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Abstract. The concept of diffusion regulation (DR) was originally proposed by
Jaisankar for traditional second order finite volume Euler solvers. This was used to
decrease the inherent dissipation associated with using approximate Riemann solvers.
In this paper, the above concept is extended to the high order spectral volume (SV)
method. The DR formulation was used in conjunction with the Rusanov flux to han-
dle the inviscid flux terms. Numerical experiments were conducted to compare and
contrast the original and the DR formulations. These experiments demonstrated (i)
retention of high order accuracy for the new formulation, (ii) higher fidelity of the DR
formulation, when compared to the original scheme for all orders and (iii) straight-
forward extension to Navier Stokes equations, since the DR does not interfere with
the discretization of the viscous fluxes. In general, the 2D numerical results are very
promising and indicate that the approach has a great potential for 3D flow problems.

AMS subject classifications: 65

Key words: Diffusion regulation, spectral volume, high-order, Rusanov flux, Navier Stokes equa-
tions.

1 Introduction

The spectral volume (SV) method is a high order method, originally developed by Wang,
Liu and their collaborators for hyperbolic conservation laws on unstructured grids [18,
26–30]. The spectral volume method can be viewed as an extension of the Godunov
method to higher order by adding more degrees-of-freedom (DOFs) in the form of sub-
cells in each cell (simplex). The simplex is referred to as a spectral volume and the subcells
are referred to as control volumes (CV). All the spectral volumes are partitioned in a ge-
ometrically similar manner in a simplex, and thus a single reconstruction is obtained. As
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in the finite volume method, the unknowns (or DOFs) are the subcell-averaged solutions.
A finite volume procedure is employed to update the DOFs.

The spectral volume method was successfully implemented for 2D Euler [29] and
3D Maxwell equations [18]. Recently Sun et al. [24] implemented the SV method for
the Navier Stokes equations using the LDG [6] approach to discretize the viscous fluxes.
Kannan and Wang [11] conducted some Fourier analysis for a variety of viscous flux
formulations. Kannan implemented the spectral volume method for the Navier Stokes
equations using the LDG2 (which is an improvised variant of the LDG approach) [12]
and DDG approaches [13]. Even more recently, Kannan extended the spectral volume
method to solve the moment models in semiconductor device simulations [8–10]. Other
developments include the formulation of a new boundary condition [14] and the imple-
mentation for elastohydrodynamic problems [15]. These past studies have demonstrated
the efficacy of the spectral volume method for a wide range of engineering applications,
and have established its robustness.

In spite of all the above developments, the handling of the inviscid fluxes has un-
dergone minimal changes since the inception of the spectral volume method. Till date,
almost all of spectral volume implementations use the Rusanov or the Roe formulation
as the approximate Riemann flux. These fluxes utilize an artificial dissipation term (or a
matrix) as a straight-forward addition to the averaged flux (central discretization). This
simplistic flux evaluation procedure has yielded acceptable results.

In this paper, we borrow ideas from Jaisankar et al. [7] to regulate this artificial dissi-
pation. In particular, we blend this diffusion regulation (aptly called DR), with the Ru-
sanov implementation of the approximate Riemann flux. Numerical experiments (both
inviscid and viscous) were conducted to compare and contrast the newly formulated DR
and the traditional formulations. The simulations performed with the DR showed dra-
matic improvements over those employing the traditional approach for 2nd, 3rd and 4th

order simulations. Moreover, the DR does not interfere with the viscous flux discretiza-
tion procedure. Hence it can be used in conjunction, with any viscous flux discretization
procedure like the LDG [8, 11], LDG2 [10, 12], penalty [9, 11] or the BR2 [9, 11] formula-
tions.

The paper is organized as follows. In the next section, we review the basics of the
SV method. The basics of the DR are discussed in Section 3. Section 4 presents with
the different test cases conducted in this study. Finally conclusions from this study are
summarized in Section 5.

2 Basics of the spectral volume method

2.1 General formulation

Consider the general conservation equation
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∂Q

∂t
+

∂( fi(Q)− fv(Q))

∂x
+

∂(gi(Q)−gv(Q))

∂y
=0, (2.1)

in domain Ω with appropriate initial and boundary conditions. In (2.1), x and y are the
Cartesian coordinates and (x,y)∈Ω, t∈ [0,T] denotes time, Q is the vector of conserved
variables, and fi and gi are the inviscid fluxes in the x and y directions, respectively.
fv and gv are the viscous fluxes in the x and y directions, respectively. Domain Ω is
discretized into I non-overlapping triangular (2D) cells. In the SV method, the simplex
grid cells are called SVs, denoted Si, which are further partitioned into CVs, denoted
Cij, which depend on the degree of the polynomial reconstruction. Fig. 1 shows linear,
quadratic and cubic partitions in 1D. Fig. 2 shows the same in 2D.

(a) (b) (c)

Figure 1: Partitions of a SV in 1D. Linear, quadratic and cubic reconstructions are shown in (a), (b) and (c)
respectively.

(a) (b) (c)

Figure 2: Partitions of a triangular SV. Linear, quadratic and cubic reconstructions are shown in (a), (b) and
(c) respectively.

We need N unknown control volume solution averages (or DOFs) to construct a de-
gree k polynomial. N is calculated using the below formula (in 2D)

N=
(k+1)(k+2)

2
, (2.2)

where k is the degrees of the polynomial, constructed using the CV solution averages.
The CV averaged conserved variable for Cij is defined as

Qi,j=
1

Vi,j

∫

Ci,j

QdV, j=1,··· ,N, i=1,··· , I, (2.3)

where Vi,j is the volume of Cij. Given the CV averaged conserved variables, a degree k

polynomial can be constructed such that it is (k+1)th order approximation to Q. In other
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words, we can write the polynomial as

pi(x,y)=
N

∑
j=1

Lj(x,y)Qi,j , (2.4)

where the shape functions Lj(x,y) satisfy

1

Vi,j

∫

Ci,j

Ln(x,y)dV=δj,n . (2.5)

Eq. (2.1) is integrated over the Cij. This results in the following equation

∂Q

∂t
+

1

Vi,j

K

∑
r=1

∫

Ar

(~F ·~n)dA=0, (2.6)

where ~F= ( fi− fv,gi−gv), where Ar represents the rth face of Cij, ~n is the outward unit
normal vector of Ar and K is the number of faces in Cij. The surface integration on each

face is done using a (k+1)th order accurate Gauss quadrature formula. The fluxes are
discontinuous across the SV interfaces. The inviscid fluxes are handled using a numerical
Riemann flux such as the Rusanov flux [22], the Roe flux [21] or AUSM flux [17]. The
handling of the viscous fluxes is discussed in the next section.

2.2 Spectral volume formulation for the diffusion equation

The following diffusion equation is considered first in domain Ω with appropriate initial
and boundary conditions

∂u

∂t
−∇·(µ∇u)=0, (2.7)

where µ is a positive diffusion coefficient. We define an auxiliary variable

~q=∇u. (2.8)

Eq. (2.7) then becomes

∂u

∂t
−∇·(µ~q)=0. (2.9)

Using the Gauss-divergence theorem, we obtain

~qijVij=
K

∑
r=1

∫

Ar

u·~ndA, (2.10a)

duij

dt
Vij−

K

∑
r=1

∫

Ar

µ~q·~ndA=0, (2.10b)
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where ~qij and uij are the CV averaged gradient and solution in Cij. As the solution u is

cell-wise continuous, u and~q at SV boundaries are replaced by numerical fluxes~q and u.
The above equations thus become

~qijVij=
K

∑
r=1

∫

Ar

u·~ndA, (2.11a)

duij

dt
Vij−

K

∑
r=1

∫

µ~q ·~ndA=0. (2.11b)

2.2.1 Penalty approach

A symmetric approach was given by Bassi and Rebay [4], in which the numerical fluxes
are defined by

u=0.5∗(uR+uL), (2.12a)

~q=0.5∗(~qR+~qL). (2.12b)

Analysis by Brezzi et al. [5] showed that the approach may be unstable in some situations.
Kannan et al. [11] suggested the following the penalty approach to obtain the numerical
fluxes:

u=0.5∗(uR+uL), (2.13a)

~q=0.5∗(~qR+~qL)+(uR−uL)~n
Ar

Vij
, (2.13b)

where ~qL and ~qR are the left and right state solution gradients of the face (of the CV) in
consideration, Ar is the area of the face (of the CV) in consideration, Vij is the CV volume.

One can see a similarity between the above equation and an approximate Riemann
(like Roe, Rusanov or AUSM) flux. The approximate Riemann flux is obtained by aver-
aging the left and right state fluxes and then adding a dissipation term. This dissipation
term is

1. Proportional to the jump in the solution between the right and left states.

2. Proportional to the Jacobian term/matrix or its eigen values (The Jacobian term in
1D is ∂ f̃ /∂Q̃). For instance, in Rusanov flux, it is the maximum eigen value of the
Jacobian matrix.

Eq. (2.13b) is obtained by averaging the left and right states and then penalizing it
with the penalty term. This is similar to the structure of the approximate Riemann flux.
The Jacobian term in this case has a dimension of 1/length. So we picked Ar/Vij as an
approximation to the eigen value. The penalty term has a sign which is opposite to the
dissipation term. This is because the dissipation terms come on the RHS.
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3 The diffusion regulation (DR) method

In this section, we first briefly describe the basics of the DR formulation and then discuss
its coupling to the Rusanov flux.

3.1 Basics of the DR formulation

The actual procedure can be explained using a 1D example. Consider the below 1D in-
viscid system:

∂Q

∂t
+

∂F

∂x
=0, (3.1)

where Q=[ρ,ρu,ρE]T and F=[ρu,ρu2+p,ρuE+pu]T . Integrating over the control volume,
and applying Gauss divergence theorem,

V
(Q

n+1
j −Q

n
j )

∆t
+(F̂j+0.5− F̂j−0.5)=0, (3.2)

where F is the numerical flux at the interface and is given by

F̂=
(FL+FR)

2
−D (3.3)

with L and R representing the left and the right states respectively, D representing the
numerical diffusion component.

As mentioned earlier, the crux of this paper is to regulate the dissipative flux D using
a pre-multiplication parameter θ. This is done to ensure that the numerical flux does
not get excessive dissipation. We borrow ideas from Jaisankar et al. [7] to obtain this
pre-multiplication parameter θ. This parameter is a function of the Mach number jump
across the interface. Obviously the maximum value of θ is unity so as to ensure that the
new formulation matches the original formulation for the worst case scenario. The DR
parameter is given by

θ=
(∆M2+δ2)

2δ
(1−e−κMα), 0≤|∆M|≤δ, (3.4a)

θ= |∆M|, δ< |∆M|≤1, (3.4b)

θ=1, |∆M|>1, (3.4c)

where ∆M = ML−MR, Mα is the average of the left and the right state Mach numbers,
δ= 0.5 and κ is set to a big number (≈ 10). The exponential term is used to reduce the
numerical dissipation to zero, when the Mach numbers become small. This is done to
accurately capture steady contact discontinuities. The parameter κ is needed to ensure a
steep and still smooth variation of θ in the very low Mach number region. Similarly, in
smooth regions, 0<θ≤δ. This implies that the numerical dissipation is more than halved
in smooth regions. More details on the above can be obtained from Jaisankar et al. [7].
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3.2 Coupling with the Rusanov flux

The Rusanov scheme is simple to implement, but has relatively high levels of numerical
dissipation, when compare to other flux formulations like the Roe or HLLC formulations.
The dissipation term in the Rusanov’s scheme is directly proportional to the local maxi-
mum eigenvalue of the Jacobian matrix and the difference between the right and left state
values:

D=
1

2
|λ|max(QR−QL). (3.5)

Coupling of the DR formulation, with the Rusanov flux results in

F̂=
FL+FR

2
−

θ

2
|λ|max(QR−QL). (3.6)

4 Test results

In this section, we provide numerical examples to illustrate the capability of the DR based
spectral volume formulation for solving the Euler and Navier Stokes equations in 2D. An
implicit LU-SGS scheme was used for time advancement. Details on this time marching
procedure can be found in [8, 11, 16].

4.1 Test case 1

In this section, we simulate an inviscid flow over a NACA-0012 airfoil at Mach=0.4 and
angle of attack of zero degree. The computational grid is shown in Fig. 3. The outer
boundary is 20 chords away from the airfoil centre. Riemann invariants are employed as
the BC at the far-field. The solution is smooth and hence the total entropy at any location
should be technically a constant.

Figure 3: Grid (72∗24∗2) used for the subsonic flow over the NACA 0012.

Fig. 4 shows the second order entropy contours obtained using the two different
methods. It is clear from the entropy contours that the new DR formulation produces
much less spurious entropy than the traditional formulation. It must be noted that
straight boundary faces were employed for these second order simulations. The third and
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(a) (b) (c)

Figure 4: Entropy contours obtained for second order subsonic flow over an airfoil. Case (a): Using original
formulation; Case (b): Using DR; Case (c): Legend.

(a) (b) (c)

Figure 5: Entropy contours obtained for third order subsonic flow over an airfoil. Case (a): Using original
formulation; Case (b): Using DR; Case (c): Legend.

(a) (b) (c)

Figure 6: Entropy contours obtained for fourth order subsonic flow over an airfoil. Case (a): Using original
formulation; Case (b): Using DR; Case (c): Legend.

the fourth order contours are shown in Fig. 5 and Fig. 6 respectively. The DR formulation
is found to deliver higher fidelity solutions than the original formulation. Quadratic and
cubic boundaries as described in [30] are adopted for the 3rd and 4th order simulations
respectively.

For the sake of completeness, we also present the range of θ in Table 1. The mini-
mum of these values is expected to monotonically decrease with increasing order. This
is because, the average Mach number (average of left and right states) near the wall goes
to zero, as the order increases (and as the curved wall boundary comes into effect). The
upper limit is decided by the flow conditions.
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Table 1: Range of θ for Test case 1.

Order Minimum Maximum
2 0.163 0.381
3 0.0279 0.375
4 0.00781 0.311

4.2 Test case 2

We chose a testing case of the subsonic flow over a bump at Mach=0.5. This case has been
used by p-Multigrid method for DG formulations of Euler equations in [19,20] and for the
SD formulations of the Euler equations by Liang et al. in [16]. A 10% thick circular bump
is mounted on the centre of the channel bottom. The length of the channel is 3, its height
1, and its width 0.5. The computational grid with 3140 elements is shown in Fig. 7. The
circular surface of the bump needs a higher-order boundary treatment. Quadratic and
cubic boundaries as described in [30] are adopted for the 3rd and 4th order simulations
respectively. Riemann invariants are employed at the inlet and a fix-pressure condition
is employed at the outlet.

Figure 7: Grid used for the subsonic flow over a bump confined in a channel.

Based on Figs. 8-10, it is clear that the simulations obtained by the DR formulations
display much smoother contours than their counterparts, which use traditional formu-
lation. These observations are in accord with the observations made by analyzing the
previous test case results.

4.3 Test case 3

This test case involves simulating the Couette flow. The Couette flow is an analytical
solution of the Navier-Stokes equations, and was selected to study the accuracy for the
2D Navier-Stokes solver, using both the DR and the original formulations. This problem
models the viscous flow between a stationary, fixed temperature, (at T0) bottom plate,
and a moving, fixed temperature (at T1) top plate at speed of U. The distance between
the two plates is H. Cyclic boundary conditions are employed at the inlet and the outlet.

It has an exact solution under the simplification that the viscosity coefficient µ is a
constant and the speed is low enough to ensure nearly incompressible effects. The steady
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(a) (b) (c)

Figure 8: Entropy contours obtained for second order subsonic flow over a bump confined in a channel. Case
(a): Using original formulation; Case (b): Using DR; Case (c): Legend.

(a) (b) (c)

Figure 9: Entropy contours obtained for third order subsonic flow over a bump confined in a channel. Case (a):
Using original formulation; Case (b): Using DR; Case (c): Legend.

(a) (b) (c)

Figure 10: Entropy contours obtained for fourth order subsonic flow over a bump confined in a channel. Case
(a): Using original formulation; Case (b): Using DR; Case (c): Legend.

analytic solution is

u=
U

H
y, v=0, (4.1a)

T=T0+
y

H
(T1−T0)+

µu2

2κ

y

H

(

1−
y

H

)

, (4.1b)

p=constant, ρ=
p

RT
, (4.1c)

where κ is the thermal conductivity and R is the gas constant.

The accuracy of the two formulations was tested. A penalty formulation was used to
discretize the viscous fluxes [9, 11]. The L1 and the L∞ temperature errors are presented
in Table 2, Table 3 and Table 4 for 2nd, 3rd and 4th orders respectively. It can be seen that
the obtained orders are very close to the ones expected. It can also be seen that the DR
formulation always yields better results than the original formulation.
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Table 2: Temperature error for the second order Couette flow problem.

Grid Formulation L1 Error L1 Order L∞ Error L∞ Order
10×10×2 Original 5.976e-05 - 2.115e-04 -
10×10×2 DR 5.911e-05 - 2.074e-04 -
20×20×2 Original 1.500e-05 1.99 5.197e-05 2.03
20×20×2 DR 1.427e-05 2.05 4.952e-05 2.07
40×40×2 Original 3.743e-06 2.00 1.335e-05 1.96
40×40×2 DR 3.482e-06 2.03 1.151e-05 2.10

Table 3: Temperature error for the third order Couette flow problem.

Grid Formulation L1 Error L1 Order L∞ Error L∞ Order
10×10×2 Original 1.043e-07 - 3.546e-07 -
10×10×2 DR 6.842e-08 - 2.681e-07 -
20×20×2 Original 1.278e-08 3.03 3.769e-08 3.23
20×20×2 DR 8.672e-09 2.98 3.052e-08 3.14
40×40×2 Original 1.599e-09 3.00 4.824e-09 2.97
40×40×2 DR 1.130e-09 2.94 3.923e-09 2.96

Table 4: Temperature error for the fourth order Couette flow problem.

Grid Formulation L1 Error L1 Order L∞ Error L∞ Order
10×10×2 Original 1.247e-08 - 2.728e-08 -
10×10×2 DR 1.051e-08 - 2.263e-08 -
20×20×2 Original 7.648e-10 4.03 1.775e-09 3.94
20×20×2 DR 6.523e-10 4.01 1.444e-09 3.97

4.4 Test case 4

In this section, we simulate flow over a NACA 0012 airfoil. The flow was subsonic at
Mach = 0.5 and had a zero angle of attack. The Reynolds number was 5000. This has
been a widely used validation case for viscous flow solvers and was used in [11–13]. The
computational grid is the same as the one used in the first test case. An important trait
of this test case is the formation of a small recirculation bubble that extends in the near
wake region of the airfoil. This is caused due to the separation of the flow near the trailing
edge. A penalty formulation was used to discretize the viscous fluxes [9, 11].

The current simulations were performed using the two formulations for 2nd, 3rd and
4th orders. These are compared with the ones performed in [11–13]. These comparisons
are summarized in Table 5. It is reasonable to assume that the 5th order spectral differ-
ence results of Sun et al. [23] are the most accurate of all the ones listed in Table 5. This
table compares the separation point, drag coefficient due to pressure (CDp) and the drag
coefficient due to viscous stresses (CD f ).

It can be seen that the DR simulations consistently outperform their traditional coun-
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Table 5: Comparison of pressure and viscous drag coefficients and location of separation point in a flow over
an airfoil simulation, using DR and the original formulations.

Method NDOFs Separation Point (CDp) (CD f )

2nd order SV (Original) 10368 94.2% 2.0498e-2 3.5570e-2

2nd order SV (DR) 10368 91.9% 2.1610e-2 3.3970e-2

3rd order SV (Original) 20736 81.7% 2.2081e-2 3.2206e-2

3rd order SV (DR) 20736 81.6% 2.2114e-2 3.2397e-2

4th order SV (Original) 34560 81.3% 2.2270e-2 3.2374e-2

4th order SV (DR) 34560 81.3% 2.2267e-2 3.2405e-2

5th order SD [23] 43200 81.4% 2.2250e-2 3.2510e-2

terparts for the 2nd, 3rd and 4th order simulations. The above two test cases, demonstrate
that this DR formulation works equally well for the Navier-Stokes equations as well.

Fig. 11 shows the Mach contours computed with linear and quadratic SVs using the
DR formulation. The solution gets smoother and smoother with the increasing of the
order of the polynomial reconstruction. The wake region looks more refined and contin-
uous for the 3rd order case. The difference between the 3rd and the 4th order plots were
negligible. The Mach contours computed using the traditional formulation look visually
similar and hence are not shown in this paper.

(a) (b)

Figure 11: Mach contours around the NACA0012 airfoil at zero degree of attack, Re=1000, M=0.5. Case (a):

2nd order; Case (b): 3rd order.

5 Conclusions

The diffusion regulation (DR) approach, postulated by Jaisankar et al. [7] was imple-
mented in the high order spectral volume context. This approach modifies the jump
in the Rusanov flux, based on the jump in the Mach number. This modification in the
Rusanov flux jump is locally decided, automatic and needs no user intervention. The
numerical test cases indicated that this formulation was able to improve the fidelity of
the high order spectral volume method for both Euler and Navier Stokes equations and
for all the orders.
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Future work will involve coupling of this DR formulation to other approximate Rie-
mann fluxes like the Roe and the HLLC fluxes, applications to discontinuous regimes and
cases involving highly skewed meshes. The final goal of this project would be to extend
this formulation to more complex 3D flows, such as turbulent combustion, explosions,
and multiphase flows, as undertaken by Balakrishnan and co-workers [1–3]. Such prob-
lems also involve hydrodynamic instabilities, whose growth rates cannot be captured
accurately when used in conjunction with the traditional second order low dissipation
Rusanov flux.
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