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Abstract. We study compact finite difference methods for the Schrödinger-Poisson
equation in a bounded domain and establish their optimal error estimates under proper
regularity assumptions on wave function ψ and external potential V(x). The Crank-
Nicolson compact finite difference method and the semi-implicit compact finite differ-
ence method are both of order O(h4+τ2) in discrete l2 ,H1 and l∞ norms with mesh
size h and time step τ. For the errors of compact finite difference approximation to
the second derivative and Poisson potential are nonlocal, thus besides the standard
energy method and mathematical induction method, the key technique in analysis is
to estimate the nonlocal approximation errors in discrete l∞ and H1 norm by discrete
maximum principle of elliptic equation and properties of some related matrix. Also
some useful inequalities are established in this paper. Finally, extensive numerical re-
sults are reported to support our error estimates of the numerical methods.
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1 Introduction

The Schrödinger-Poisson system (SPS) is a local single particle approximation of the time-
dependent Hartree-Fock system. It reads, in dimensionless form,

i∂tψ(x,t)=

[
−1

2
∆+V(x)+βΦ(x,t)

]
ψ(x,t), x∈R

d, t>0, (1.1)

∇2Φ(x,t)=−|ψ(x,t)|2 , x∈R
d, (1.2)

ψ(x,t=0)=ψ0(x), x∈R
d. (1.3)
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The complex-valued function ψ(x,t) stands for the single particle wave function with
lim|x|→∞ |ψ(x,t)|=0, V(x) is a given external potential, Φ(x,t) denotes the Poisson poten-
tial subject to open boundary condition, and β∈R is the coupling constant. The attractive
case (β<0) is usually called the Schrödinger-Newton (SN) system and it describes the par-
ticle moving in its own gravitational potential, while the repulsive case (β>0) describing
electrons travelling in its own Coulomb potential is named as Schrödinger-Poisson (SP)
system.

The SPS can be rewritten as nonlinear Schrödinger equation (NLS) as

i∂tψ(x,t)=

[
−1

2
∆+V(x)+βΦ(|ψ|2 ,t)

]
ψ(x,t), x∈R

d, t>0. (1.4)

Here, the Poisson potential is equivalent to Gd(|x|)∗|ψ|2 with Gd(|x|) representing the
Green function of Poisson equation on Rd, which is specified as,

Gd(|x|)=





− 1
2 |x|, d=1,

− 1
2π ln(|x|), d=2,

1
4π |x|−1 , d=3.

(1.5)

There are at least two important invariants of (1.4): the mass of particles

N(ψ) :=‖ψ‖2=
∫

Rd
|ψ(x)|2 dx, (1.6)

and the total energy

E(ψ) :=
∫

Rd

1

2
|∇ψ|2+V(x)|ψ|2+ β

2
Φ(|ψ|2)|ψ|2 dx. (1.7)

The NLS has been studied mathematically and numerically extensively. Mathemati-
cally, for the well-posedness, smoothing effects and long time behavior of SPS with/without
local term (exchange term), we refer to [4, 8, 15, 23, 24] and references therein. Numer-
ically, different efficient and accurate numerical methods had been proposed to solve
NLS, such as the time-splitting spectral/pseudospectral method [2, 9], finite difference
method [5, 6, 11, 27] and finite element method [18, 22] and so on. Specially, for the
Schrödinger-Poisson equation, we refer the reader to [3, 30] for the time splitting pseu-
dospectral method, to [12, 16, 26] for difference method and etc.

Finite difference method is the simplest among them, however, the standard central
difference discretization of the Laplacian operator is only of second order accuracy. If
combined with the partial differential equation, by carefully designating the finite differ-
ence coefficients, one could get higher accuracy with fewer adjacent stencil points, such as
the compact finite difference method. For details about compact finite difference method,
we refer to [17, 19, 29]. Compact finite difference method was popular and had been ap-
plied to different models, such as the cubic nonlinear Schrödinger equation, Helmholtz
equation and Navier-Stokes equation [20, 25, 28] and etc.
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Up to our knowledge, compact finite difference method has not yet been applied
to SPS. In this paper, we first present Crank-Nicolson compact finite difference scheme
(CNCFD) which preserves the conservation laws of energy and mass on the discrete
level. However, when applying CNCFD to SPS, we have to solve a nonlinear equation
each step which is quite expensive in the view of computation time. Therefore, we pro-
pose a semi-implicit compact finite difference scheme (SICFD) and also establish optimal
error estimates for both schemes.

The paper is organized as follows. In Section 2, we present two compact finite differ-
ence schemes and their corresponding error estimates in Theorem 2.1 and Theorem 2.2.
In Section 3, optimal error estimate of CNCFD method is presented by energy method
and a priori bound in l∞ norm is obtained by inverse inequality. The optimal error esti-
mate of SICFD method is established by energy method and mathematical induction in
Section 4. Extensive numerical results are reported to support our error estimates in the
Section 5. Finally, some conclusions are made in the last section. Through out the paper,
we adopt the standard Sobolev spaces and their corresponding norms and the commonly
used constant C does not depend on mesh size h or time step τ if not stated otherwise.

2 Numerical methods and main results

In this section, we introduce CNCFD and SICFD in 1-d for the sake of simplicity. Exten-
sions of CNCFD and SICFD to higher dimensions are possible and similar.

For the wave function ψ decays exponentially fast and constant shif of self-consistent
Poisson potential does not affect the physical observation ρ= |ψ|2, therefore in computa-
tional practice we could always truncate the whole space to bounded domain. The 1-d
truncated SPS on bounded domain [a,b] reads as

i∂tψ(x,t)=

[
−1

2
∂2

x+V(x)+β Φ(x,t)

]
ψ(x,t), x∈ (a,b), (2.1)

−∂2
xΦ(x,t)= |ψ(x,t)|2 , x∈ (a,b), (2.2)

ψ(x,0)=ψ0(x), x∈ [a,b], (2.3)

subject to Dirichlet boundary condition

ψ(a,t)=ψ(b,t)=0, Φ(a,t)=Φ(b,t)=0. (2.4)

The 1-d computational domain Ω=[a,b] is discretized as xj=a+ jh, j=0,1,··· ,M−1,M

with h= b−a
M and M being a positive integer. Define the function space

XM ={u=(uj)j∈T 0
M
|u0 =uM =0}⊂C

M+1,

where T 0
M
= {j | j = 0,1,··· ,M−1,M}. Choose time step τ := ∆t and denote the time

tn = nτ,n = 0,1,··· . Let ψn
j be the numerical approximation of ψ(xj,tn) and ψn ∈ X

M
be
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the numerical solution at time tn. The standard finite difference operators are listed as
follows:

δ+x un
j =

un
j+1−un

j

h
, δ−x un

j =
un

j −un
j−1

h
, δxun

j =
un

j+1−un
j−1

2h
,

δ+t un
j =

un+1
j −un

j

τ
, δ−t un

j =
un

j −un−1
j

τ
, δtu

n
j =

un+1
j −un−1

j

2τ
,

µt un
j =

un
j +un+1

j

2
, δ2

xun
j =

un
j+1−2un

j +un
j−1

h2
.

2.1 Compact finite difference method

Before presenting the compact finite difference scheme for SPS, we would first make a
brief introduction of compact finite difference approximation to the Poisson equation.

For Poisson equation with homogeneous Dirichlet boundary condition

∂2
xφ(x)= f (x), x∈ (a,b) with φ(a)=φ(b)=0. (2.5)

By Taylor expansion,

δ2
xφ(xj)=

φ(xj+h)−2φ(xj)+φ(xj−h)

h2

approximates ∂2
xφ(x) as

δ2
xφ(xj)=(∂2

xφ)(xj)+
h2

12
(∂4

xφ)(xj)+O(h4)

= f (xj)+
h2

12
(∂2

x(∂
2
xφ))(xj)+O(h4)

= f (xj)+
h2

12
(∂2

x f )(xj)+O(h4)

= f (xj)+
h2

12
(δ2

x f )(xj)+O(h4). (2.6)

Then the Poisson equation could be approximated by δ2
xφj=(1+ h2

12 δ2
x) f j with fourth order

accuracy. Let φh, fh∈X
M

and denote Ah=(aij)(M−1)×(M−1)
, ∆h=B−1

h Ah as the standard central

finite difference and fourth order approximation of ∂2
x respectively, where Bh = I+ h2

12 Ah

and Ah is a tri-diagonal matrix with aii =− 2
h2 ,ai,i+1 = ai,i−1 =

1
h2 . Let Ih : CM+1→CM−1 be

the standard identity projection operator, i.e.,

(Ih u)=(u1,··· ,uM−1)
T ∈C

M−1, ∀ u=(u0,··· ,uM)
T ∈C

M+1.

Thus the numerical Poisson potential φh and the second order derivative fh =(∂2
xφ)h are

approximated as

Ih fh =∆h(Ihφh), Ihφh=∆−1
h (Ih fh). (2.7)
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2.2 Numerical methods

Based on the fourth order compact finite difference discretization, the conservative Crank-
Nicolson compact finite difference scheme (CNCFD) for SPS reads as follows:

iδ+t ψn
j =−1

2

(
∆h Ih µtψ

n
)

j
+Vj µtψ

n
j +β µtΦ

n
j µtψ

n
j , j∈TM , n≥0, (2.8)

where

−∆h IhΦn = Ih(|ψn|2), −∆h IhΦn+1= Ih(|ψn+1|2), (2.9)

and the index set T
M

is defined as T
M
={j | j=1,2,··· ,M−1}.

The boundary condition (2.4) is discretized as

ψn
0 =ψn

M
=0, Φn

0 =Φn
M
=0, n=0,1,··· , (2.10)

and the initial value is discretized as

ψ0
j =ψ0(xj), j∈T 0

M
. (2.11)

We apply iteration method to solve the nonlinear equation. Given ψn ∈X
M

, to solve
ψn+1 in (2.8), one could solve its linearized equation, i.e.,

i
ψ∗,s+1

j −ψn
j

τ
=−1

4

[
∆h Ih(ψ

∗,s+1+ψn)
]

j
+

[
Vj+β

Φ
∗,s
j +Φn

j

2

]
ψ∗,s+1

j +ψn
j

2
, (2.12)

until the ψ∗,s converges up to given accuracy that is sufficiently small so as to preserve
the conservation of mass and energy on discrete level.

As to be stated in Section 3, the above CNCFD scheme conserves the mass and en-
ergy. However, due to the nonlinearity of Poisson potential, one has to solve a nonlinear
equation which is quite expensive in the view of computation time. Therefore we come
up with a semi-implicit compact finite difference method (SICFD).

The semi-implicit compact finite difference method, a three-level scheme, reads as
follows:

iδtψ
n
j =−1

2

[
∆h Ih

(ψn+1+ψn−1

2

)]

j

+Vj

ψn+1
j +ψn−1

j

2
+β Φn

j ψn
j , n≥1, (2.13)

and the Poisson potential, boundary condition and the initial value are determined the
same way as in CNCFD. The first step value ψ1

j could be computed by an at least second

order accuracy scheme in time, for example, a second order modified Euler method, i,e.,

ψ1
j =ψ0

j −iτ

[
−1

2

(
∆h Ih ψ(1)

)
j
+Vjψ

(1)
j +β Φ

(1)
j ψ

(1)
j

]
, j∈TM , (2.14)

ψ
(1)
j =ψ0

j −i
τ

2

[
−1

2

(
∆h Ih ψ0

)
j
+Vj ψ

0
j +β Φ0

j ψ0
j

]
, j∈TM , (2.15)
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where Poisson potential Φ(1) and Φ0 are evaluated by scheme (2.9).

Thanks to the equally spaced stencils, Eqs. (2.13) and (2.13) can be accelerated by dis-
crete sine transform (DST) that would help reduce the computational cost from O(M3)
(direct linear system solver) to O(Mlog(M)) and we refer to [21] for more details on DST.
Extensions of DST acceleration method to higher dimensions are similar and straightfor-
ward.

2.3 Main error estimate results

Before presenting the main error estimates, we would like first to introduce some nota-
tions and definitions. For any u, v∈X

M
, w∈CM−1, we define inner product and norms

as

‖u‖2
l2 =h

M−1

∑
k=1

|uk|2, ‖δ+x u‖2
l2 =h

M−1

∑
k=0

|δ+x uk|2, ‖u‖l∞ =max
j∈T 0

M

|uj|,

(δ+x u,δ+x v)=h
M−1

∑
k=0

(δ+x uk)(δ
+
x vk), 〈u,w〉= 〈w,u〉=h

M−1

∑
k=1

uk wk,

Eh(u)=
1

2
〈−∆h Ihu,u〉+ β

2
〈∆−1

h Ih|u|2,|u|2〉+ 〈Vu,u〉,

E(u)= 1

2
〈−∆h Ihu,u〉+〈Vu,u〉,

where uk denotes the conjugate of uk.

We make the following assumptions:

(A) : ψ∈C0([0,T];W7,∞(Ω)∩H2
0(Ω))∩C1([0,T];W4,∞(Ω))

∩C2([0,T];W3,∞(Ω))∩ C4([0,T];L∞(Ω)),

where 0≤T≤Tmax with Tmax being the maximal existing time [23, 24].

(B) : The external potential V(x) is smooth.

Denote M1=max0≤t≤T‖ψ‖L∞ and define the error function en ∈XM as

en
j =ψ(xj,tn)−ψn

j , j∈T 0
M, n=0,1,··· .

Theorem 2.1. For the CNCFD method, under assumptions (A) and (B), there exists h0 and τ0

such that for any 0<h<h0 and 0<τ<τ0, the error function satisfies that

‖en‖l2 +‖δ+x en‖l2 ≤C(h4+τ2), 0≤n≤ T

τ
, (2.16)

where the constant C depends on Ω but not on h or τ.
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Theorem 2.2. For the SICFD method, under assumptions (A) and (B), there exists h0 and τ0

such that for any 0<h<h0, 0<τ<τ0 and τ ≤h, the error function satisfies that

‖en‖l2 +‖δ+x en‖l2 ≤C(h4+τ2), 0≤n≤ T

τ
, (2.17)

where the constant C depends on Ω but not on h or τ.

Remark 2.1. In higher dimensions, if the wave function ψ and Poisson potential ϕ are
both specified with homogeneous Dirichlet boundary condition on bounded computa-
tion domain, higher order compact finite difference discretizations of ∆ψ and ϕ are still
applicable and we refer the reader to [7,19,29] for more details, thus the numerical meth-
ods proposed here can be generalized to higher dimensions.

Remark 2.2. Error analysis in higher dimensions are possible in the framework of our
proof. All the key inequalities involved could be adapted therein. The inverse inequal-
ity used to obtain a priori bound in the l∞ norm in Section 3 can be extended to higher
dimensions. The maximum principle theorem still holds and we refer to [14] for details.
We remark that the work on error analysis in higher dimensions is still on-going.

3 Error estimates for the CNCFD method

In this section, we will give detailed proof of the main results by energy method with
inequalities presented in the following lemma.

Let u,v∈XM , then u,v satisfy the following inequalities:

Lemma 3.1.

〈u,δ2
xv〉=−(δ+x u,δ+x v)= 〈δ2

xu,v〉, 〈Ah Ihu,v〉= 〈u,δ2
xv〉, (3.1)

‖u‖l∞ ≤
√

b−a‖δ+x u‖l2 , ‖u2‖l∞ ≤
√

2‖u‖l2 ‖δ+x u‖l2 , (3.2)

〈−∆−1
h Ih|u2|,|u2| 〉≤ ε‖δ+x u‖2

l2 +Cε ‖u‖6
l2 . (3.3)

Proof. The equality (3.1) can be verified using summation by parts as

〈u,δ2
xv〉=h

M−1

∑
k=1

uk

v
k+1

−2vk+v
k−1

h2

=−h
M−1

∑
k=0

(
uk+1−uk

h
) (

v
k+1

−v
k

h
)

=−(δ+x u,δ+x v)= 〈δ2
xu,v〉.

〈Ah Ihu,v〉= 〈δ2
x u,v〉 can be proved by definition.
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Proof of (3.2). For any u∈XM,

|uj|=
∣∣

j

∑
k=1

(uk−u
k−1

)
∣∣=

∣∣∣
j

∑
k=1

δ+x u
k−1

√
h
√

h
∣∣∣

≤
(

h
j

∑
k=1

|δ+x u
k−1

|2
) 1

2
(h j)

1
2 ≤

√
b−a‖δ+x u‖l2 ,

take maximum over index j∈T 0
M, we could get

‖u‖l∞ ≤
√

b−a‖δ+x u‖l2 .

Similarly,

u2
j =

j

∑
k=1

u2
k−u2

k−1=
j

∑
k=1

(uk−uk−1

h

√
h
) (

(uk+uk−1)
√

h
)

,

take absolute value on both sides, we have

|u2
j |≤

(
h

j

∑
k=1

|δ+x uk−1|2
)1/2(

h
j

∑
k=1

|uk+uk−1|2
)1/2

≤
√

2‖u‖l2 ‖δ+x u‖l2 .

Then by taking maximum over j∈T 0
M

, we could get

‖u2‖l∞ ≤
√

2‖u‖l2 ‖δ+x u‖l2 .

The inequality
〈−∆−1

h Ih |u2|,|u2|〉≤ ε‖δ+x u‖2
l2 +Cε‖u‖6

l2

is useful in estimating the Poisson interaction energy. Herein the ∆−1
h approximates in-

verse Poisson operator.

|〈−∆−1
h Ih |u2|,|u2|〉|=

∣∣∣∣∣
M−1

∑
k=1

(−∆−1
h Ih |u|2)k |uk|2 h

∣∣∣∣∣

≤‖u‖2
l2 ‖∆−1

h Ih |u|2‖l∞ ≤C‖u‖2
l2 ‖|u|2‖l∞

≤C‖u‖3
l2 ‖δ+x u‖l2 ≤ ε‖δ+x u‖2

l2 +Cε ‖u‖6
l2 ,

where we use discrete maximum principle in ‖∆−1
h Ih |u|2‖l∞ estimate and in last equality

we apply Young inequality with ε being any positive real number.

In order to analyze the H1 error, we need to investigate some related matrix in de-
tail. The following lemma establish some useful properties of approximation matrix
Ah,Bh,∆h∈RM−1×M−1.
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Lemma 3.2 (Properties of related approximation matrix). For any u,v ∈ XM and matrix
Ah,Bh,∆h, we have

‖A−1
h Ihu‖l∞ ≤C‖u‖l∞ , ‖A−1

h Ihu‖l2 ≤ (b−a)2

π2
‖u‖l2 , (3.4)

‖Bh Ihu‖l∞ ≤ ‖u‖l∞ , ‖B−1
h Ihu‖l∞ ≤ 3

2
‖u‖l∞ , (3.5)

‖Bh Ih u‖l2 ≤‖u‖l2 , ‖B−1
h Ih u‖l2 ≤ 3

2
‖u‖l2 , (3.6)

〈−Ah Ihu,u〉 ≤ 〈−∆h Ihu,u〉 ≤ 3

2
〈−Ah Ihu,u〉, (3.7)

where the constant C depends on Ω but not on h or u.

Proof. By applying discrete maximum principle in [14], one can get ‖A−1
h Ihu‖l∞ ≤C‖u‖l∞

where the constant C depends on Ω but not on h or u. Standard contradiction argument
would lead us to ‖B−1

h Ihu‖l∞ ≤ 3
2 ‖u‖l∞ . If examining entries of Bh carefully, one can get

‖Bh‖l∞ = max
1≤i≤M−1

M−1

∑
j=1

|(Bh)ij|≤1,

thus we finish the proof of ‖Bh Ihu‖l∞ ≤ ‖u‖l∞ .

Note that −Ah,Bh are commutable positive definite matrix, then they have the same

eigenvectors. The j-th eigenvalue of −Ah equals to λj(−Ah)=
2
h2 (1−cos(π j

M )), j=1,2,··· ,M−
1 and the j-th eigenvalue of Bh is λj(Bh)=1− 1

6(1−cos(π j
M ))∈ ( 2

3 ,1), then we have

λj(−A−1
h )=

h2

2

1

1−cos(π j
M )

which implies that

‖A−1
h ‖l2 = max

1≤j≤M−1
|λj(−A−1

h )|≤ (b−a)2

π2
.

Thus we obtain

‖A−1
h Ihu‖l2 ≤ (b−a)2

π2
‖u‖l2 .

Similarly, we have

‖Bh‖l2 = max
1≤j≤M−1

|λj(Bh)|≤1, ‖B−1
h ‖l2 = max

1≤j≤M−1
|λj(B−1

h )|≤ 3

2
.

Therefore we get ‖Bh Ih u‖l2 ≤‖u‖l2 , ‖B−1
h Ih u‖l2 ≤ 3

2‖u‖l2 .
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The last inequality states the equivalence of two kinetic energies. Notice 〈−Ah Ihu,u〉-
=‖√−Ah Ih u‖2

l2 , 〈−∆h Ihu,u〉=‖√−∆h Ihu‖2
l2 , and denote S=

√−Ah, T=
√

Bh with ST=
TS. Then we have

‖
√
−Ah Ihu‖l2 =‖S Ihu‖l2 =‖T(T−1S)Ihu‖l2

≤‖T‖l2‖(T−1S)Ihu‖l2 ≤‖T‖l2‖
√
−∆h Ihu‖l2 ,

‖
√
−∆h Ih u‖l2 =‖(T−1 S) Ih u‖l2 ≤‖T−1‖l2‖SIh u‖l2 ≤‖T−1‖l2‖

√
−Ah Ih u‖l2 ,

which implies

〈−Ah Ihu,u〉=‖
√
−Ah Ih u‖2

l2 ≤‖T‖2
l2 〈−∆h Ihu,u〉,

〈−∆h Ihu,u〉=‖
√
−∆h Ihu‖2

l2 ≤‖T−1‖2
l2 〈−Ah Ihu,u〉.

For ‖Bh‖l2 is bounded, we can conclude that ‖T−1‖2
l2 = ‖B−1

h ‖l2 ≤ 3
2 , ‖T‖2

l2 ≤ 1. Thus we
prove the equivalence inequality.

Since the fourth order compact finite difference scheme has been proposed before, the
following lemma completes the error analysis.

Lemma 3.3 (Error estimates of compact finite difference scheme). For Poisson equation
(2.5), let fext=( f (x0), f (x1),··· , f (xM))

T, φext=(φ(x0),φ(x1),··· ,φ(xM))
T be the exact solution

and fh =( f0, f1,··· , fM)
T, φh =(φ0,φ1,··· ,φM)

T be the numerical approximation obtained by the
fourth order compact finite difference scheme.

Assume φ(x)∈C6([a,b]), f (x)∈C4([a,b]), if f (x) is known, we get

‖φh−φext‖l∞ =O(h4,∂4
x f ).

Inversely, with φ(x) being known,

‖ fh− fext‖l∞ =O(h4,∂6
xφ).

Proof. The proof is mainly based on Taylor formula with integral remainder and discrete
maximum principle of elliptic equation.

Firstly, if φ(x)∈C6([a,b]), f (x)∈C4([a,b]), by Taylor formula, we have

δ2
xφ(xj)=(∂2

xφ)(xj)+
h2

12
(∂4

xφ)(xj)+RI
j

= f (xj)+
h2

12
(∂2

x f )(xj)+RI
j

= f (xj)+
h2

12
δ2

x f (xj)+RI
j+RII

j ,
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where

RI
j =

1

5!h2

∫ h

0
(h−s)5

[
φ(6)(xj+s)+φ(6)(xj−s)

]
ds,

RII
j =− 1

72

∫ h

0
(h−s)3

[
f (4)(xj+s)+ f (4)(xj−s)

]
ds.

To solve the Poisson equation in (2.5), we apply the compact finite difference method as
−∆h Ih φh= Ih fext. Then Ah Ih(φext−φh)=RI+RII, by discrete maximum principle, it can
be concluded that

‖φh−φext‖l∞ ≤ C‖RI+RII‖l∞ ≤Ch4‖∂4
x f‖L∞ ,

where RI,RII∈CM−1 and the constant C depends on Ω but not on f (x) or h.
Reversely, the second derivative of φ(x) was approximated by Ih fh=∆h Ih φext and the

equation Bh Ih( fh− fext)=(RI+RII) holds. Then we have

‖ fh− fext‖l∞ ≤ 3

2
‖RI+RII‖l∞ ≤Ch4‖∂6

xφ‖L∞ .

The proof is complete.

Remark 3.1. One must have noticed that the approximation errors in fext, φext are glob-
ally dependent on φ(x) and f (x) respectively, and this is quite different from the cubic
nonlinear or other local nonlinear Schrödinger equations.

Lemma 3.4 (Conservation of mass and energy). For the CNCFD scheme (2.8) with (2.10)
and (2.11), for any time step τ>0 and mesh size h>0 and initial data ψ0. It conserves the mass
and energy in the discretized level, i.e.,

‖ψn‖l2 =‖ψ0‖l2 , Eh(ψ
n)=Eh(ψ

0). (3.8)

Proof. One can apply a similar process as in [5], so we omit it for brevity.

Lemma 3.5 (Solvability of the difference equation). For any given ψn, under assumptions
(A) and (B), there exists a solution ψn+1∈XM satisfies (2.8). There exists τ0 >0 such that the
solution is unique for 0<τ<τ0.

Proof. Proof for existence and uniqueness of CNCFD are similar to those in [1]. Rewrite
(2.8) as

ψn+1/2=ψn+i
τ

2
Fn(ψn+1/2), n=0,1,··· ,

where Fn : X
M
→X

M
is defined as

(Fn(u))j =−1

2
(Ah Ihu)j+Vjuj +β

[
−A−1

h Ih

( |ψn|2+|2u−ψn|2
2

)]

j

uj.
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Define the map Gn : XM →XM as

Gn(u)=u−ψn−i
τ

2
Fn(u), u∈XM ,

and it is continuous. Moreover,

Re〈Gn(u),u〉=‖u‖2
l2 −Re〈ψn,u〉≥‖u‖l2(‖u‖l2 −‖ψn‖l2), u∈XM ,

which implies

lim
‖u‖

l2
→∞

|〈Gn(u),u〉|
‖u‖l2

=∞.

Thus Gn is surjective according to theorem in [13], that is to say, there exists a solution
u0∈X

M
satisfying Gn(u0)=0.

We can use standard energy argument to prove uniqueness of (2.8). Assume u,v∈XM

satisfies Eq. (2.8) for given ψn. Denote w=u−v∈XM , we have

i
wj

τ
=−1

2

(∆h Ihw)j

2
+

Vj wj

2
+β χj, j∈TM,

where

χj :=
1

4

[
−∆−1

h Ih(|u|2+|ψn|2)
]

j
(uj+ψn

j )−
1

4

[
−∆−1

h Ih(|v|2+|ψn|2)
]

j
(vj+ψn

j ).

Multiply both sides (3.9) by wj h and then take imaginary part of the summation over
j∈TM , we can get

‖w‖2
l2

τ
=

∣∣∣∣∣
β

4
h

M−1

∑
j=1

(
∆−1

h Ih(|u|2+|ψn|2)
)

j
|wj|2+

(
∆−1

h Ih(|u|2−|v|2)
)

j
(vj+ψn

j )wj

∣∣∣∣∣

≤C‖w‖2
l2(‖u‖2

l∞ +‖ψn‖2
l∞)+C(‖v‖l∞ +‖ψn‖l∞)‖w‖l2 ‖∆−1

h Ih(|u|2−|v|2)‖l2

≤C(‖u‖2
l∞ +‖v‖2

l∞ +‖ψn‖2
l∞) (‖w‖2

l2 +‖|u|2−|v|2‖2
l2).

As stated before, the CNCFD scheme preserves the mass and energy in the discretized
level, by applying inequalities in (3.2)-(3.3), we have

Eh(u)= 〈−∆h Ihu,u〉+ β

2
〈∆−1

h Ih|u|2,|u|2〉+h
M−1

∑
k=1

Vkukuk

≥ ‖δ+x u‖2
l2 −|β| ε‖δ+x u‖2

l2 −Cε ‖u‖6
l2 −C‖u‖2

l2 ,

where the last inequality holds due to Assumption (B) that V is bounded on finite inter-
val, thus we have

‖δ+x u‖2
l2 ≤Eh(ψ

0)+Cε ‖ψ0‖6
l2 +C ‖ψ0‖2

l2 . (3.9)
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By simple calculations, we have

‖|u|2−|v|2‖2
l2 =h

M−1

∑
j=1

[
uj(uj−vj)+(uj−vj)vj

]2≤C (‖u‖2
l∞+‖v‖2

l∞ )‖w‖2
l2 .

Put together all the inequalities listed above, we have

‖w‖2
l2 ≤C τ ‖w‖2

l2 (‖u‖2
l∞ +‖v‖2

l∞ +‖ψn‖2
l∞ +1)2

≤C τ ‖w‖2
l2 (‖δ+x u‖2

l2 +‖δ+x v‖2
l2 +‖δ+x ψn‖2

l2 +C0)
2

≤C τ ‖w‖2
l2 (Eh(ψ

0)+Cε‖ψ0‖6
l2 +C0)

2,

where C0 is a constant that does not depend on h or ψ. There exists τ0 such that |Cτ(Eh(ψ
0)+

Cε‖ψ0‖6
l2 +C0)2|≤ 1

2 for any 0≤τ≤τ0, which implies that

‖w‖2
l2 =‖u−v‖2

l2 =0 =⇒ u=v,

thus we finish the proof of uniqueness.

Denote the local truncation error of CNCFD scheme by ηn, which is defined as

ηn
j := i δ+t ψ(xj,tn)+

1

2
[∆h Ih µtψ(·,tn)]j−V(xj)µtψ(xj,tn)

−β
[
−∆−1

h Ih µt|ψ(·,tn)|2
]

j
µtψ(xj,tn), j∈TM , n≥0,

where ψ(·,tn)=(ψ(x0,tn),ψ(x1,tn),··· ,ψ(xM ,tn))T ∈XM .

Lemma 3.6 (Local truncation error). Under assumptions (A) and (B), the local truncation
error for CNCFD satisfies

‖ηn‖l∞ =O(h4+τ2), ‖ηn‖l2 =O(h4+τ2), 0≤n≤ T

τ
,

‖δ+x ηn‖l2 =O(h4+τ2), ‖δ+x ηn‖l∞ =O(h4+τ2), 0≤n≤ T

τ
.

Proof. Firstly, by Taylor formula with integral remainder, we have

δ+t ψ(xj,tn)=(∂tψ)(xj,tn+ 1
2
)+Qn+ 1

2
j (ψ),

V(xj)µtψ(xj,tn)=V(xj)ψ(xj,tn+ 1
2
)+V(xj)Pn+ 1

2

j (ψ),

∆h Ih µtψ(xj,tn)=(∂2
xψ)(xj,tn+ 1

2
)+Pn+ 1

2
j (∂2

xψ)+
[

B−1
h µtRn(ψ)

]
j
,
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where Qn+ 1
2

j ,Pn+ 1
2

j ,Rn
j are defined as

Qn+ 1
2

j ( f (x,t))=
1

4τ

∫ τ

0
(τ−s)2

[
∂3

t f (xj,tn+ 1
2
+s)+∂3

t f (xj,tn+ 1
2
−s)

]
ds,

Pn+ 1
2

j ( f (x,t))=
∫ τ

0
(τ−s)

[
∂2

t f (xj,tn+ 1
2
+s)+∂2

t f (xj,tn+ 1
2
−s)

]
ds,

Rn
j ( f (x,t))=

1

5! h2

∫ h

0
(h−s)5

[
f (6)(xj+s,tn)+ f (6)(xj−s,tn)

]
ds

− 1

72

∫ h

0
(h−s)3

[
f (6)(xj+s,tn)+ f (6)(xj−s,tn)

]
ds.

Let Φ(·,tn)=(Φ(x0,tn),Φ(x1,tn),··· ,Φ(xM ,tn))T ∈XM , then

[
−∆−1

h Ih µt|ψ(·,tn)|2
]

j
=Φ(xj,tn+ 1

2
)+Pn+ 1

2
j (Φ)−

[
A−1

h µtRn(Φ)
]

j
,

thus
[
−∆−1

h Ih µt|ψ(·,tn)|2
]

j
µtψ(xj,tn)

=

[
Φ(xj,tn+1

2
)+Pn+ 1

2
j (Φ)−

(
A−1

h µtRn(Φ)
)

j

][
ψ(xj,tn+ 1

2
)+Pn+ 1

2
j (ψ)

]
.

By discrete maximum principle of elliptic equation, we have

‖Φ‖L∞ ≤C‖|ψ|2‖L∞ , ‖∂2
t Φ‖L∞ ≤C‖∂2

t |ψ|2‖L∞ ,

therefore,

∣∣∣∣
[
−∆−1

h Ih µt|ψ(·,tn)|2
]

j
µtψ(xj,tn)−(Φψ)(xj,tn+ 1

2
)

∣∣∣∣

=

∣∣∣∣Φ(xj,tn+ 1
2
)Pn+ 1

2
j (ψ)+

[
ψ(xj,tn+ 1

2
)+Pn+ 1

2
j (ψ)

][
Pn+ 1

2
j (Φ)−

(
A−1

h µtRn(Φ)
)

j

]∣∣∣∣

≤h4(‖∂6
xΦ‖L∞‖ψ‖L∞)+τ2(‖ψ‖2

L∞‖∂2
t ψ‖L∞ +‖ψ‖L∞‖∂2

t Φ‖L∞)+O(h4τ2+τ4)

≤h4(‖∂4
x|ψ|2‖L∞‖ψ‖L∞)+τ2(‖ψ‖2

L∞‖∂2
t ψ‖L∞ +‖ψ‖L∞‖∂2

t |ψ|2‖L∞)+O(h4τ2+τ4).

Finally, local truncation error ηn
j can be written in integral form as

ηn
j = iQn+ 1

2
j (ψ)+

1

2
Pn+ 1

2
j (∂2

xψ)+
1

2

[
B−1

h µtRn(ψ)
]

j
−
[
V(xj)+β Φ(xj ,tn+ 1

2
)
]
Pn+ 1

2
j (ψ)

−β

[
ψ(xj,tn+ 1

2
)+Pn+ 1

2
j (ψ)

][
Pn+ 1

2
j (Φ)−

(
A−1

h µtRn(Φ)
)

j

]
.
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Thus we can get
∣∣∣ηn

j

∣∣∣≤Cτ2
(
‖∂2

t ψ‖L∞+‖∂3
t ψ‖L∞+‖∂2

t ∂2
xψ‖L∞+‖ψ‖2

L∞‖∂2
t ψ‖L∞+‖ψ‖L∞‖∂2

t |ψ|2‖L∞

)

+Ch4(‖∂6
xψ‖L∞ +‖∂4

x|ψ|2‖L∞‖ψ‖L∞)+O(h4τ2+τ4),

and this would lead us to ‖ηn‖l∞ =O(h4+τ2) and ‖ηn‖l2 =O(h4+τ2).
To evaluate δ+x ηn

j , we just need to estimate the nonlocal term error, i.e.,
(
B−1

h µtRn(ψ)
)

j

and
(

A−1
h µtRn(Φ)

)
j
, because the local term could be dealt with by standard technique

[1]. We just take δ+x
(

B−1
h µtRn(ψ)

)
j

as an example and the other term is estimated the
same way.

Notice B−1
h µtRn(ψ)∈XM and denote

Rn(ψ)=(Rn
1 (ψ),··· ,Rn

M−1
(ψ))T, Rn

x(ψ)=(δ+x Rn
1(ψ),··· ,δ+x Rn

M−2
(ψ))T,

gj =
[

B−1
h µtRn(ψ)

]
j
, G=(g1,··· ,g

M−1
)T, Gx =(δ+x g1,··· ,δ+x gM−2)

T.

Reformulate the equation, we get

Gx =B−1
h µtRn

x+B−1
h b, (3.10)

with b= 1
12 (δ

+
x g0,0,··· ,0,δ+x gM−1)

T
M−2

.

Then by taking l2 norm on both sides, we have

M−2

∑
j=1

|δ+x gj|2 h≤C
M−2

∑
j=1

(|δ+x Rn
j |2+|δ+x Rn+1

j |2)h+ (|δ+x g0 |2+|δ+x gM−1 |2)h

and δ+x g0 can be estimated as

|δ+x g0|=
∣∣∣∣
g1−g0

h

∣∣∣∣=
∣∣∣ g1

h

∣∣∣=
∣∣∣∣∣
[B−1

h µtRn(ψ)]1
h

∣∣∣∣∣=
∣∣∣∣∣
∑

M−1
j=1 (B−1

h )1,j µtRn
j (ψ)

h

∣∣∣∣∣

≤C
M−1

∑
j=1

dj

µtRn
j (ψ)

h
≤C

M−1

∑
j=1

12

(4+2
√

6)j

µtRn
j (ψ)

h
≤Ch4‖∂7

xψ‖L∞ ,

where dj , [B−1
h ]1,j satisfies |dj| ≤ 12

(4+2
√

6)j , j= 1,2,··· ,M−1 and the last inequality holds

because ∂6
xψ(a)=∂6

xψ(b)=0 under regularity assumptions (A) and (B).
Similarly, |δ+x g

M−1
| ≤ Ch4‖∂7

xψ‖L∞ . Therefore ‖δ+x g‖l2 ≤ C h4‖∂7
xψ‖L∞ . Taking maxi-

mum norm of (3.10) on both sides and using inequality (3.5), we can have ‖δ+x g‖l∞ ≤
C h4‖∂7

xψ‖L∞ . Thus, we obtain

‖δ+x ηn‖l2 =O(h4+τ2), ‖δ+x ηn‖l∞ =O(h4+τ2), 0≤n≤ T

τ
.

The proof is complete.
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Theorem 3.1 (l2 norm estimate). Under assumptions (A) and (B), there exist h0 and τ0 such
that for any 0<h<h0, 0<τ<τ0 and τ≤h, the error function satisfies that

‖en‖l2 ≤C(τ2+h4), 0≤n≤ T

τ
, (3.11)

where the constant C does not depend on h or τ.

Proof. Choose a smooth function α∈C∞([0,∞)), which is defined as

α(ρ)=





1, 0≤ρ≤1,
∈ [0,1], 1<ρ<2,
0, ρ≥2.

Define truncating function FM0
(ρ) as

FM0
(ρ)=α(

ρ

M0
)ρ, 0≤ρ≤∞, M0=2(1+M2

1)≥0,

so that FM0
(ρ) satisfies the following Lipschitz condition, that is,

|FM0
(ρ1)−FM0

(ρ2)|≤C|√ρ1−
√

ρ2|, 0≤ρ1,ρ2≤∞.

Introduce an auxiliary scheme of φ∈XM , taking φ0 =ψ0 as the initial value, which is
given by

iδ+t φn
j =−1

2
[∆h Ih µtφ

n]j+Vj µtφ
n
j +β µt

[
−∆−1

h Ih FM0

(
|φn|2

)]
j
µtφ

n
j . (3.12)

Herein, φn
j can be viewed as another approximation of ψ(xj,tn). Define the ’auxiliary

error’ function ẽn ∈XM

ẽn
j =ψ(xj,tn)−φn

j , j∈T 0
M, n≥0.

The corresponding local truncation error η̃n is defined as

η̃n
j = iδ+t ψ(xj,tn)+

1

2
[∆h Ih µtψ(·,tn)]j−V(xj)µtψ(xj,tn)

−β µt

[
−∆−1

h Ih FM0
(|ψ(·,tn)|2)

]
j
µtψ(xj,tn). (3.13)

Similarly, the local truncation error ‖η̃n‖l∞ =O(h4+τ2), 0≤n< T
τ . Subtracting (3.13) form

(3.12), we have

iδ+t ẽn
j =−1

2

[
∆h Ih µt ẽn

]
j
+Vj µt ẽ

n
j + ξ̃n

j + η̃n
j , (3.14)
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with

ξ̃ n
j =βµt

[
−∆−1

h Ih FM0
(|ψ(·,tn)|2)

]
j
µtψ(xj,tn)−β µt

[
−∆−1

h Ih FM0
(|φn|2)

]
j
µtφ

n
j .

Let
Φn

j =
[
−∆−1

h Ih FM0
(|φn|2)

]
j
, Φ̃n

j =
[
−∆−1

h Ih FM0
(|ψ(·,tn)|2)

]
j
,

we have
∣∣∣Im〈ξ̃n

j , ẽn
j + ẽn+1

j 〉
∣∣∣= |β|

∣∣∣Im〈µt(Φ̃n
j −Φn

j )µtψ(xj,tn)−µtΦ
n
j µt ẽ

n
j , 2µt ẽ

n
j 〉
∣∣∣

= |β|
∣∣∣Im〈µt(Φ̃n

j −Φn
j )µtψ(xj,tn), 2µt ẽ

n
j 〉
∣∣∣.

Denote v,w∈CM−1 as

vj =FM0
(|ψ(xj,tn)|2)−FM0

(|φn
j |2), wj= ẽn

j + ẽn+1

j , j=1,2,··· ,M−1.

Then by the Lipschitz condition of FM0
, we have

|vj|≤C
∣∣ |ψ(xj,tn)|−|φn

j |
∣∣≤C|ψ(xj,tn)−φn

j |=C|ẽn
j |, j=1,2,··· ,M−1.

Therefore, by Cauchy-Schwartz inequality, we obtain

∣∣∣Im〈µt(Φ̃n
j −Φn

j )µtψ(xj,tn), 2µt ẽ
n
j 〉
∣∣∣≤Cρ(A−1

h )
M−1

∑
j=1

(|vj|2+|wj|2)h

≤C(‖ẽn‖2
l2 +‖ẽn+1‖2

l2),

and
∣∣ 〈η̃n

j ,µt ẽ
n
j 〉

∣∣≤C‖η̃n‖l2 ‖µt ẽn‖l2 ≤C(‖η̃n‖2
l2 +‖µt ẽn‖2

l2)

≤C(‖η̃n‖2
l∞ +‖ẽn‖2

l2 +‖ẽn+1‖2
l2).

Multiply both sides of Eq. (3.14) by 2hµt ẽn
j and sum up over index j ∈TM, after taking

imaginary parts, we have

‖ẽn+1‖2
l2 −‖ẽn‖2

l2 ≤Cτ(‖η̃n‖2
l∞ +‖ẽn+1‖2

l2 +‖ẽn‖2
l2), 0≤n<

T

τ
.

Applying discrete Gronwall inequality [28], we have

‖ẽn‖l2 ≤C(h4+τ2), 0≤n≤ T

τ
,

and

‖ẽn‖l∞ ≤‖ẽn‖l2 h−1/2≤C
(

h
7
2 +

τ2

√
h

)
≤C h, τ≤h,
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thus

|φn
j |≤ |ψ(xj,tn)|+|ẽn

j |≤
√

M0

2
+C h≤

√
M0,

which infers FM0
(|φn

j |2)= |φn
j |2 and

φn
j =ψn

j , en
j = ẽn

j , j=1,2,··· ,M−1, 0≤n≤ T

τ
.

The proof is complete.

Remark 3.2. In fact, the restriction on the grid ratio, i.e. τ≤h, could be removed. By using
inequality (3.9) and the 1D Sobolev inequality (3.2), we could obtain a priori uniform
bound in l∞ norm as ‖ψn‖l∞ ≤C(Eh(ψ

0)+‖ψ0‖l2). Then by standard energy method, we
could obtain the l2 and H1 error analysis. Please refer to [27] for details.

Remark 3.3. However, the argument above relies heavily on discrete Sobolev inequality
and in higher dimensions we could get such a priori estimate. While the above proof,
which is borrowed from [1], overcomes this problem by introducing an auxiliary function
and using an inverse inequality and it could be extended to higher dimensions.

Next, we continue to prove Theorem 2.1.

Proof. The local truncation equation (3.14) is reduced as

iδ+t en
j =−1

2
[∆h Ih µte

n]j+Vj µte
n
j +ξn

j +ηn
j , (3.15)

where

ξn
j =β

[
−∆−1

h Ih µt|ψ(·,tn)|2
]

j
µtψ(xj,tn)−β

[
−∆−1

h Ihµt|ψn|2
]

j
µtφ

n
j (3.16)

satisfies

‖δ+x ξn‖l2 ≤C
(
(h4+τ2)2+‖en‖l2 +‖en+1‖l2 +‖δ+x en‖l2 +‖δ+x en+1‖l2

)
. (3.17)

Rewrite (3.15) as

en+1

j −en
j =−iτ(Ln

j +ξn
j +ηn

j ),

where Ln
j is defined as

Ln
j =−1

2
[∆h Ih µte

n]j+Vj µte
n
j , j=1,2,··· ,M−1, n≥0.
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Multiply both sides of Eq. (3.15) by 2h en+1

j −en
j and sum up over index j∈TM, after taking

real parts, we have

E(en+1)−E(en)=−2Re〈ξn+ηn,en+1−en〉
=−2Re〈ξn+ηn,−iτ(Ln+ξn+ηn)〉
=2τ Im〈ξn+ηn,Ln〉.

By Cauchy-Schwartz inequality and equivalent energies inequality, we have

∣∣ 〈ηn,Ln〉
∣∣≤

∣∣〈ηn,−1

2
∆h Ih µte

n〉
∣∣+

∣∣〈ηn,Vµte
n〉
∣∣

≤C(
∣∣〈(−∆h)

1
2 Ih ηn,(−∆h)

1
2 Ih µte

n〉
∣∣+‖en‖2

l2 +‖en+1‖2
l2 +(h4+τ2)2)

≤C(‖(−Ah)
1
2 Ih ηn‖2

l2 +‖(−Ah)
1
2 Ih µte

n‖2
l2 +(h4+τ2)2)

≤C(‖δ+x ηn‖2
l2 +‖δ+x en‖2

l2 +‖en+1‖2
l2 +(h4+τ2)2)

≤C((h4+τ2)2+‖δ+x en‖2
l2 +‖δ+x en+1‖2

l2).

Similarly, we have

∣∣ 〈ξn,Ln〉
∣∣≤

∣∣〈ξn,−1

2
∆h Ih µte

n〉
∣∣+

∣∣〈ξn,Vµte
n〉
∣∣

≤C(‖δ+x ξn‖2
l2 +‖δ+x en‖2

l2 +‖δ+x en+1‖2
l2 +‖en‖2

l2 +‖en+1‖2
l2)

≤C((h4+τ2)2+‖δ+x en‖2
l2 +‖δ+x en+1‖2

l2 +‖en‖2
l2 +‖en+1‖2

l2),

where the last inequality holds because of (3.17).

Thus, we have

|Im〈ξn+ηn,Ln〉|≤C (h4+τ2)2+E(en+1)+E(en).

Combing the above inequalities, we get

E(en+1)−E(en)≤C τ
[
(h4+τ2)2+E(en+1)+E(en)

]
.

Then there exists τ0>0, when 0<τ≤τ0, by Gronwall inequality,

E(en)≤ C (h4+τ2)2, 0≤n≤ T

τ
,

which, together with Theorem 3.1, finishes the proof of Theorem 2.1.

Remark 3.4. If we consider the general SPS with local term |ψ| 2
d , Theorem 2.1 still holds

true. We refer to [1] on how to deal with the local term.
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4 Error estimates for the SICFD method

In this section, we present optimal error estimate for the SICFD method (2.13)-(2.15) with
initial value (2.11) and Dirichlet boundary condition (2.10) in discrete l2 and H1 norm.

First, we prove the solvability and uniqueness of the SICFD method solution.

Lemma 4.1 (Solvability and uniqueness of the SICFD method). Under assumptions (A)
and (B), for any initial value ψ0 ∈ XM , there exists a unique solution ψn ∈XM of (2.14)-(2.15)
for n=1 and (2.13) for n>1.

Proof. The lemma holds true for n= 1. First, we prove the uniqueness of (2.13). Given
ψn,ψn−1 ∈ XM , suppose there exist two solutions u,v∈ XM , i.e.,

i
uj−ψn−1

j

2τ
=−1

2

[
∆h Ih

(u+ψn−1

2

)]

j

+Vj

uj+ψn−1

j

2
+βΦn

j ψn
j , (4.1)

i
vj−ψn−1

j

2τ
=−1

2

[
∆h Ih

(v+ψn−1

2

)]

j

+Vj

vj+ψn−1

j

2
+βΦn

j ψn
j . (4.2)

Set w=u−v and subtract (4.2) from (4.1), we have

i
wj

τ
=−1

2
[∆h Ih w]j+Vj wj. (4.3)

Multiply both sides of (4.3) by ωj h and take imaginary parts of summation over j∈TM,
we get ‖w‖l2 =0 which implies u=v, thus the uniqueness of the solution is proved.

For the solvability, we follow similar process as CNCFD method. Eq. (2.13) can be
rewritten as

iψn+1
j +

τ

2

[
∆h Ih ψn+1

]
j
−τVjψ

n+1
j +χj =0,

where

χj =−iψn−1
j +

τ

2

[
∆h Ih ψn−1

]
j
−τVjψ

n−1
j −2 βτ Φn

j ψn
j .

Define map G : u∈XM →G(u)∈XM as

G(u)= iuj+
τ

2
[∆h Ih u]j−τVj uj+χj.

The map G is continuous from X
M

to X
M

and satisfies

|Im〈G(u),u〉|=
∣∣‖u‖2

l2 +Im〈χ,u〉
∣∣≥‖u‖2

l2 −‖χ‖l2‖u‖l2 ,

which implies

lim
‖u‖

l2
→∞

|〈Gn(u),u〉|
‖u‖l2

=∞.

Thus Gn is surjective according to theorem in [13], that is to say, there exists a solution
u0∈XM satisfying Gn(u0)=0.
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Define local truncation error function ηn for SICFD method as

ηn
j = iδtψ(xj,tn)+

1

2

[
∆h Ih

(ψ(·,tn+1)+ψ(·,tn−1)

2

)]

j

−V(xj)
ψ(xj,tn+1

)+ψ(xj,tn−1
)

2
−β

[
−∆−1

h Ih |ψ(·,tn)|2
]

j
ψ(xj,tn), n>1, (4.4)

and

η0
j = iδ+t ψ(xj,0)−

[
−1

2

(
∆h Ih ψ(1)

)
j
+V(xj)ψ

(1)
j +β Φ

(1)
j ψ

(1)
j

]
, j∈TM, (4.5)

with

ψ
(1)
j =ψ0(xj)−i

τ

2

[
−1

2

(
∆h Ihψ(·,0)

)
j
+V(xj)ψ0(xj)+βΦ0

j ψ0(xj)

]
, j∈TM.

Then we have

Lemma 4.2 (Local truncation error). Under assumptions (A) and (B), the local truncation
error ηn satisfies

‖ηn‖l∞ ≤C(h4+τ2), 0≤n≤ T

τ
−1, ‖δ+x η0‖l∞ ≤C(h3+τ), for τ≤Ch, (4.6)

‖δ+x ηn‖l∞ ≤C (h4+τ2), 1≤n≤ T

τ
−1. (4.7)

Proof. When n=0, we have

ψ
(1)
j =ψ(xj,τ/2)+i

τ

2
η
(1)
j , j∈TM ,

where truncation error η
(1)
j , j∈TM satisfies

η
(1)
j = i

ψ(xj,τ/2)−ψ0(xj)

τ/2
+

1

2
[∆hψ0]j−Vjψ0(xj)−β Φ0

j ψ0(xj)

=
i

τ/2

∫ τ

0
(τ−s)∂2

t ψ(xj,s)ds+
[

B−1
h IhR0(ψ)

]
j
−β

[
A−1

h IhR0(Φ)
]

j
ψ0(xj).

We can conclude that ‖η(1)‖l∞ =O(h4+τ). Then

η0
j = i

ψ(xj,τ)−ψ0(xj)

τ
+

1

2

[
∆h Ihψ(1)

]
j
−V(xj)ψ

(1)
j −βΦ

(1)
j ψ

(1)
j

=Q
1
2
j (ψ)+

iτ

4

[
∆h Ih η(1)

]
j
+

1

2

[
B−1

h IhR
1
2 (ψ)

]
j
− i τ

2
V(xj)η

(1)
j

− iτ

2
β Φ

(1)
j η

(1)
j +βψ(xj,τ/2)

(
Φ(xj,τ/2)−Φ

(1)
j

)
.
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By a similar argument, we can obtain ‖η0‖l∞ ≤C(h4+τ2) and

|δ+x η0
j |≤C

‖η0
j ‖l∞

h
≤ C(h3+τ), j=0,1,··· ,M−1

for τ ≤ Ch. Thus, we prove local truncation error for n= 0. While for n> 1, by Taylor
formula with integral remainder, we get

ηn
j =Qn+ 1

2
j (ψ)+

1

2

[
B−1

h Ih
Rn+1(ψ)+Rn−1(ψ)

2

]

j

+
1

2
Pn+ 1

2
j (∂2

xψ)

−V(xj)Pn+ 1
2

j (ψ)−β
[

A−1
h IhRn(Φ)

]
j
ψ(xj,tn).

Thus

|ηn
j |≤Ch4 (‖∂6

xψ‖L∞ +‖∂4
xψ‖L∞‖ψ‖L∞)+Cτ2(‖∂2

t ψ‖L∞+‖∂3
t ψ‖L∞+‖∂2

t ∂2
xψ‖L∞),

which implies ‖ηn‖l∞ ≤C(h4+τ2), 1≤n≤ T
τ −1. Similarly, we get

δ+x ηn
j =δ+x Q

n+ 1
2

j (ψ)+
1

2
δ+x

[
B−1

h Ih
Rn+1(ψ)+Rn−1(ψ)

2

]

j

+
1

2
δ+x P

n+ 1
2

j (∂2
xψ)

+δ+x (V(xj)Pn+ 1
2

j (ψ))−βδ+x

([
A−1

h IhRn(Φ)
]

j
ψ(xj,tn)

)
,

from which we obtain

|δ+x ηn
j |≤Ch4(‖∂7

xψ‖L∞ +‖∂5
xψ‖L∞‖ψ‖L∞ +‖∂4

xψ‖L∞‖∂xψ‖L∞ +‖∂3
xψ‖L∞‖∂2

xψ‖L∞)

+Cτ2(‖∂x∂2
t ψ‖L∞ +‖∂x∂3

t ψ‖L∞+‖∂2
t ∂3

xψ‖L∞), 1≤n≤ T

τ
−1,

where the nonlocal term A−1
h IhRn(Φ) and B−1

h Ih(Rn+1(ψ)+Rn−1(ψ)) are dealt with sim-
ilarly. Therefore, we prove the local error estimate.

Theorem 4.1 (l2 norm estimate). Under assumptions (A) and (B), there exist h0>0 and τ0>0,
such that for any 0<h<h0, 0<τ<τ0 and τ≤h, we have

‖en‖l2 ≤C(h4+τ2), ‖ψn‖l∞ ≤1+M1, 1≤n≤ T

τ
. (4.8)

Proof. If ‖en‖l2 ≤C(h4+τ2) is known, from en
j =ψ(xj,tn)−ψn

j , we can get

‖ψn‖l∞ ≤‖ψ(·,tn)‖L∞+‖en‖l∞ ≤M1+h−
1
2 ‖en‖l2

≤M1+C(h
7
2 +h

3
2 )≤M1+1
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for sufficiently small h and τ. Therefore we only need to verify ‖en‖l2 ≤C(h4+τ2).
We will use mathematical induction to prove the l2 norm estimate. The initial inequal-

ity ‖e1‖l2 ≤C(h4+τ2) holds true spontaneously. Now we assume that (4.8) is valid for
0≤n≤m−1≤ T

τ −1, then we need to confirm that it is still valid when n=m. Subtracting
(4.4) from (2.13), we have

iδ+t en
j =Ln

j +ξn
j +ηn

j , (4.9)

where

Ln
j =−1

2

[
∆h Ih

en+1+en−1

2

]

j

+Vj

en+1
j +en−1

j

2
, j=1,2,··· ,M−1, n≥0,

ξn
j =β

[
−∆−1

h Ih |ψ(·,tn)|2
]

j
ψ(xj,tn)−β

[
−∆−1

h Ih |ψn|2
]

j
ψn

j , j=1,2,··· ,M−1, n≥0.

Similarly, noticing (3.4) and (3.17), we have

‖ξn‖2
l2 ≤C‖en‖2

l2 , 1≤n≤m−1,

‖δ+x ξn‖2
l2 ≤C

(
(h4+τ2)2+‖δ+x en‖2

l2 +‖en‖2
l2

)
, 1≤n≤m−1.

(4.10)

Take imaginary parts of the summation on each sides after multiplying (4.9) by

en+1
j +en−1

j h, by Cauchy-Schwartz inequality, we have

‖en+1‖2
l2 −‖en−1‖2

l2 =2τIm〈ξn+ηn,en+1+en−1〉
≤2τ

[
‖en+1‖2

l2 +‖en−1‖2
l2 +‖ξ‖2

l2 +‖ηn‖2
l2

]

≤Cτ(h4+τ2)2+2τ(‖en+1‖2
l2 +‖en−1‖2

l2)+Cτ‖en‖2
l2 .

Noticing e0 = 0 and ‖e1‖2
l2 ≤C(h4+τ2)2, when τ ≤ 1

4 , sum up the above inequality from
n=1 to n=m−1 and rewrite the inequality, we have

1

2
(‖em‖2

l2 +‖em−1‖2
l2)≤C(m−1)τ(h4+τ2)2+‖e1‖2

l2 +(Cτ+4τ)
m−1

∑
k=1

‖ek‖2
l2 ,

which implies

‖em‖2
l2 ≤2C

(
T+1

)
(h4+τ2)2+2(Cτ+4τ)

m−1

∑
k=1

‖ek‖2
l2 . (4.11)

Apply Gronwall inequality to (4.11), we get

‖em‖2
l2 ≤2C

(
T+1

)
(h4+τ2)2e2(Cτ+4τ)m

≤2C
(

T+1
)

e2(C+4)T (h4+τ2)2.

Hence, the proof is finished.



1380 Y. Zhang / Commun. Comput. Phys., 13 (2013), pp. 1357-1388

Then we continue to prove Theorem 2.2.

Proof. As is stated before, e0=0 and thus Theorem 2.2 holds true.

|δ+x e1
j |= |δ+x (ψ(xj,τ)−ψ1

j )|= |−iτδ+x η0
j |≤Cτ(h3+τ)≤C(h4+τ2),

which implies Theorem 2.2 is true for n=1. Rewrite Eq. (4.9) as

en+1

j −en−1
j =−2iτ(Ln

j +ξn
j +ηn

j ).

Multiply both sides of (4.9) by 2h en+1
j −en−1

j and sum up both sides over index j∈TM,

after taking real parts, we have

E(en+1)−E(en−1)=−2Re〈ξn+ηn,en+1−en−1〉
=−2Re〈ξn+ηn,−2iτ(Ln+ξn+ηn)〉
=4τ Im〈ξn+ηn,Ln〉.

By Cauchy-Schwartz inequality and equivalent energy inequalities, we have

∣∣ 〈ξn,Ln〉
∣∣≤ C((h4+τ2)2+‖δ+x en−1‖2

l2 +‖δ+x en‖2
l2 +‖δ+x en+1‖2

l2),
∣∣ 〈ηn,Ln〉

∣∣≤ C((h4+τ2)2+‖δ+x en−1‖2
l2 +‖δ+x en‖2

l2 +‖δ+x en+1‖2
l2),

for 1≤n≤ T
τ −1. Thus, we can get

E(en+1)−E(en−1)≤Cτ(h4+τ2)2+τ
[
‖δ+x en−1‖2

l2 +‖δ+x en‖2
l2 +‖δ+x en+1‖2

l2

]

≤Cτ(h4+τ2)2+τ
[
E(en−1)+E(en)+E(en+1)

]
.

Then sum up the above inequality from n=1 to n=m−1≤ T
τ −1, we have, for τ≤ 1

4 and
τ≤h,

1

2
(E(em)−E(em−1))≤C(T+1)(h4+τ2)2+Cτ

m−1

∑
k=1

E(ek), 1≤m≤ T

τ
.

Apply discrete Gronwall inequality to the above inequality, we get

1

2
‖δ+x en‖2

l2 ≤E(em)≤C(T+1)eCT (h4+τ2)2.

The proof for Theorem 2.2 is complete.

Lemma 4.3 (l∞ norm estimate). For the SICFD method, under assumptions (A) and (B), the
l∞ norm is of order O(h4+τ2).
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Proof. Since we have obtained ‖δ+x en‖l2 =O(h4+τ2), then the l∞ norm is valid immedi-
ately by inequality (3.2).

Remark 4.1. If we consider the general SPS with local term |ψ| 2
d , Theorem 2.2 of the

l2 and H1 error estimates holds true. We refer to [1] on how to deal with the local term.
Compared with (2.8), the SICFD scheme does not require to solve any nonlinear equation,
thus it takes up less computational cost and is more appropriate to be extended to higher
dimensions.

5 Numerical results

In this section, we present numerical results to verify our error estimates. We choose

symmetric computation domain with/without external potential V(x) = x2

2 . Let ψe be
the numerical ’exact’ solution obtained with fine mesh h and small time step τ = h2 at
time T = 0.5 and ψh,τ be the numerical solution with mesh size h and time step τ. Let

eh,τ=ψe−ψh,τ denote the error function. The initial value is chosen as ψ0(x)=e−x2/2π−1/4.
The numerical ’exact’ solution is obtained with h= 1

256 ,τ=h2 on [−16,16].

First, we test the second order temporal accuracy by choosing different time step τ
with uniform fine mesh size h=1/256 on interval [−16,16] and the temporal convergence
rate is defined as log2(‖eh,τ‖/‖eh, τ

2
‖) with corresponding discrete norm. Table 1, 2, 3 and

4 show errors ‖e‖l2 ,‖δ+x e‖l2 and ‖e‖l∞ for CNCFD and SICFD schemes with β=±5 under
external potential V(x)=0 or V(x)= x2/2.

Next, we verify the fourth order spatial accuracy by choosing appropriate mesh size

Table 1: Temporal error analysis of CNCFD at time T= 0.5 for different Poisson constant β without external
potential, i.e., V(x)=0.

τ=2−8 τ=2−9 τ=2−10 τ=2−11

‖e‖l2 3.720E-03 9.305E-04 2.326E-04 5.811E-05

Rate 1.999 2.000 2.001

‖δ+x e‖l2 4.752E-03 1.189E-03 2.972E-04 7.426E-05

Rate 1.999 2.000 2.001

‖e‖l∞ 2.447E-03 6.119E-04 1.530E-04 3.821E-05

β=5

Rate 2.000 2.000 2.001

‖e‖l2 3.633E-03 9.088E-04 2.272E-04 5.676E-05

Rate 1.999 2.000 2.001

‖δ+x e‖l2 3.131E-03 7.833E-04 1.958E-04 4.892E-05

Rate 1.999 2.000 2.001

‖e‖l∞ 3.024E-03 7.565E-04 1.891E-04 4.724E-05

β=−5

Rate 1.999 2.000 2.001
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Table 2: Temporal error analysis of CNCFD at time T= 0.5 for different Poisson constant β without external

potential, i.e., V(x)= x2

2 .

τ=2−8 τ=2−9 τ=2−10 τ=2−11

‖e‖l2 3.907E-03 9.774E-04 2.443E-04 6.104E-05

Rate 1.999 2.000 2.001

‖δ+x e‖l2 3.857E-03 9.650E-04 2.412E-04 6.0268e-05

Rate 1.999 2.000 2.001

‖e‖l∞ 2.650E-03 6.627E-04 1.657E-04 4.138E-05

β=5

Rate 2.000 2.000 2.001

‖e‖l2 3.564E-03 8.914E-04 2.228E-04 5.567E-05

Rate 1.999 2.000 2.001

‖δ+x e‖l2 3.618E-03 9.050E-04 2.2623E-04 5.653E-05

Rate 1.999 2.000 2.001

‖e‖l∞ 3.177E-03 7.946E-04 1.987E-04 4.963E-05

β=−5

Rate 1.999 2.000 2.001

Table 3: Temporal error analysis of SICFD at time T = 0.5 for different Poisson constant β without external
potential, i.e., V(x)=0.

τ=2−8 τ=2−9 τ=2−10 τ=2−11

‖e‖l2 6.522E-03 1.629E-03 4.069E-04 1.014E-04

Rate 2.001 2.001 2.004

‖δ+x e‖l2 7.098E-03 1.771E-03 4.423E-04 1.102E-04

Rate 2.003 2.002 2.005

‖e‖l∞ 4.455E-03 1.113E-03 2.780E-04 6.931E-05

β=5

Rate 2.001 2.001 2.004

‖e‖l2 7.930E-03 1.977E-03 4.935E-04 1.230E-04

Rate 2.004 2.002 2.005

‖δ+x e‖l2 7.382E-03 1.840E-03 4.593E-04 1.145E-04

Rate 2.004 2.002 2.005

‖e‖l∞ 6.889E-03 1.717E-03 4.287E-04 1.069E-04

β=−5

Rate 2.004 2.002 2.005

h and time step τ and the convergence rate is defined as log2(‖eh,τ‖/‖e h
2 , τ

4
‖) with cor-

responding norm. Tables 5 and 6 show errors ‖e‖l2 ,‖δ+x e‖l2 and ‖e‖l∞ for the CNCFD
method with Poisson coupling constants β =±5 under external potential V(x) = 0 or

V(x)= x2

2 . Tables 7 and 8 show errors ‖e‖l2 ,‖δ+x e‖l2 and ‖e‖l∞ for the SICFD method with

coupling Poisson constants β=±5 under external potential V(x)=0 or V(x)= x2

2 .

Table 9 lists computation time cost by CNCFD and SICFD with different mesh sizes
and time step for repulsive SPS (β= 5) at time T = 1.0 with/without external potential.
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Table 4: Temporal error analysis of SICFD at time T = 0.5 for different Poisson constant β without external

potential, i.e., V(x)= x2

2 .

τ=2−8 τ=2−9 τ=2−10 τ=2−11

‖e‖l2 6.780E-03 1.698E-03 4.243E-04 1.060E-04

Rate 2.002 2.001 2.001

‖δ+x e‖l2 6.127E-03 1.529E-03 3.820E-04 9.542E-05

Rate 2.003 2.001 2.001

‖e‖l∞ 4.840E-03 1.209E-03 3.021E-04 7.548E-05

β=5

Rate 2.001 2.000 2.001

‖e‖l2 8.206E-03 2.045E-03 5.104E-04 1.272E-04

Rate 2.005 2.002 2.005

‖δ+x e‖l2 8.872E-03 2.210E-03 5.517E-04 1.375E-04

Rate 2.005 2.002 2.005

‖e‖l∞ 7.535E-03 1.878E-03 4.687E-04 1.168E-04

β=−5

Rate 2.005 2.002 2.005

Table 5: Error analysis of CNCFD at time T=0.5 for different Poisson constant β without external potential,
i.e., V(x)=0.

h=1/16 h=1/32 h=1/64 h=1/128

τ=2−8 τ=2−10 τ=2−12 τ=2−14

‖e‖l2 3.465E-02 2.171E-03 1.352E-04 7.964E-06

Rate 3.996 4.005 4.086

‖δ+x e‖l2 4.074E-02 2.558E-03 1.593E-04 9.380E-06

Rate 3.994 4.005 4.086

‖e‖l∞ 2.235E-02 1.399E-03 8.716E-05 5.132E-06

β=5

Rate 3.997 4.005 4.086

‖e‖l2 3.444E-02 2.159E-03 1.345E-04 7.919E-06

Rate 3.996 4.005 4.086

‖δ+x e‖l2 2.965E-02 1.859E-03 1.158E-04 6.820E-06

Rate 3.995 4.005 4.086

‖e‖l∞ 2.849E-02 1.786E-03 1.113E-04 6.552E-06

β=−5

Rate 3.995 4.005 4.086

The algorithm was carried out by Linux (version 3.0.0-16) MATLAB (version 7.8.0.347
(R2009a)) on Intel CPU (i3-530). Fig. 1 depicts the long time evolution of the errors of dis-
crete mass and energy for SICFD scheme with mesh size h=1/16 when external potential
V(x)=0 and Poisson constant β=5.

Based on numerical results shown and not shown here, we can draw the following
conclusions: (i) Tables 1-8 confirm the O(h4+τ2) convergence estimates for the CNCFD
and SICFD scheme in l2, H1 and l∞ discrete norms. (ii) The CNCFD scheme conserves
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Table 6: Error analysis of CNCFD at time T = 0.5 for different Poisson constant β with external potential

V(x)= x2

2 .

h=1/16 h=1/32 h=1/64 h=1/128

τ=2−8 τ=2−10 τ=2−12 τ=2−14

‖e‖l2 3.558E-02 2.230E-03 1.389E-04 8.178E-06

Rate 3.996 4.005 4.086

‖δ+x e‖l2 3.234E-02 2.029E-03 1.264E-04 7.440E-06

Rate 3.995 4.005 4.086

‖e‖l∞ 2.382E-02 1.492E-03 9.292E-05 5.471E-06

β=5

Rate 3.997 4.005 4.086

‖e‖l2 3.410E-02 2.138E-03 1.332E-04 7.840E-06

Rate 3.996 4.005 4.086

‖δ+x e‖l2 3.547E-02 2.226E-03 1.386E-04 8.163E-06

Rate 3.995 4.005 4.086

‖e‖l∞ 3.019E-02 1.893E-03 1.179E-04 6.945E-06

β=−5

Rate 3.995 4.005 4.086

Table 7: Error analysis of SICFD at time T= 0.5 for different Poisson constant β without external potential,
i.e., V(x)=0.

h=1/16 h=1/32 h=1/64 h=1/128

τ=2−8 τ=2−10 τ=2−12 τ=2−14

‖e‖l2 6.682E-02 4.108E-03 2.551E-04 1.499E-05

Rate 4.024 4.010 4.089

‖δ+x e‖l2 7.388E-02 4.532E-03 2.814E-04 1.653E-05

Rate 4.027 4.010 4.089

‖e‖l∞ 4.371E-02 2.688E-03 1.669E-04 9.806E-06

β=5

Rate 4.023 4.009 4.089

‖e‖l2 7.328E-02 4.501E-03 2.796E-04 1.643E-05

Rate 4.025 4.009 4.089

‖δ+x e‖l2 1.657E-01 4.023E-03 2.498E-04 1.468e-05

Rate 4.029 4.009 4.089

‖e‖l∞ 6.209E-02 3.810E-03 2.366E-04 1.391E-05

β=−5

Rate 4.027 4.009 4.089

discrete mass and energy analytically, however, as stated in [1], we have to solve the non-
linear equation accurate enough ( up to machine accuracy or nearby) so as to keep the
conservation laws numerically. (iii) From Fig. 1, we can observe oscillatory error evolu-
tion phenomenon which is similar to that in [1]. (iv) Table 9 shows that the efficiency of
SICFD is superior to that of CNCFD with/without external potential. All the linear sys-
tems involved in both schemes are accelerated by DST and this make the computation
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Table 8: Error analysis of SICFD at time T= 0.5 for different Poisson constant β without external potential,

i.e., V(x)= x2

2 .

h=1/16 h=1/32 h=1/64 h=1/128

τ=2−8 τ=2−10 τ=2−12 τ=2−14

‖e‖l2 6.817E-02 4.189E-03 2.601E-04 1.528E-05

Rate 4.024 4.010 4.089

‖δ+x e‖l2 5.991E-02 3.674E-03 2.281E-04 1.340E-05

Rate 4.027 4.010 4.089

‖e‖l∞ 4.663E-02 2.867E-03 1.780E-04 1.046E-05

β=5

Rate 4.024 4.009 4.089

‖e‖l2 7.453E-02 4.578E-03 2.843E-04 1.671E-05

Rate 4.025 4.009 4.089

‖δ+x e‖l2 8.045E-02 4.930E-03 3.062E-04 1.799E-05

Rate 4.028 4.010 4.089

‖e‖l∞ 6.706E-02 4.115E-03 2.556E-04 1.502E-05

β=−5

Rate 4.027 4.010 4.089

Table 9: Computation time (in seconds) comparison of CNCFD and SICFD scheme at time T=1.0 for Poisson
constant β=5 with/without external potential V(x).

h=1/16 h=1/32 h=1/64 h=1/128

τ=2−8 τ=2−10 τ=2−12 τ=2−14

CNCFD 3.837 15.039 83.029 577.870
V(x)= x2

2 SICFD 1.289 6.140 37.554 284.854

CNCFD 3.831 15.233 82.103 595.886
V(x)=0

SICFD 0.376 2.228 15.106 110.759
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Figure 1: Evolution of the errors of the discrete mass and energy for SICFD scheme with mesh size h= 1/16
when external potential V(x)=0 and Poisson constant β=5.
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time depends almost linearly on mesh size h. The DST accelerated linear system solver
can be extended to higher dimensions directly which would still preserve the linear de-
pendency of computation time and mesh size.

6 Conclusions

We presented error analysis of two compact finite difference schemes, i.e., the conser-
vative Crank-Nicolson compact finite difference scheme and the semi-implicit compact
finite difference scheme, for the Schrödinger-Poisson system in a bounded domain under
proper regularity assumptions on wave function ψ and external potential V(x). Both of
the schemes are of order O(h4+τ2) in discrete l2, H1 and l∞ norms. We analyzed the lo-
cal truncation error of the compact finite difference for the second derivative and Poisson
potential, which is nonlocal, by the discrete maximum principle of the elliptic equation
and properties of related approximation matrix. We analyzed the nonlocal approxima-
tion term in the local truncation error and global error with Taylor formula with integral
remainders. In the proof of CNCFD scheme, we used a Lipschitz function to approxi-
mate the nonlinearity so as to obtain l2 norm estimate and by inverse inequality to get
a priori bound in l∞ norm; for SICFD scheme, mathematical induction was used. Exten-
sive numerical results were reported in the last section to confirm our error estimates. In
practice, the CNCFD conserves the mass and energy quite well in the discretized level
when τ=O(h2) but at each step we have to solve a nonlinear difference equation which
could be quite expensive in view of computation time cost, especially in 2-d and 3-d. The
SICFD scheme is also unconditional stable and it conserves the mass and energy well and
only a linear system is required to be solved each step. In addition, both scheme can be
solved within at O(Mlog(M)) time/operations with the help of Discrete Sine Transform
(DST). The CNCFD and SICFD methods could be extended to Schrödinger-Poisson-Slater
system directly.
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