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Abstract. A novel full Eulerian fluid-elastic membrane coupling method on the fixed
Cartesian coordinate mesh is proposed within the framework of the volume-of-fluid
approach. The present method is based on a full Eulerian fluid-(bulk) structure cou-
pling solver (Sugiyama et al., J. Comput. Phys., 230 (2011) 596–627), with the bulk
structure replaced by elastic membranes. In this study, a closed membrane is consid-
ered, and it is described by a volume-of-fluid or volume-fraction information generally
called VOF function. A smoothed indicator (or characteristic) function is introduced
as a phase indicator which results in a smoothed VOF function. This smoothed VOF
function uses a smoothed delta function, and it enables a membrane singular force to
be incorporated into a mixture momentum equation. In order to deal with a mem-
brane deformation on the Eulerian mesh, a deformation tensor is introduced and up-
dated within a compactly supported region near the interface. Both the neo-Hookean
and the Skalak models are employed in the numerical simulations. A smoothed (and
less dissipative) interface capturing method is employed for the advection of the VOF
function and the quantities defined on the membrane. The stability restriction due to
membrane stiffness is relaxed by using a quasi-implicit approach. The present method
is validated by using the spherical membrane deformation problems, and is applied to
a pressure-driven flow with the biconcave membrane capsules (red blood cells).
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1 Introduction

To compute the solutions of fluid-membrane interaction problems where the motion of
the fluid is coupled with the motion and deformation of embedded membranes, efficient
numerical methods that can be implemented easily are often required. The immersed
boundary method developed by Peskin [40, 41] is one of the most successful for these
types of problems. Under the framework of the immersed boundary method, the fluid
equations are solved in an Eulerian frame, while the elastic membrane is tracked in a
Lagrangian manner by a set of marker points. The force exerted by the membrane on
the Eulerian flow field is interpolated with the smoothed (or approximate) delta func-
tion. The immersed boundary method has been applied to a wide variety of biological
problems [10, 12, 14, 15]. Many refinements and extensions have been proposed over the
past several decades. For example, a new version of the method was proposed in [29]
that achieves the second-order accuracy for problems with smooth solutions. The front
tracking method [18, 51, 52] can be applied to multi-phase flow problems including the
surface tension effect with different fluid properties. Moreover, the immersed interface
method [30, 31, 33] provides a recipe for developing schemes for problems with piece-
wise smooth solutions, by introducing the modified Taylor expansion with the interfacial
jump conditions. In these schemes, the interface can be accurately represented by the La-
grangian particles, which is of particular interests when the interface has structures that
are under the resolution of the fixed Eulerian mesh. On the other hand, the particle-based
methods do not automatically conserve the volume or mass encompassed by the surface
reconstructed from the marker particles, and the largely distorted surface meshes may
lead to a numerical instability.

In order to overcome such problems, full Eulerian approaches were proposed for the
fluid-structure interaction [4, 7, 9, 25, 34, 37, 38, 48, 49, 53, 54] and fluid-membrane inter-
action [6]. Rather than using the Lagrangian particles, field variables or functions to
identify the interface are defined and updated on the Eulerian mesh. Cottet et al. [6]
introduced the level-set function to identify the interface, in addition, the membrane
stretching or variation of the surface area was obtained from the information of the level-
set function. As a result, the membrane force was successfully obtained on the Eulerian
mesh without using the interfacial material points. However, since the constitutive law
of the membrane elasticity is limited to a model which only involves a variation of the
surface area, it has not been applied yet for more general membrane models which de-
pend on the principal strains. Recently, Sugiyama et al. [49] formulated a fluid-structure
interaction model based on the full Eulerian framework for an incompressible fluid and
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hyperelastic bulk solid, and this model was applied to a pressure-induced flow with bi-
concave elastic particles [48] and a hyperelastic wavy channel [37]. The basic ideas are to
describe each phase (fluid or solid) with the solid/fluid volume-fraction data, so-called
volume-of-fluid (VOF) function [23], and a left Cauchy-Green deformation tensor to rep-
resent the solid deformation. The method is applicable to general hyperelastic materials
immersed in an incompressible viscous fluid.

In the present paper, we propose a novel full Eulerian fluid-membrane interaction
method, as an extension of the general ideas in Sugiyama et al. [49]. The main difference
between the current work and that reported in [49] lies in the immersed elastic materials.
The immersed membrane is represented by a smoothly-defined VOF function on the Eu-
lerian mesh, and an approximate delta function given from the smoothed VOF function
enables a membrane singular force to be incorporated into a mixture momentum equa-
tion. In order to deal with the membrane deformation on the Eulerian mesh, a part of
the surface left Cauchy-Green deformation tensor is introduced and updated. The in-
troduced surface deformation tensor enables to take account of the neo-Hookean model
and Skalak model which is generally used in a practical model of a red blood cell. From
a numerical point of view, a continuous (less dissipative) interface capturing method,
namely MTHINC method [24,26] developed from [55,56], is employed for the advection
of the VOF function. Moreover, a convolution technique is newly proposed with coupling
with the MTHINC method for the advection of a quantity defined on the membrane to
suppress the numerical dissipation. In addition, we extend the quasi-implicit formula-
tion [25] to the membrane stress treatment to relax a numerical stability restriction caused
by membrane stiffness.

This rest of the paper is organized as follows. The numerical approach including the
membrane model, basic equations and discretization, is described in Section 2. The vali-
dations in the advection and interaction problems, and the extension to a flow including
the biconcave capsules are shown in Section 3. Finally, we conclude this paper with some
remarks in Section 4.

2 Mathematical formulation and numerical method

2.1 Membrane model

We follow the basic derivation of the large deformable membrane model [1, 45]. The de-
formation gradient tensor F is defined as F=∂x/∂X, where x is a current coordinate and X

is a reference coordinate in a stretch-free condition. Since the thickness of the membrane
is often negligible comparing to its size, in the present approach based on continuum
mechanics, the relationships n·Fs =0 and Fs ·nR =0 for the surface deformation gradient
tensor should be satisfied. Here n and nR are the unit normal vectors in a current con-
figuration and reference configuration, respectively. Therefore, the surface deformation
gradient tensor Fs is given by

Fs=P·F·PR, (2.1)
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where P= I−nn and PR = I−nRnR are the surface projection tensors. Then the surface
left Cauchy-Green deformation tensor Bs is defined as

Bs=Fs ·FT
s . (2.2)

For hyperelastic membranes, it is convenient to use surface strain energy function Ws,
which consists of the surface invariants I1,2 of the surface left Cauchy-Green deformation
tensor. The surface invariants I1,2 can be expressed as

I1= tr(Bs)−2 and I2=
(

tr(Bs)
2−tr(B2

s )
)

/2−1.

In this paper, they are rewritten as

c1= I1+1= tr(Bs)−1, (2.3a)

c2= I2+1=
1

2

(

tr(Bs)
2−tr(B2

s )
)

, (2.3b)

and the Cauchy stress is given as follows

τ=
2√
c2

(

∂Ws

∂c1
Bs+c2

∂Ws

∂c2
P

)

. (2.4)

The strain energy function of the neo-Hookean model [1] is given by

Ws =
Es

6

(

c1+
1

c2
−2

)

, (2.5)

and Skalak et al. [45] derived a strain energy function for red blood cells as

Ws =
Es

8

(

c2
1+αc2

2−2(α+1)c2+α+1
)

. (2.6)

Here Es is an elastic modulus, and α in (2.6) indicates the magnitude to suppress the
surface dilation, which generally satisfies the condition α≫1.

For red blood cells, there exists significant bending resistance that suppresses the for-
mation of sharp edges. Following the bending model proposed by Pozrikidis [44], the
bending stress qn is given by the transverse shear tension q and the unit normal vector
n, where q is given by the surface divergence of the bending moment tensor m,

q=((P·∇)·m)·P. (2.7)

The bending moment m is modeled by a linear constitutive law with bending stiffness
Eb, which is expressed as

m=Eb(κ−κRP), (2.8)
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where κ and κR are the current Cartesian curvature tensor and the reference mean curva-
ture, given by

κ=−P·∇n=−∇n, (2.9a)

κR =−1

2
tr(PR ·∇nR)=−1

2
tr(∇nR), (2.9b)

respectively.
Combining the in-plane stress and the bending stress, the local force density vector f

is given by the surface divergence of the membrane stress

f=(P·∇)·(τ+qn). (2.10)

2.2 Full Eulerian formulation

2.2.1 Basic equations

We consider a whole domain Ω is separated into an inner domain Ω1 and an outer do-
main Ω2 by a closed interface (membrane) Γ, i.e. Ω = Ω1∪Ω2∪Γ. Assuming that the
velocity is continuous across the interface, the jump conditions [∗]= ∗2−∗1 at the inter-
face are given by the kinematic and dynamic conditions

[v]=0, [n·σ]= fΓ, (2.11)

where v= (v1,v2,v3) is the velocity vector, σ the stress tensor, n the unit normal vector
and fΓ the surface singular force vector.

Assuming that the fluid is incompressible and Newtonian (with constant viscosity),
the mixture equations without higher order terms are simply given as,

∇·v=0, (2.12a)

ρ

(

∂v

∂t
+v·∇v

)

=−∇p+∇·(2µD(v))+
∮

Γ
fΓδ(3)(x−xΓ)dΓ, (2.12b)

where p is the pressure, ρ the density, µ the dynamic viscosity, δ(3)(x) the three-dimensional
delta function and D(v)=(∇v+∇vT)/2 the strain rate tensor. (2.12) is the standard for-
mulation of the immersed boundary method.

To describe various physical and mathematical quantities in the inner and outer re-
gions and on the interface in a full Eulerian approach, an indicator function is introduced
as,

H(x)=

{

1, x∈ Ω1,

0, x∈ Ω2.
(2.13)

The volume-fraction or volume-of-fluid (VOF) function over a small volume region δV(x)
is defined as follows

φ(x)=

∫

δV(x) H(x′)dV ′
∫

δV(x)dV ′ . (2.14)
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The singular force term in (2.12) can be replaced without using an explicitly-represented
interface

∮

Γ
fΓδ(3)(x−xΓ)dΓ=δ(x−xΓ)f(x), (2.15)

where δ(x) is the one-dimensional delta function given by δ(x−xΓ)= |∇H(x)|. Hereafter,
we abbreviate δ(x) as δ. In the present approach, a following form is employed to include
the singular force

δf=δ(P·∇)·(τ+qn)

=∇·(δτ+q̃n), (2.16)

where q̃ is a modified transverse shear tension vector with κ̃R =δκR

q̃=(∇·m̃)·P, m̃=Eb(δκ−κ̃RP). (2.17)

The reason to use the modified form is to reduce a numerical dissipation and suppress
an oscillation of κR. This is described later. The detailed formula deformations of (2.16)
and (2.17) are shown in Appendix A.

The surface left Cauchy-Green deformation tensor is required to evaluate the in-plane
stress (2.4). Here we again consider (2.2) with the surface gradient tensor (2.1), then,

Bs =Fs ·FT
s =P·F·PR ·PT

R ·FT ·PT

=P·F·PR ·FT ·P=P·Gs ·P, Gs=F·PR ·FT, (2.18)

where, we use the relationship PR=PR ·PT
R. The material time derivative (D/Dt=∂/∂t+

v·∇) of Gs is given as,
DGs

Dt
=∇vT ·Gs+Gs ·∇v,

by the material time derivatives of the reference surface projection tensor and the defor-
mation gradient tensor,

DPR

Dt
=0,

DF

Dt
=∇vT ·F.

In summary, the basic equations in the present Eulerian approach are given as follows

∂φ

∂t
+v·∇φ=0, (2.19)

∇·v=0, (2.20)

ρ

(

∂v

∂t
+v·∇v

)

=−∇p+∇·(2µD(v))+∇·(δτ+q̃n), (2.21)

∂Gs

∂t
+v·∇Gs =∇vT ·Gs+Gs ·∇v, (2.22)

∂κ̃R

∂t
+v·∇κ̃R =−κ̃Rn·∇v·n, (2.23)



550 S. Ii et al. / Commun. Comput. Phys., 12 (2012), pp. 544-576

and

Bs=P·Gs ·P, P= I−nn.

Here, the unit normal vector and Cartesian curvature tensor are given by,

n=
∇φ

|∇φ| , κ=−∇
( ∇φ

|∇φ|

)

, (2.24)

and the density and viscosity are written in a mixture form

{

ρ=φρ1+(1−φ)ρ2,

µ=φµ1+(1−φ)µ2.
(2.25)

The surface in-plane stress and bending stress are given by (2.4) and (2.17), respectively. If
Lagrangian marker points are provided to describe the interface, an analytical expression
of the delta function smoothed at the grid size is often introduced to transfer quantities
between the Lagrangian and Eulerian locations [10, 12, 14, 15, 18, 29, 40, 41, 51, 52]. In the
full Eulerian approach, however, no Lagrangian marker is incorporated. Therefore, the
delta function in (2.17) and (2.21) is evaluated in a different manner as detailed below.

In the present study, we introduce a smoothed indicator function in which the inter-
face is expanded to its normal direction with a compactly supported region Γ (Fig. 1).
Therefore, the VOF function has a smoothed profile on Γ. By considering the compactly
supported region Γ, the one-dimensional delta function is smoothly approximated as,

δ(x)≈|∇φ|. (2.26)

Same idea is also used in the continuum surface force (CSF) model [3].
Since κR(X(x,t)) is a variable in a reference configuration, it cannot be directly ob-

tained from φ(x,t) defined in a current configuration. Thus, κR(X(x,t)) has to be up-
dated as the state variable in the fully Eulerian method. Since the equation for updating
κR(X(x,t)) is an advection equation (2.27), we redefined κ̃R(x,t) as a variable in the cur-
rent configuration with a convolution form

∫

δV
δ(3)(x−xΓ)κR(X(xΓ,t))dV=δ(x−xΓ)κR(X(x,t))≈|∇φ(x,t)|κR(x,t),

which is approximated using a less dissipative numerical method (described later) to
avoid the numerical diffusion, instead of updating κR itself. The updating equation (2.23)
of κ̃R(x,t) is obtained by coupling the following equations

∂κR

∂t
+v·∇κR =0,

∂|∇φ|
∂t

+v·∇|∇φ|=−|∇φ|n·∇v·n. (2.27)
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Figure 1: The compactly supported or smoothed interface region Γ immersed in the Cartesian mesh.

2.2.2 Discretization

A cubic computational domain is divided into a Cartesian coordinate mesh,

δVijk =δxi×δyj×δzk

=[xi−1/2,xi+1/2]×[yj−1/2,yj+1/2]×[zk−1/2,zk+1/2], (2.28)

for i ∈ [1,Nx], j ∈ [1,Ny], k ∈ [1,Nz], where Nx,Ny,Nz is the total number of mesh points
in each x,y,z direction. The variable location follows the staggered-grid arrangement
shown in Fig. 2.

Figure 2: The variable locations on the staggered-grid.

Temporal discretization

Following the standard procedure of a projection type method [20], the variables are
updated step-by-step. Hereafter, the superscripts n, ∗ and n+1 of a variable represent
the time level of a current step, intermediate step and next step, respectively.
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First, the VOF function φ and the reference curvature κ̃R are updated with the velocity
vn satisfying the divergence free condition

φn+1−φn

∆t
+

3

2
vn ·∇φn− 1

2
vn−1 ·∇φn−1=0, (2.29)

κ̃n+1
R −κ̃n

R

∆t
+

3

2
vn ·∇κ̃n

R−
1

2
vn−1 ·∇κ̃n−1

R

=−
(

3

2
κ̃n

Rnn ·∇vn ·nn− 1

2
κ̃n−1

R nn−1 ·∇vn−1 ·nn−1

)

. (2.30)

Here, the second-order Adams-Bashforth method is applied. After this, the unit normal
vector n, Cartesian curvature tensor κ, surface projection tensor P, mixture density ρ and
viscosity µ at time step n+1 are calculated by using φn+1.

Next, the predicted velocity v∗ is temporarily obtained by solving the equation of
motion,

ρn+1

(

v∗−vn

∆t
+

3

2
vn ·∇vn− 1

2
vn−1 ·∇vn−1

)

=−∇pn+
1

2
∇·
(

2µn+1D(vn)+2µn+1D(v∗)+Tn
)

+
1

2
∇·
(

|∇φn+1|(τn+τ
∗)
)

+∇·(q̃n+1nn+1). (2.31)

Here, T is the stress increment which will be determined later. The second-order Adams-
Bashforth method is applied to the advection term, and the Crank-Nicolson method is
applied to the viscous stress and in-plane elastic stress. Following [25], the in-plane elas-
tic stress at intermediate step ∗ is evaluated by a linear expansion of Gs,

τ
∗≈τ

n+Jn : ∆Gn
s , (2.32)

with the fourth-order Jacobian tensor J at current step n defined as,

Jn =
∂τ

n

∂Gn
s

=
∂τ

n

∂Bn
s

:
∂Bn

s

∂Gn
s

. (2.33)

The detailed form of the fourth-order Jacobian tensor J is shown in Appendix B. From
(2.22), ∆Gn

s is approximately given as,

∆Gn
s =G∗

s −Gn
s

≈ ∆t

2

(

(∇vn)T ·Gn
s +Gn

s ·∇vn
)

+
∆t

2

(

(∇v∗)T ·Gn
s +Gn

s ·∇v∗
)

, (2.34)

where the advection term is neglected as our preliminary study found that the effect of
this term is insensitive to the overall projection procedure. By substituting (2.32) and
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(2.34) into (2.31), a linear system for v∗ is given by,

ρn+1

∆t
v∗−∇·

(

µn+1D(v∗)+
∆t

4
|∇φn+1|H(v∗,Gn

s ,Jn)

)

=
ρn+1

∆t
vn−ρn+1

(

3

2
vn∇vn− 1

2
vn−1∇vn−1

)

−∇pn+
1

2
∇·(2µn+1D(∇vn)+Tn)

+∇·
(

|∇φn+1|
(

τ
n+

∆t

4
H(vn,Gn

s ,Jn)

)

+q̃n+1nn+1

)

, (2.35)

where H(v,Gs,J) is a second-order tensor defined as

H(v,Gs,J)= J :
(

(∇v)T ·Gs+Gs ·∇v
)

,

and its detailed form is shown in Appendix B.
Subsequently, we solve a Poisson equation for a scalar variable ψ by using the pre-

dicted velocity,

∇·
(∇ψn+1

ρn+1

)

=
∇·v∗

∆t
. (2.36)

And the velocity and pressure are updated as follows

vn+1=v∗−∆t
∇ψn+1

ρn+1
, (2.37)

pn+1= pn+ψn+1. (2.38)

The time-advancement of Tn+1 is completed by substituting v∗=vn+1+∆tψn+1/ρn+1 into
(2.31)

Tn+1=∆tµn+1

(

∇
(∇ψn+1

ρn+1

)

+∇
(∇ψn+1

ρn+1

)T
)

, (2.39)

and Gs is predicted with the divergence free velocity,

Gn+1
s −Gn

s

∆t
+

3

2
vn ·∇Gn

s −
1

2
vn−1 ·∇Gn−1

s

=
1

2

(

(∇vn)T+(∇vn+1)T
)

·Gn
s +

1

2
Gn

s ·(∇vn+∇vn+1). (2.40)

The stability criteria for ∆t is determined from the advection term, viscous term and
membrane in-plane and bending stress terms. In the present method, an implicit ap-
proach [25] is adopted for the in-plane stress, however, it still imposes a stability limit
due to nonlinearity. In all present simulations, ∆t may be restricted by the stability con-
dition of the membrane in-plane and bending stress terms even if the stability conditions
of the advection and viscous terms defined as max(u)∆t/∆x and max(µ/ρ)∆t/∆x2 are
sufficiently less than 0.2 and 10, respectively. In conclusion, ∆t is determined from the
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trial and error approach because the determination of the exact stability condition for the
membrane stress is not easy due to the nonlinear effect including the interfacial motion
and its deformation. To obtain more precise stability condition based on the present im-
plicit approach will be left as a topic for future work. As further attractive choices to
stabilize the system, the efficient implicit approaches [5, 21, 22, 32, 36] would be consider-
able.

Spatial discretization

For the spatial discretization, the second-order central finite difference method is basi-
cally employed, but as an exception, the convection term in (2.30) is discretized by the
kinetic energy conservation method [28], and the advection term in (2.39) is discretized by
the third-order upwind finite volume (FV) method [2]. Meanwhile, to avoid the numer-
ical dissipation and oscillation, a less dissipative numerical method, so-called interface
capturing method is applied to the advection terms in (2.28) and (2.29). (The advection
term in (2.39) should also be discretized by a less dissipative numerical method, but for-
tunately, since Gs has a smoothed profile near the interface, we apply the third-order FV
method).

In the discretization, we adequately calculate a value from the neighborhood by the
bi-linear interpolation. For example, we define the indices at cell node i+ 1

2 j+ 1
2 k+ 1

2 and
cell center ijk, then a VOF function at the cell node is calculated as,

φi+ 1
2 j+ 1

2 k+ 1
2
=

1

8

(

φi j k+φi+1 j k+φi j+1 k+φi+1 j+1 k

+φi j k+1+φi+1 j k+1+φi j+1 k+1+φi+1 j+1 k+1

)

.

Note that in order to evaluate the elastic stress τ, we need to compute Gs only in the
interface region Γ. In the fluid phase, a shearing motion gives rise to an elongation of
a fluid element. Accordingly, some components of Gs tend to grow exponentially with
time, resulting in an overflow of the computation [25, 34, 49]. To avoid such a numeri-
cal instability, we denote computational cells with δijkh≥ ǫ, where δijkh is a normalized

approximate delta function, as interface regions, and therein reinitialize Gn+1
s to be the

initial stretch-free condition Gn+1
s =Pn+1 in δijkh<ǫ. The choice of ǫ depends on the prob-

lems and interfacial smoothness. In this study, we set the value of ǫ between 0.01 to 0.1.
However, a profile of Gs is damped in the case that Gn+1

s is cut off or replaced with Pn+1

outside of the interface in a moving interface problem. In the present study, a high order
method (the 3rd order FV method) is applied to discretize the advection term to reduce
numerical damping. However, problem still occurs for computations over longer time
periods. For this reason, our numerical results certainly depend on the value of ǫ. As
a future work, the extrapolation technique such as [46] should be incorporated into the
present method to avoid the numerical damping and to increase the robustness.
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A continuous interface capturing method

To be precise, the updating equation of the VOF function φ is derived from the advection
equation of the indicator function H with the definition (2.14), as follows

∂φ

∂t
+∇·(vH)=φ∇·v. (2.41)

Here, from a numerical point of view, an accurate treatment is necessary to numerically
obtain the flux vH without the numerical dissipation and oscillation. In other words, an
accurate approximate function Ĥ is desirable for the indicator function H. In the dis-
cretization, the approximate function Ĥ is piecewisely reconstructed in a single mesh ijk,
that is Ĥijk. In this study, from a requirement of the smoothed delta function, a contin-
uous interface capturing method [24, 26], namely MTHINC method, is applied for the
advection of φ and κ̃R. We briefly introduce the MTHINC method below.

The continuous approximate function with a linear interface is introduced by using
the hyperbolic tangent function,

Ĥijk(x)=
1

2

(

1+tanh(β′(nijk ·x+dijk))
)

, (2.42)

where n·x+d = 0 indicates the implicit representation of the interface, and β′ = β/h is
a parameter to decide a sharpness of the interface, which depends on a problem. (In
this paper, β = 1 is employed). Here, h is a characteristic length, and it is given as
h = ∆x = ∆y = ∆z in a uniform Cartesian mesh, thus it is found that the approximate
function (2.41) approaches to the exact indicator function (or Heaviside function) as grid
resolution increase. The normal vector defined in (2.24) is calculated by the Youngs esti-
mation [57, 58] from the instantaneous VOF function. Then dijk in (2.41) is decided by a
constraint,

φijk =
1

∆xi∆yj∆zk

∫

δxi

dx
∫

δyj

dy
∫

δzk

dzĤijk(x). (2.43)

Since the VOF function is solved with the numerical flux estimated by the approximate
function (2.41), it is expected the numerical result smoothly distributes over a few com-
putational meshes, but not dissipative over time. For a more detailed description, we
refer the readers to [24, 26].

In this paper, we propose an advection method for a singular quantity defined at the
interface, following the idea of the MTHINC method. The advection term in (2.29) is
rewritten to,

∂κ̃R

∂t
+v·∇κ̃R =0

→ ∂κ̃R

∂t
+∇·(vκ̃R)= κ̃R∇·v

→ ∂κ̃R

∂t
+∇·(vG)= κ̃R∇·v, (2.44)
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where G(x) is a function to describe the profile κ̃R. Using approximate function (2.41),
the piecewise approximate function Ĝijk(x)≈G(x), x∈δVijk is prescribed as,

Ĝijk(x)= cijk|∇Hijk(x)|= cijk
β′

2

(

1−tanh2(β′(nijk ·x+dijk))
)

, (2.45)

where, by using the constraint,

(κ̃R)ijk =
1

∆xi∆yj∆zk

∫

δxi

dx
∫

δyj

dy
∫

δzk

dzĜijk(x), (2.46)

coefficient cijk is uniquely determined as,

cijk =
∆xi∆yj∆zk(κ̃R)ijk

∫

δxi
dx
∫

δyj
dy
∫

δzk
dz|∇Hijk(x)|

. (2.47)

The volume integration in (2.46) is numerically estimated with the eight-point Gaussian
quadrature.

In the original MTHINC method, a semi-Lagrangian updating way with a directional
splitting approach is adopted to update the VOF function. In this paper, the second-order
Adams-Bashforth method is adopted for simplicity. The flux divergence terms ∇·(vH)
in (2.40) and ∇·(vG) in (2.43) are calculated by the Gauss divergence theorem. In a
Cartesian coordinate mesh, it is simply written as,

∇·(vH)ijk ≈∇·(vĤ)ijk =
1

∆xi

(

(v1H)i+ 1
2 jk−(v1H)i− 1

2 jk

)

+
1

∆yj

(

(v2H)ij+ 1
2 k−(v2H)ij− 1

2 k

)

+
1

∆zk

(

(v3H)ijk+ 1
2
−(v3H)ijk− 1

2

)

, (2.48)

where H indicates an area integrated average value on a mesh boundary for the function
Ĥ(x) which is reconstructed on a cell by an upwind direction of a cell-boundary velocity,
and we adopt the four-point Gaussian quadrature.

3 Numerical results

We apply the SOR method for solving the linear system (2.34). In this study, same density
is prescribed for both fluid phases, therefore, the pressure Poisson equation (2.35) can be
solved by the FFT method for a periodic boundary.

In the present paper, the iteration in the SOR method is carried on until the iterative
error between (k) and (k+1) iterative steps determined as,

E(k+1)=

√

√

√

√

√

∑i,j,k(v1
(k+1)
ijk −v1

(k)
ijk )

2+∑i,j,k(v2
(k+1)
ijk −v2

(k)
ijk )

2+∑i,j,k(v3
(k+1)
ijk −v3

(k)
ijk )

2

∑i,j,k(v1
(0)
ijk )

2+∑i,j,k(v2
(0)
ijk )

2+∑i,j,k(v3
(0)
ijk )

2
,

is less than a criteria 10−6, and an acceleration parameter is set to 1.4.
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(a) t=0 (b) t=T/2 (c) t=T

Figure 3: Development of the VOF function in the advection problem on a single vortex flow field. The contours
are shown at φ=0.05 (dotted line), 0.5 (solid line) and 0.95 (dashed line).

3.1 Accuracy of the interface capturing method

First, we check the numerical accuracy of the MTHINC method including the advection
of the reference mean curvature. A validation is carried out on a 2-D domain [0,1]2 with
an initial elliptic interface,

(x−0.5)2

a2
+
(y−0.75)2

b2
=1,

where a=0.15 and b=0.7a. A time-dependent stream function

Ψ(x,y,t)=
1

π
sin2(πx)cos2(πy)cos

(

πt

T

)

,

is imposed, where T is a period at which the solution returns to the initial configuration,
and T=1 is used in this test. Here, the initial mean curvature is analytically given by the
elliptic interface. The maximum CFL (Courant-Friedrichs-Lewy) number is set to 0.25.

The numerical results of the VOF function on N(= Nx = Ny) = 128 mesh are shown
in Fig. 3. The interface is most deformed at t=T/2, after that it becomes an elliptic-like
shape at t=T. Since the interval between each contour-line at φ=0.05, 0.5 and 0.95 does
not spread even at t = T, it is confirmed that the VOF profile is not smeared out over
time. In Fig. 4, we also show the profile of the reference mean curvature convolved with
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(c) fifth-order WENO (t=T)

Figure 4: The exact distribution and numerical solutions on N = 128 mesh after one period (t = T = 1) for

the reference mean curvature convolved with the normalized delta function: κRδ. The solution based on the
fifth-order WENO method [27] is obtained for the reference mean curvature κR itself without convolution, and

it is plotted by multiplying δ.
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Table 1: Numerical errors in L1, L2 and L∞ norms and the respective convergence rates in the advection problem
on a time-dependent single vortex flow field after one period (t=T=1).

L1 L2 L∞

N Error Order Error Order Error Order

φ 32 2.67E-3 – 9.82E-3 – 1.02E-1 –

64 1.01E-3 1.40 5.15E-3 0.93 7.54E-2 0.44

128 4.35E-4 1.22 3.20E-3 0.69 6.10E-2 0.31

256 2.03E-4 1.10 2.13E-3 0.59 5.96E-2 0.03

κRδ 32 5.66E-2 – 2.12E-1 – 2.01E-0 –

64 2.03E-2 1.48 1.09E-1 0.96 1.56E-0 0.37

128 6.80E-3 1.58 5.22E-2 1.06 1.05E-0 0.57

256 2.39E-3 1.51 2.49E-2 1.07 6.88E-1 0.61

a normalized approximate delta function, κRδ, where δ = δ∆x. Here, the approximate
delta function δ itself depends on the mesh resolution, thus, we discuss a normalized
quantity δ∆x. As shown in Fig. 4(a), the initial convolved curvature smoothly distributes
over a few computational meshes as well as the smoothed VOF function. The solution
based on the present approach at t=T shown in Fig. 4(b) agrees with the exact solution
well while the maximum value is only slightly reduced due to numerical dissipation.
By comparison, the solution based on the fifth-order WENO method [27] suffers more
serious numerical dissipation. As shown in Fig. 4(c), the solution is smeared out over
time, as a result, the curvature distribution along the surface is hidden.

The convergence rates to the spatial resolution for φ and κRδ are shown in Table 1.
The number of mesh points is doubly increased from N = 32 to N = 256. The errors are
measured by the L1, L2 and L∞ norms which are defined for a quantity q as follows

L1(q)=
∑i,j,k |q(n)ijk −q

(e)
ijk |

Nx NyNz
, L2(q)=

√

√

√

√

∑i,j,k(q
(n)
ijk −q

(e)
ijk )

2

NxNyNz
, L∞(q)=max

i,j,k
|q(n)ijk −q

(e)
ijk |, (3.1)

where q(n) and q(e) are the numerical solution and exact solution, respectively. The con-
vergence rate of the local error L∞ is worse than that of the global errors L1, L2 because
the VOF function and its gradient are only smooth within a compactly supported re-
gion Γ. Whereas, the global L1 errors for φ and κRδ converge with a rate of 1 and 1.5,
respectively. It is expected the MTHINC method and the present convolution approach
adequately work on a full Eulerian interaction method.

As discussed in [8, 13, 16, 35, 42], it is a well known problem that the local error of
the curvature does not converge in a way based on a smoothed VOF (or density/color)
function even if the mesh resolution is increased. We have confirmed that in the interface
region the error is order one for a 2D circular interface, therefore does not converge (≈
O(∆x0)). It is a crucial issue to correctly model the membrane elastic (bending) force,
and obtain an accurate estimation for the curvature. This will be left as an topic for
future work.
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3.2 Deformation due to an external surface force

A spherical membrane with a radius of 0.1 is centrally-located on a 3-D domain [0,1]×
[0,1]×[0,0.5]. The neo-Hookean model (2.5) is employed and the bending effect is ne-
glected in this test. An external surface force Fb is taken into account in the equation of
motion (2.21) as a singular body force,

Fb=−δsgn(z−0.25)γez,

for t≤0.5, where sgn(x) is the sign function, ez=(0,0,1) the unit vector in the vertical di-
rection, and γ the constant which is prescribed as γ=4, in this study. Due to the imposed
vertical force, the spherical capsule is vertically squashed without changing the volume.
After that, by releasing the imposed force Fb, the squashed capsule is expected to recover
to an initial sphere satisfying a stress-free condition. The periodic boundary condition is
imposed on both x and y boundaries, and the no-slip condition is imposed on the z walls.
The fluid properties are set to the same values, where density and viscosity are 1 and 0.2,
respectively, and the elastic modulus Es = 5 is prescribed. The time increment depends
on the mesh and specified as ∆t=0.02×(16/Nx)2.

First, we show the behavior of the interface on the Nx = 128 mesh in Fig. 5, and also
show the y-component vorticity and pressure in cross-section. The spherical membrane
is deformed due to the external force until t=0.5 as expected. The velocity is dissipated
by the viscous stress, but the pressure in the membrane increases to balance with the
membrane stress. After releasing the imposed force, the interfacial shape approaches to
the spherical shape, then it seems to recover to a perfect sphere at t=2.

In this problem, the kinetic energy Ekinetic=ρv2/2, the elastic strain energy Eelastic=Ws,
the energy dissipation of the viscous stress

Eviscous=
∫

t
µ∇v :∇vdt

and the energy input of the body force

Ebody=−
∫

t
v·Fbdt

contribute to the energy transfer process, then the summation of energy over the com-
putational domain is plotted in Fig. 6. The kinetic energy is relatively small compared
with other energy contributions, but it increases just after the initial step and releasing
the body force at t= 0.5. Whereas, the potential energy of the membrane gradually in-
creases and is to balance with the body force until t= 0.5, and after releasing the body
force, it rapidly decreases and approaches to zero which is a stress-free state. Here, with
taking notice of the numerical conservation for the total energy

∫

Ω
dΩEtotal =

∫

Ω
dΩ(Ekinetic+Eelastic+Eviscous+Ebody),
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(a) t=0 (b) t=0.1

(c) t=0.5 (d) t=0.7

(e) t=1 (f) t=2

Figure 5: The instantaneous solutions in the deformed capsule problem. The external force is imposed on the
membrane surface until t=0.5. The figures are shown within a range of [0.25,0.75]× [0.25,0.75]× [0,0.5], with
respect to the isosurface of the VOF function at φ=0.5, y-component vorticity in x−z cross-section on y=0.5,
and pressure in y−z cross-section on x=0.5.

it remains within a level of 10−4. The energy conservation is one of the important issues
for the shape reversibility. Further, the deformation modes of a spherical surface harmon-
ics are useful indicators of shape reversibility. Using zenith angle θ and azimuth angle ϕ,
the radial function r(θ,ϕ) is expanded as,

r(θ,ϕ)= ∑
n=0

(

Rn,0Pn,0(cosθ)

+
n

∑
m=1

(

R
(c)
n,mPn,m(cosθ)cos(mϕ)+R

(s)
n,mPn,m(cosθ)sin(mϕ)

)

)

, (3.2)
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Figure 6: The time history of the energy summarized over the computational domain.

where Pn,m is the normalized associated Legendre polynomials. Following a description

in [49], the expansion coefficients Rn,0, R
(c)
n,m and R

(s)
n,m are estimated on the Eulerian mesh.

Rn,0≈
1√
2π

∑
i,j,k

δijkPn,0(cosθijk)∆xi∆yj∆zk, (3.3a)

R
(c)
n,m≈ 1√

π
∑
i,j,k

δijkPn,m(cosθijk)cos(mϕijk)∆xi∆yj∆zk, (3.3b)

R
(s)
n,m≈ 1√

π
∑
i,j,k

δijkPn,m(cosθijk)sin(mϕijk)∆xi∆yj∆zk, (3.3c)

where the angle is calculated by,

θijk =cos−1

(

zijk−zc

|xijk−xc|

)

, ϕijk= tan−1

(

yijk−yc

xijk−xc

)

, (3.4)

with the numerically-obtained centroid xc from the VOF function φ as follows.

xc =
∑ijk φijkxijk∆xi∆yj∆zk

∑ijk φijk∆xi∆yj∆zk
. (3.5)

The time history of the modal amplitudes |Rn,0|=
√

(R
(c)
n,0)

2+(R
(s)
n,0)

2 with n= 0,2,4,6 is

shown in Fig. 7. It is found that the second-order mode relating to an ellipsoidal mode is
relatively large, but higher order modes (n≥4) are also observed during the force impos-
ing (t≤ 0.5). After releasing the external force, all modes are to vanish over time except
for a basic spherical mode n=0. This suggests that the deformed membrane adequately
recovers to the initial sphere without any deformation. We also plot the time history of
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Figure 7: The time history of the modal amplitudes n=0,2,4,6 and m=0 for the spherical surface harmonics.
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Figure 8: Same as Fig. 7, but the order of the spherical surface harmonics is for m=2,4,6.

the modal amplitude |Rn,m|=
√

(R
(c)
n,m)2+(R

(s)
n,m)2 for n=2,4,6 with non-zero m in Fig. 8.

Since the mth-order modes for (m> 1) represent perturbations distributed over the az-
imuth angle ϕ, they are small in this numerical configuration. Thus it is not surprising
that even on a Cartesian mesh, we are able to maintain axisymmetry numerically.

Here, the relative errors are computed using a set of the doubly-refined meshes as

(N
(coarse)
x ,N

( f ine)
x )=(16,32), (32,64), (64,128) and (128,256), and the convergence rates are

investigated with the grid refinement. The numerical errors measured by (3.1) at t=0.1
for the VOF function, velocity and pressure are shown in Table 2. The velocity error is
averaged from each component as: L1,2,∞(v) = (L1,2,∞(v1)+L1,2,∞(v2)+L1,2,∞(v3))/3. It
is well known that the error under the L1 norm normally behaves better than that using
the L∞ norm. Our solution indicates that the L1 error adequately converges with the
first-order accuracy, but the convergence rate for the L∞ error is less than 1 even though
a second-order spatial discretization is applied. We believe that the main contributing
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Table 2: Numerical errors in L1, L2 and L∞ norms and the respective convergence rates in the deformed
capsule problem at t = 0.1. The relative errors are computed using a set of the doubly-refined meshes as

(N
(coarse)
x ,N

( f ine)
x )=(16,32), (32,64), (64,128) and (128,256).

L1 L2 L∞

Nx Error Order Error Order Error Order

φ 16 7.02E-3 – 2.28E-2 – 1.25E-1 –

32 2.73E-3 1.36 1.50E-2 0.61 1.42E-1 -0.19
64 1.27E-3 1.11 1.04E-2 0.52 1.50E-1 -0.08

128 6.22E-4 1.03 7.34E-3 0.50 1.67E-1 -0.15

v 16 1.96E-3 – 3.40E-3 – 1.70E-2 –
32 9.89E-4 0.99 2.11E-3 0.69 1.49E-2 0.19

64 4.89E-4 1.02 1.21E-3 0.80 1.44E-2 0.05

128 2.59E-4 0.91 6.90E-4 0.81 1.04E-2 0.47

p 16 8.19E-2 – 2.11E-1 – 2.77E-0 –
32 4.07E-2 1.01 1.59E-1 0.41 3.22E-0 -0.21

64 1.88E-2 1.12 7.89E-2 1.01 1.68E-0 0.93
128 1.02E-2 0.88 5.17E-2 0.61 1.90E-0 -0.18

factor is the lack of accuracy of the current method for estimating the normal vector of
the interface [8, 13, 16, 35, 42]. The other main factor is due to the approximation of the
delta function [29,30,33]. Possible improvements might be possible by incorporating the
ideas of the level set method [39, 47] and the immersed interface method [30, 31, 33].

3.3 A deformable spherical capsule in a shear flow

We consider a spherical capsule with a radius of a=1, obeying the neo-Hookean law, in
a computational domain x∈ [−4,4],y∈ [−2,2],z∈ [−4,4]. The opposite velocities ±V that
result in a shear rate γ̇ = 2U/Hz =U/4 are imposed on the top and bottom walls in z
direction. The periodic boundary condition is imposed on other x and y directions. Here,
same viscosity is specified for both fluid phases. The viscosity is given by Reynolds
number Re = ργ̇a2/µ, and the membrane stiffness is given by capillary number Ca =
µγ̇a/Es. In this test, ρ=1, γ̇=1 and Re=0.01 are fixed, therefore the membrane stiffness
only depends on the capillary number.

3.3.1 Effect of the elastic stiffness

Here, we neglect the bending force, and the capillary number is varied as 0.0125, 0.025,
0.05, 0.1 and 0.2. First, we show the numerical result with the number of mesh points
(Nx,Ny,Nz)=(128,64,128) and the time increment ∆t=0.001. The isosurface of the VOF
function is shown in Fig. 9. As expected, the deformation becomes larger as the capil-
lary number increases. Taylor [50] introduces a deformation parameter D=(l−s)/(l+s)
for specifying the interfacial deformation in the vertical cross-section, with fitting to an
ellipse. Here, l and s denote the semi-major and semi-minor axes of the ellipse respec-
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(a) Ca=0.0125 (b) Ca=0.025 (c) Ca=0.05

(d) Ca=0.1 (e) Ca=0.2

Figure 9: The fully-developed deformed surface of the neo-Hookean membrane subjected to the linear shear
flow for various capillary numbers.

tively. The interface is explicitly expressed as the coordinate points picked up from the
cross points between the contour line of the VOF function at φ=0.5 and the computational
meshes. It has been reported in many literatures that the shape of the interface in a cross
section almost remains ellipsoidal even in Ca=0.2 (e.g., [10, 43]). The shape of the inter-
face in a cross section is fitted to the general elliptic equation: ax2+by2+cxy+dx+ey+1=
0, using the least-squares method, and the major and minor axes are calculated. The time
history of the deformation parameter D with different capillary numbers is shown in
Fig. 10. In this regard, the solutions are obtained by increasing the number of mesh points
as Nx = 64, 128 and 256, in addition, the numerical solutions obtained by the immersed
boundary method [10] and the boundary element method [43] are also shown. The mesh-
dependent time increment is used to be ∆t= 0.001×(128/Nx )2. It is confirmed that the
shape converges to a steady-state over time, however, the results of the present full Eu-
lerian method are slightly different from those of the immersed boundary method [10]
in which the Eulerian mesh for a fluid and the Lagrangian mesh for a membrane are
used, especially within the range of small deformation. This is because the full Eule-
rian approach essentially involves a numerical dissipation for the advection term. In this
simulation, the membrane stress may be underestimated or the deformation may be over-
estimated. However, the effect of numerical dissipation is reduced significantly when a
relatively fine mesh (Nx=256) is used as our solution agrees well with previous solutions
obtained in [10, 43]. We confirmed that in the transport of the overall kinetic-energy for
the cases of Ca=0.1 and Ca=0.2, the variation of its time derivative is sufficiently smaller
than those of the energy input rate, the energy dissipation rate and the strain energy rate,
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Figure 10: The Taylor deformation parameter D vs. time t for various capillary numbers. The lines are the
present solution on N=64, 128, 256 meshes, the filled-circles indicate the solutions by means of the immersed
boundary method by Eggleton et al. [10], and open-triangles show those of the boundary element method by
Pozrikidis [43].

indicating that one may regard the transient capsule deformation as taking place in a
quasi-steady velocity field. Therefore, the good agreement with the results of [43], in
which the steady Stokes equation is solved, is reasonable.

3.3.2 Effect of the bending stiffness

Next, the effect of the bending stiffness is studied. According to [32,44], a modified bend-
ing modulus defined as E′

b=Eb/(a2Es) is varied as 0.01,0.025 and 0.0375 with the capillary
number Ca=0.05. In this case, the bending stiffness is dominant in stability, therefore, a
small time step size ∆t=6.25×10−5 is used. The computation is carried out until t=2 on
Nx=128 mesh. The time history of the deformation parameter is again plotted in Fig. 11.
With increasing the bending stiffness, the deformation is to be moderated. The tendency
of the present result shows good agreement with the boundary element method [44] and
the immersed boundary method [32].

3.4 Pressure-driven flow with the biconcave capsules

Finally, we consider the biconcave capsules replicating the geometry of red blood cell
(RBC) within capillary parallel plates with a periodic boundary, and prescribe a pressure
gradient as a body force −∆P/Lex to a streamwise direction x. According to [11], a single
biconcave shape is given as,

x−xc

a
=±1

2

(

c1+c2σ+c3σ2
)
√

1−σ, σ=
(y−yc)2+(z−zc)2

a2
,
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Figure 11: The effect of the bending stiffness on the Taylor deformation parameter D. E′
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2/Es).

where (xc,yc,zc) is the central position, a the representative capsule size, and a set of pa-
rameters c1=0.35, c2=2.003 and c3=−1.123 are used. In this simulation, each membrane
is modeled by the Skalak model (2.6).

3.4.1 Investigation of the surface dilation

A computational domain [0,0.5]3 is divided into N3=643 meshes, and the wall boundary
condition is imposed on the spanwise direction y. The same density ρ1 = ρ2 = 1 is used
for both fluid phases, and the viscosities are set to µ1 =0.25 and µ2 =0.05 for both inside
and outside of a membrane, respectively. In this regard, Reynolds number based on the
domain height is approximately 4. The elastic stiffness Es = 0.05 and bending stiffness
Eb = 5×10−5 are fixed, and the pressure gradient is set to −1. The time step size ∆t is
prescribed as 0.001.

In the Skalak model [45], a surface dilation is controlled by a constraint coefficient. As
a first step, we check the effect of the surface dilation magnitude α in (2.6), by setting α
to 2, 10 and 40. A single biconcave capsule with a radius of a=0.17 is located at a center
position. In the Eulerian approach, the membrane surface is not explicitly given, thus we
make use of a following relationship.

s=
∫

δV
δdV → Ds

Dt
=−

∫

δV
δn·∇v·ndV, (3.6)

where, s is a total surface area. Then, the total surface area is numerically estimated by,

sn+1= sn−∆t∑
i,j,k

∆xi∆yj∆zkδn
ijknn

ijk ·∇vn
ijk ·nn

ijk. (3.7)
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Figure 12: The effect of the surface dilation coefficient in Skalak model (2.6). The normalized surface area vs.
time.

t=0
α=2
α=10
α=40

Figure 13: The comparison of the membrane shape for the surface dilation coefficient in x-z cross-section on
y=0.25.

The developments of the total surface area normalized by the initial surface area are com-
pared in Fig. 12. As expected, the surface dilation is well maintained within the range of
a few percent error, furthermore, it is effectively controlled by using larger α. The inter-
facial shapes at t= 2 in x-z cross-section are shown in Fig. 13. It is observed in a case of
α=40, the surface deformation is most restricted.

3.4.2 Behavior of two capsules

Next, we consider two biconcave capsules with displacing the initial vertical positions.
We prescribe two cases for different initial positions as;

case 1 : (x
(1)
c ,y

(1)
c ,z

(1)
c )=(0.125,0.25,0.25), (x

(2)
c ,y

(2)
c ,z

(2)
c )=(0.375,0.25,0.25), (3.8)

case 2 : (x
(1)
c ,y

(1)
c ,z

(1)
c )=(0.125,0.25,0.23), (x

(2)
c ,y

(2)
c ,z

(2)
c )=(0.375,0.25,0.27). (3.9)
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(a) t=0 (b) t=2.5 (c) t=5 (d) t=7.5

Figure 14: Evolution of the biconcave capsules in a pressure-driven flow. The initial location is of case 1 (3.8).

(a) t=0 (b) t=2.5 (c) t=5 (d) t=7.5

Figure 15: Same as Fig. 14, but the initial location is of case 2 (3.9).

The computational conditions are the same as Section 3.4.1, and we choose a restriction
magnitude α=40 from above investigation.

Sequential snapshots of the motion and deformation of the capsules are shown in
Figs. 14 and 15. In case 1, two biconcave capsules are driven and symmetrically deforms,
on the other hand in case 2, they deform with a rotation. In steady state, both results
become a parabolic shape, so-called parachute-type shape which is well-known as one of
the behaviors of a real RBC in a capillary tube [17]. Present solutions are quite similar to
the results obtained by the immersed boundary method involving the Skalak model [19].
The interfacial shapes in x-z cross-section on y=0.25 are shown in Fig. 16. Interestingly,
the initial vertical locations are different, nevertheless, the fluid area or gap between a
membrane edge and wall boundary looks similar. To further validate our solution, the
streamwisely-averaged velocity is plotted in Fig. 17, where a solution without capsules is
also plotted. We confirm the flow is disturbed by the capsules, and the velocity profiles
are slightly, but certainly, different in each case. This slight gap comes from a condition
of the capsules at steady state, and it strongly depends on the initial location. About the
sensitivity of the initial location, it was investigated in detail in [48].

3.4.3 Flow including multiple capsules

As a final test, we demonstrate the simulation for the pressure-driven flow including
multiple biconcave capsules. The computational domain is the same as the above prob-
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case 1
case 2

Figure 16: The interfacial shapes at t=7.5 with the initial location of case 1 and that of case 2, respectively.
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Figure 17: The velocity profile averaged for the streamwise direction x on y=0.25. The solutions are plotted at
t=7.5 for the flows without capsules and with biconcave capsules on the initial locations of case 1 and case 2.

lem, but a refined mesh of N3=1283 is used. The material constants are set to ρ1=ρ2=1,
µ1=0.5, µ2=0.1, Es=0.1, α=10, Eb=5×10−6 and ∆P/L=1. Here, we use the equivalent
radius of the biconcave capsule a=0.06 and the time increment ∆t=0.00025. In this com-
putation, the periodic boundary condition is imposed on both x and y directions for the
computational efficiency. The numerical results are shown in Fig. 18. The capsules ex-
hibit a complex pattern of motion and deformation due to interactions among themselves
and with the surrounding fluid, especially near the wall at t=4 and t=5.

4 Conclusions

We have presented a full Eulerian fluid-membrane coupling method within the frame-
work of the volume-of-fluid approach on the Cartesian coordinate mesh. The approx-
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(a) t=0 (b) t=0.5 (c) t=1

(d) t=2.5 (e) t=4 (f) t=5

Figure 18: The instantaneous solutions for the multiple RBCs driven by a pressure gradient

.

imate delta function obtained from the smoothed VOF function enables us to involve
the surface singular force coming from the membrane stress on the Eulerian mesh. Fur-
thermore, the membrane in-plane stress is directly evaluated by introducing a part of the
surface left Cauchy-Green deformation tensor as a prognostic variable defined on the Eu-
lerian mesh, and it is updated on a compactly supported region or smoothed interfacial
region. From the numerical point of view, the continuous interface capturing method
was introduced for the advection of the smoothed VOF function, and it was extended
with the convolution technique for the advection of the reference mean curvature to sup-
press the numerical dissipation and oscillation. In addition, we applied the quasi-implicit
approach for the membrane in-plane stress, which improved the stability of the method
without the need to solve a nonlinear system. Numerical results obtained by using the
present full Eulerian approach show that our method is of the first-order accuracy. Our
numerical results were compared with the ones using the (semi-Lagrangian) immersed
boundary and (Lagrangian) boundary integral methods and good agreement has been
obtained. Moreover, in the Skalak model, we confirmed the surface dilation of a mem-
brane is controllable with a dilation coefficient, and a similar behavior of a red blood cell
in a flow was observed.

One of the advantages of the present method compared with the traditional immersed
boundary method [40,41] with the Lagrangian material points (or meshes) is to avoid the
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instability occurred from the mesh distortion with large deformation. Another advantage
of the present method is that the mass is strictly conservation, and the constructing of the
color function which treats the different density and viscosity is not necessary because the
interface is described by the smoothed VOF function, compared with the traditional front
tracking method [18, 51, 52] in which the color function is calculated by solving the Pois-
son equation constructed from the information of the material points. Moreover, the full
Eulerian approach can be easily parallelized with domain decomposition techniques that
are often used in fluid flow simulations. Therefore, we believe that the present method
has the novelty and effectiveness even with an O(∆x1) accuracy.

The essential loss of accuracy comes from the coupling of the interfacial force and
the numerical diffusion of the field variables on Eulerian meshes. Therefore, an imple-
mentation of a high order coupling techniques such as the immersed interface method
[30, 31, 33] should help, which will be a future research subject. We would also apply the
present method for a practical blood flow analysis including multiple red blood cells.
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A Derivations of (2.16) and (2.17)

Take notice the definition of the surface gradient ∇s =(I−nn)·∇=P·∇, (2.16) changes
into

δ∇s ·(τ+qn)=δPik
∂

∂xk
(τij+qinj)

=Pik
∂

∂xk
(δ(τij+qinj))−Pik

∂δ

∂xk
(τij+qinj)

=
∂

∂xk
(δPik(τij+qinj))−

∂Pik

∂xk
(δ(τij+qinj))

=
∂

∂xk
(δPik(τij+qinj))−

∂(nink)

∂xk
(δ(τij+qinj))

=
∂

∂xk
(δ(τkj+qknj))

=∇·(δτ+q̃n), (A.1)
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where we use the following relationships,

∇sδ=0, n·∇n=0, (A.2)

P·τ=τ, n·τ=0, n·q=0, (A.3)

from the definitions (2.4) and (2.7). In (A.1), q̃ is defined as

q̃=δq=δ((P·∇)·m)·P=δPik
∂mil

∂xk
Plj

=Pik
∂δmil

∂xk
Plj−Pik

∂δ

∂xk
mil Plj

=
∂δPikmil

∂xk
Plj−

∂Pik

∂xk
δmil Plj

=
∂δmkl

∂xk
Plj =(∇·m̃)·P, (A.4)

where we also use the relationships (A.2) and the definition (2.8). Finally, m̃ is given as

m̃=δm=Eb(δκ−δκRP)=Eb(δκ−κ̃RP). (A.5)

B Jacobian tensor in the present implicit approach

For the sake of simplicity in describing a tensor product involving the fourth-order one,
the independent components of a symmetric second-order tensor A are written in a vec-
tor form such as A′=A′

i=(A11,A22,A33,A12,A23,A31). Hereafter, a superscript ′ indicates
a vector consists of the independent components from a symmetric second-order tensor.
Then, a second-order Jacobian tensor J′ is given as

J′=
∂τ

′

∂B′
s

· ∂B′
s

∂G′
s

, (B.1)

where ∂B′
s/∂G′

s is a second-order transform tensor. By using the definition Bs =P·Gs ·P,
a fourth-order transform tensor is given as

∂Bsij

∂Gskl
=PikPlj. (B.2)

Taking notice of B21=B12, B32=B23 and B13=B31, (B.2) leads to a second-order transform
tensor,

∂B′
s

∂G′
s

=
∂B′

sj

∂G′
si

=

















P11P11 P21P12 P31P13 2P11P12 2P21P13 2P11P13

P12P21 P22P22 P32P23 2P12P22 2P22P23 2P12P23

P13P31 P23P32 P33P33 2P13P32 2P23P33 2P13P33

P11P21 P21P22 P31P23 P11P22 P21P23 P11P23

P12P31 P22P32 P32P33 P12P32 P22P33 P12P33

P11P31 P21P32 P31P33 P11P32 P21P33 P11P33

















, (B.3)
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where P= I−nn is the second-order surface projection tensor.
Here from (2.4), the derivative of the in-plane stress is written as

∂τ
′

∂B′
s

=
2√
c2

(

∂Ws,c1

∂c1

∂c1

∂B′
s

B′
s+c2

∂Ws,c2

∂c2

∂c2

∂B′
s

P′+
1

2

∂c2

∂B′
s

(

−Ws,c1

c2
B′

s+Ws,c2P′
)

+Ws,c1
I

)

, (B.4)

where

Ws,c1
=

∂Ws

∂c1
, Ws,c2 =

∂Ws

∂c2
, (B.5)

depends on a strain energy function of a membrane model, and we consider ∂Ws,c1
/∂c2=

∂Ws,c2 /∂c1 =0 for the specific model (2.5) or (2.6).

By using (B.3) and (B.4), the second-order Jacobian tensor (B.1) is obtained, and the
second-order tensor H(v,Gs,J) in (2.34) is shown as

H(v,Gs,J)= J : (∇vT ·Gs+Gs ·∇v)=







J′1jR
′
j J′4jR

′
j J′6jR

′
j

J′4jR
′
j J′2jR

′
j J′5jR

′
j

J′6jR
′
j J′5jR

′
j J′3jR

′
j






, (B.6)

where R′ is given by

R′=





























2
(

∂v1
∂x Gs11+

∂v1
∂y Gs12+

∂v1
∂z Gs31

)

2
(

∂v2
∂x Gs12+

∂v2
∂y Gs22+

∂v2
∂z Gs23

)

2
(

∂v3
∂x Gs31+

∂v3
∂y Gs23+

∂v3
∂z Gs33

)

∂v2
∂x Gs11+

∂v1
∂y Gs22+

(

∂v1
∂x + ∂v2

∂y

)

Gs12+
∂v1
∂z Gs23+

∂v2
∂z Gs31

∂v3
∂y Gs22+

∂v2
∂z Gs33+

∂v3
∂x Gs12+

(

∂v2
∂y + ∂v3

∂z

)

Gs23+
∂v2
∂x Gs31

∂v3
∂x Gs11+

∂v1
∂z Gs33+

∂v3
∂y Gs12+

∂v1
∂y Gs23+

(

∂v1
∂x + ∂v3

∂z

)

Gs31





























, (B.7)

from the definition of R=∇vT ·Gs+Gs ·∇v.
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