗x),sin(α2∗x),cos(α2∗x)).
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Abeele [39]
∂u

∂t
+ax

∂u

∂x
+ay

∂u

∂y
=0, (4.1)

where~a=[ax ay]T=a~I=a[cosψ sinψ]T. The vector~a is the wave propagation velocity and
is defined with the Cartesian components ax and ay, or defined with the amplitude a and
the direction of the wave propagation ψ. A plane harmonic wave is given by

u(t,~r)= û(t)∗exp
(

I~k·~r− Iωt
)

, (4.2)

with~r= [x y]T and κ = κ[cosθ sinθ]T , and θ is the orientation of the wave. Substituting
Eq. (4.2) into Eq. (4.1), we obtain the following exact dispersion relation

ω= aκcos(ψ−θ). (4.3)

The numerical dispersion relation corresponding to a discretization of the linear ad-
vection Eq. (4.1) with the CPR formulation is compared with the exact dispersion relation
to study the dispersion and dissipation behavior. Similar to the 1D analysis, all quantities
in this section are non-dimensional.

In the following analysis, we consider a uniform Cartesian grid with ∆x = ∆y, as
shown in Fig. 10. The element is defined as En,m = [xn,xn+1]×[ym ,ym+1] in Fig. 10(a).
The DOFs on the standard element are shown in Fig. 10(b).

1

-1
1

-1

(a) (b)

Figure 10: Rectangular mesh pattern and local coordinate system.

Similar to the 1D CPR formulation, the 2D CPR scheme for Eq. (4.1) can be written in
the following form

∂un,m

∂t
+ax∗

[

N0un,m+N−1un−1,m
]

+ay∗
[

M0un,m+M−1un,m−1
]

=0. (4.4)

Substituting (4.2) into (4.4), we obtain the numerical dispersion relation

det
(

−IΩ̃+cosψ
(

e−iZcosθ N−1+N0
)

+sinψ
(

e−iZsinθ M−1+M0
))

=0, (4.5)



Y. Li and Z. J. Wang / Commun. Comput. Phys., 13 (2013), pp. 1265-1291 1281

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

22

Wave number

Im
(F

ou
rie

r 
fo

ot
pr

in
t)

Dispersion Error

Exact

1,x,sin(x),cos(x)

1,x,sin(2*x),cos(2*x)

1,x,sin(3*x),cos(3*x)

0 2 4 6 8 10 12 14 16 18
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Wave number

Im
(F

ou
rie

r 
fo

ot
pr

in
t)

Dissipation Error

Exact

1,x,sin(x),cos(x)

1,x,sin(2*x),cos(2*x)

1,x,sin(3*x),cos(3*x)

Figure 11: Dispersion and diffusion error as a function of the wave number for θ=ψ=π/6.

where the matrices N0, N−1, M0 and M−1 are given in Appendix A. The determinant
of the coefficient matrix must be zero for a non-trivial solution of u, which determines
the dispersion relation for the semi-discretized equation. From Eq. (4.5) Ω̃ should be
found and compared to the non-dimensional exact frequency Ω, which is given by the
exact dispersion relation Ω=Zcos(θ−ψ). Eq. (4.5) has (k+1)2 solutions, corresponding
to the eigenmodes of the numerical system. Similar to the one dimensional analysis,
the quantity −IΩ̃ is also called the Fourier footprint of the spatial discretization, whose
imaginary part RIm is a measure of the dispersive properties of the scheme, whereas
whose real part RRe reflects the diffusive behavior and should be non-positive for stable
schemes for all Z, θ and ψ.

Fig. 11 shows the eigenvalues of Eq. (4.5) as a function of the wave number Z at
θ =ψ=π/6 for the FOCPR scheme with 4 DOFs in each direction. The choice of θ =ψ
corresponds to a propagation direction parallel to the orientation of the plane wave. The
exact dispersion relation is given by Ω=Z in this case. For this choice, the wavelength
in the propagation direction is minimal, leading to the most severe test of the accuracy of
the scheme. The wave propagation is anisotropic, especially for under-resolved waves. It
can be concluded from the right figure of Fig. 11 that the scheme is stable for θ=ψ=π/6,
since RRe are always non-positive.

In Fig. 12, the phase speed (RRe/Z) is plotted as a function of angle (θ =ψ) for Z=
π, and it is obvious that the CPR scheme with a basis of (1,x,sin(x),cos(x)) produces
less phase error than that with a basis of (1,x,sin(2∗x),cos(2∗x)), which in turn is more
accurate than the scheme with the basis of (1,x,sin(3∗x),cos(3∗x)). In Fig. 13, the phase
speed (RRe/Z) is plotted as a function of angle (θ=ψ) for Z=1.5∗π and it is shown that
the phase error of (1,x,sin(2∗x),cos(2∗x)) < phase error of (1,x,sin(x),cos(x)) < phase
error of (1,x,sin(3∗x),cos(3∗x)). It is also obvious that the phase error for Z=π is less
than that for Z=1.5∗π.

In Fig. 14, the dissipation rate (RIm) is plotted as a function of angle (θ=ψ) for Z=π,
and it is obvious that the amplitude error of (1,x,sin(x),cos(x)) < amplitude error of
(1,x,sin(2∗x),cos(2∗x)) < amplitude error of (1,x,sin(3∗x),cos(3∗x)). In Fig. 15, the
dissipation rate (RIm) is plotted as a function of angle (θ = ψ) for Z = 1.5∗π and it is
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Figure 12: Phase speed (RRe/K) as function of θ (=ψ) for Z=π.
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Figure 13: Phase speed (RRe/K) as function of θ (=ψ) for Z=1.5∗π.
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Figure 14: Dissipation rate (RIm/K) as function of θ (=ψ) for Z=π.
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Figure 15: Dissipation rate (RIm/K) as function of θ (=ψ) for Z=1.5∗π.
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shown that the error of (1,x,sin(2∗x),cos(2∗x)) < the error of (1,x,sin(x),cos(x)) < the
error of (1,x,sin(3∗x),cos(3∗x)).

The analysis shows that the accuracy of different schemes depends on various factors,
including the wave number, wave direction and the solution basis. Figs. 12-15 indicate
that both the dispersion and dissipation errors are the largest when θ = 0 or θ = π/2,
which can be verified by the dispersion relation Eq. (4.5). The dispersion relation in the
directions θ=0 or θ=π/2 is identical to the corresponding one-dimensional analysis.

5 Numerical tests

5.1 One-dimensional numerical tests – A benchmark problem
(CAA workshop, 2004)

A benchmark problem is solved here to verify some properties of the hybrid bases. The
1D convective wave equation with a unit wave speed is considered

∂u

∂t
+

∂u

∂x
=0. (5.1)

The initial condition is given as

u(x,0)= [2+cos(β∗x)]exp
[

−ln2(x/10)2
]

. (5.2)

Two different frequencies β = 1.7 and β = 4.6 are considered, and the mesh is set such
that there is 1 DOF for each unit length. At this grid resolution, the high frequency wave
embedded in the initial condition only has about 3.7 and 1.9 points-per-wave (PPW). It is
therefore a challenge for any numerical scheme to adequately resolve the high frequency
wave.

The hybrid bases which can resolve broadband waves are tested for this problem.
In the first test, we employ a hybrid basis of the form (1,x,sin(α∗x),cos(α∗x)), with α
chosen to resolve the initial high frequency wave cos(β∗x) exactly. Since each element
has 4 DOFs, we set ∆x=3. In the case of β=1.7, α=2.55 allows the hybrid basis to exactly
resolve cos(β∗x). The time integration was carried out using a fourth-order four stage
Runge-Kutta scheme. A constant time step 0.05 was used for all cases.

In Fig. 16, the numerical results of using base (1,x,x2,x3), (1,x,sin(2.55∗x),cos(2.55∗
x)) and (1,x,sin(4.0∗x),cos(4.0∗x)) are presented. It is obvious that α= 2.55 produced
the best results, which is as expected.

In Fig. 17, the solutions of the FOCPR schemes with 6 DOFs per element are pre-
sented. The mesh size is ∆x= 5. The hybrid bases are in the form of (1,x,x2,x3,sin(4.0∗
x),cos(4.0∗x)), (1,x,sin(3.0∗x),cos(3.0∗x),sin(4.5∗x),cos(4.5∗x)). The results are com-
pared with that of the 6th order CPR scheme for both β=1.7 and 4.6 at time=500s. Both
hybrid bases show much better resolution than the polynomial basis. It is clear that the
more Fourier components there are in the basis, the more accurate the results are.
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Figure 16: Numerical solution of 1D wave equation with the initial condition (5.6) for β= 1.7 (T= 450s and
∆x=3, FOCPR schemes).
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Figure 17: Numerical solution of 1D wave equation with the initial condition (5.6) (T=500s and ∆x=5, 6 DOF
upwind) and first row β=1.7 and second row β=4.6.

5.2 Two-dimensional acoustic wave propagation

The propagation of acoustic waves generated by an acoustic pulse is simulated in 2D. The
acoustic perturbations have small amplitude compared to the ambient flow variables.
The exact solution for these problems can be used a reference. The governing equations
are the 2D non-linear Euler equations

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
=0, (5.3)

where Q, E and F are vectors given by

Q=















ρ
ρu
ρv
Et















, E=















ρu
ρu2+p

ρuv
u(Et+p)















, F=















ρv
ρuv

ρv2+p
v(Et+p)















, (5.4)
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with ρ the mass density, u and v the velocity components in x and y directions and p the
pressure. The total energy Et is defined by the following equation

Et=
p

γ−1
+ρ

u2+v2

2
, (5.5)

where γ is set to 1.4 which is the ratio of specific heat to air. The initial solution is an
acoustic pulse with a Gaussian profile and is set the same as one by Kris [38, 39]

ρ=ρ∞

(

1+0.001∗exp

(

− (x−0.5)2+(y−0.5)2

γ2
0

))

, (5.6a)

P=P∞+c2
∞ (ρ−ρ∞), u=0, v=0. (5.6b)

And the ambient pressure, mass density and the half-width of the Gaussian profile are
given as follow

P∞=1, ρ∞ =1, r0 =0.05. (5.7)

The exact solution of the linear Euler equations for the acoustic pressure field is given as

Pac(t,x,y)=P−P∞=0.001∗ c2
∞b2

2

∫ +∞

0
exp

(

−
(

ξb

2

)2
)

cos(ξc∞t) J0(ξt)ξdξ, (5.8)

with η=
√

(x−0.5)2+(y−0.5)2 and J0 is the zero-th order Bessel function of the first kind
which is used as a reference solution [38, 39], b is the half width of the Gaussian profile
and is set as 0.05.

The domain under considerations is a square [0,1]×[0,1]. This domain is discretized
by a uniform Cartesian grid. The computations are carried out on three different grids
(5×5), (10×10) and (20×20). Roe’s flux splitting is used as approximate Riemann solver.
Time marching was done with a fourth-order, four stage Runge-Kutta scheme. All nu-
merical simulations are carried out with ∆t = 0.0001s until T = 0.3s and Gauss-Lobatto
points are used as the solution points in each direction. The 10×10 grid is shown in
Fig. 18(a) and the pressure contours are displayed in Fig. 18(b). The wave has not yet
reached the boundary of the computational domain at T = 0.3s and thus the far field
boundary condition has negligible influence on the solution.

The profiles of the acoustic pressure at y= 0.5 computed with various CPR schemes
are compared with the exact solution to assess the simulation accuracy. We focus on
comparing the performance of various hybrid bases including the optimized ones.

First, we present results with 4 DOFs per element in each coordinate direction, i.e., 16
DOFs for the tensor product basis in 2D. In Fig. 19, the computational results with dif-
ferent basis on the 10x10 grid are displayed. It is obvious that the best result is obtained
using the optimized basis (1,x,sin(2∗x),cos(2∗x)), which agrees with the previous anal-
ysis. On the finer 20×20 mesh, the computational results with various CPR schemes are
compared in Fig. 20. Again, the best result is obtained with the optimized coefficient.
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Figure 18: 10×10 Computational grid (a) and pressure contours (b) computed with the 4th order CPR scheme
with a polynomial basis.
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Figure 19: Pressure distribution at y=0.5 on 10×10 grids with ∆t=0.0001s, T=0.3S for 4 DOFs.
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Figure 20: Pressure distribution at y=0.5 on 20×20 grids with ∆t=0.0001s, T=0.3S for 4 DOFs.

Obviously, when the mesh is finer, the difference between the computational results with
different schemes becomes smaller. When the mesh is fine enough, the polynomial basis
will perform the best as it has the highest nominal order of accuracy.
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Figure 21: Pressure distribution along y = 0.5 on 5×5 grids at T = 0.3s with 6 DOFs in each direction per
element.
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Figure 22: Pressure distribution along y= 0.5 on 10×10 grids at T= 0.3s with 6 DOFs in each direction per
element.

Next, we show results with 6 DOFs in each coordinate direction, or 36 DOFs per
element. The simulations were performed on the two coarse meshes, 5×5 and 10×10.
Fig. 21 displays the results on the coarse mesh, while Fig. 22 shows the results on the fine
mesh with various bases. It is clear that the best results were obtained by the FOCPR
scheme with 2 Fourier components in the basis, i.e., (1,x,sin(3.0∗x),cos(3.0∗x),sin(4.0∗
x),cos(4.0∗x)), followed by the FOCPR scheme with 1 Fourier component in the basis
(1,x,x2,x3,sin(4.0∗x),cos(4.0∗x)). These results agree well with our previous analysis. It
is obvious that the more Fourier components there are, the more accurate the results are.

6 Conclusions

In order to improve the resolution of the CPR formulation for broadband waves, Fourier
components are introduced into the solution basis. Therefore, the solution basis includes
both polynomials and cosine and sine functions. By optimizing the frequencies of the
Fourier components, we obtain the frequency-optimized CPR method, which have small
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dispersion and dissipation errors over a wide range of wave numbers. Comparisons are
also made with the central and upwind DRP schemes, and the FOCPR schemes appear
to have smaller dispersion or dissipation errors with similar cost. It is shown that more
Fourier components in the basis result in smaller overall dispersion and dissipation er-
rors. A mesh resolution analysis is also carried out to verify the optimization procedure.
In the two-dimensional analysis, the tensor product bases are employed for quadrilateral
grids. The accuracy of the FOCPR schemes strongly depends on the wave number, wave
direction and the form of the basis.

Several numerical tests are conducted to verify the wave propagation analysis. The
FOCPR formulation was tested with several benchmark problems from the 4th Computa-
tional Aeroacoustics (CAA) workshop. All the numerical results agree well with the error
and the mesh resolution analysis. The FOCPR schemes perform better than the original
CPR schemes for broadband waves, especial for high-frequency ones.

Appendix A

For the one-dimensional Eq. (3.9), the upwind Riemann flux formulation is used. Let the
weighting functions be {Wl(ξ)|l=1,2,··· ,k+1}, where k+1 is the DOFs in each element,
and ξ is the local coordinate ξ∈ [−1,1]. The matrices in Eq. (3.9) are formed as

N−1
mj =−2∗G−1∗Wm (−1)Wj (1), m, j=1,··· ,k+1, (A.1)

N0
mj =2∗ ∂Wj (ξm)

∂ξ
+2∗G−1∗Wm (−1)Wj (−1), m, j=1,··· ,k+1, (A.2)

where G−1 is the inversion matrix of G, and Gm,j=
∫ 1
−1Wm(ξ)Wj(ξ)dξ, (m, j=1,··· ,k+1).

For the two-dimensional Eq. (4.1), the upwind Riemann flux formulation is also used.
The matrices in Eq. (4.4) are given as follows

N−1
i,j = ax







0, if f 1(i−1,k+1) 6= f 1(j−1,k+1),
−2∗G−1∗W f 2(i,k+1) (−1)W f 2(j,k+1)(1) ,

if f 1(i−1,k+1)= f 1(j−1,k+1),

(A.3)

N0
i,j = ax











0, if f 1(i−1,k+1) 6= f 1(j−1,k+1),

2∗ ∂Wj(ξ f2(i,k+1))
∂ξ −2∗G−1∗W f 2(i,k+1) (−1)W f 2(j,k+1)(−1),

if f 1(i−1,k+1)= f 1(j−1,k+1),

(A.4)

M−1
i,j = ay







0, if f 2(i−1,k+1) 6= f 2(j−1,k+1),
−2∗G−1∗W f 1(i,k+1) (−1)W f 1(j,k+1)(1) ,

if f 2(i−1,k+1)= f 2(j−1,k+1),

(A.5)
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M0
i,j= ay











0, if f 2(i−1,k+1) 6= f 2(j−1,k+1),

2∗ ∂Wj(ξ f1(i,k+1))
∂ξ −2∗G−1∗W f 1(i,k+1) (−1)W f 1(j,k+1)(−1),

if f 2(i−1,k+1)= f 2(j−1,k+1),

(A.6)

where f 1 denotes the rounded function, which is defined as f loor(i−1,k+1) in Matlab,
and f 2 is given as

f 2(i,k+1)=

{

mod(i,k+1), if mod(i,k+1) 6=0,
k+1, if mod(i,k+1)=0,

(A.7)

where mod is defined as the complement function, such as the mod function in Matlab.
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