
Commun. Comput. Phys.
doi: 10.4208/cicp.011010.280611s

Vol. 12, No. 3, pp. 789-806
September 2012

Numerical Simulation of Glottal Flow in Interaction

with Self Oscillating Vocal Folds: Comparison of

Finite Element Approximation with a Simplified Model
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Abstract. In this paper the numerical method for solution of an aeroelastic model de-
scribing the interactions of air flow with vocal folds is described. The flow is modelled
by the incompressible Navier-Stokes equations spatially discretized with the aid of the
stabilized finite element method. The motion of the computational domain is treated
with the aid of the Arbitrary Lagrangian Eulerian method. The structure dynamics is
replaced by a mechanically equivalent system with the two degrees of freedom gov-
erned by a system of ordinary differential equations and discretized in time with the
aid of an implicit multistep method and strongly coupled with the flow model. The
influence of inlet/outlet boundary conditions is studied and the numerical analysis is
performed and compared to the related results from literature.

AMS subject classifications: 74F10, 65Z05, 76D05
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1 Introduction

The flow induced vibrations of structures can be important in various situations and
technical applications, for an overview see e.g. [3]. The research focuses on problems of
fluid-structure interactions (FSI) in aero-elasticity and hydro-elasticity [9]. Recently, the
numerical methods for solution of FSI problems become important also in biomechanics.
One approach in speech modelling is to model the interaction of the vocal folds using a
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simplified model, cf. [17], based on a simplified description of both fluid and structure
dynamics. Recently, simplified methods for numerical analysis of interactions of glottal
flow with vocal folds vibrations were used e.g. in [14, 16]. Even if for these approaches
a simplification of the flow problem was used, e.g. potential flow or Bernoulli equation,
such simplified models are able to quantify many fundamental physical parameters char-
acterizing the human voice production known in phoniatrics – see e.g. applications of
the developed aeroelastic model [15] in simulations of phonation [1] and the vocal folds
loading [12, 13]. The reality is much more complex: the air flow coming from lungs ac-
celerates in the narrowest glottal part causing the vibrations of the vocal folds compliant
tissue. The glottis is almost (or completely) closing during vibrations and the vocal folds
collide generating the sound. The modelling of such a complex phenomenon encoun-
ters many difficulties as it is a result of coupling complex fluid dynamics and structural
behaviour including contact and acoustic problems. Recently, more accurate flow de-
scriptions were used to improve flow calculations, cf. [20]. Particularly, the interaction of
air flow in human vocal tract with the vibration of the vocal folds was considered in [18].

Nevertheless, the application of simplified mathematical models can provide valu-
able information as well as better understanding of the phenomena. Particularly, the
numerical simulations are considered as important tool in biomechanics, where experi-
mental in-vivo studies are problematic. In this paper the coupled FSI problem of air flow
through model of the vibrating glottal region is numerically approximated in a simpli-
fied geometrical domain. The results are compared to the relevant results obtained by a
simplified flow model and attention is paid to the comparison of approximate solutions
of the coupled fluid-structure interaction problem to the outcomes of a simplified aeroe-
lastic model. Similar comparisons were published in [8], where the finite volume approx-
imations of Navier-Stokes equations on Cartesian grids were coupled with a two-mass
dynamical model, cf. [17]. Here, the 2D finite element approximations of Navier-Stokes
equations are coupled with the elastic structure vibrations described by a mechanically
equivalent two degrees of freedom system. Such a problem was analyzed in [14], [16]
using a simplified 1D flow model allowing the self-sustained vibrations (i.e. the critical
flow velocity for which the system becomes unstable by flutter type of instability).

The flow is described by the incompressible Navier-Stokes equations (flow velocities
in the human glottal region are lower than 100 m/s and the influence of compressibil-
ity on the flow induced instability can be neglected). The flow problem is numerically
approximated by the finite element (FE) method stabilized by Galerkin-Least Squares
(GLS) method, cf. [6, 10], and modified for the application on moving domains, cf. [21].
Furthermore, the time and space discretized linearized problem of the large system of
linear equations needs to be solved in a fast and efficient manner. The application of di-
rect solvers as UMFPACK (cf. [7]) leads to a robust method, where different stabilization
procedures can be easily applied even on anisotropically refined grids. The system of
ordinary differential equations describing the structure motion is discretized in time by
higher order backward difference formulas (2nd or 4th order). The fluid and structure
are coupled by the interface conditions enforced by a coupling algorithm. The described
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developed methodology is applied on the relevant benchmark from literature and the
numerical results are presented.

2 Mathematical model

2.1 Geometry of the channel

A simplified geometry of the channel is chosen and given by the shape of the vocal folds
(see Figs. 1, 2, 3). The vocal folds geometry depends on the tension of the vocal folds
and varies with the fundamental vibration frequency, loudness and mode of phonation.
For the purposes of numerical analysis in this paper the geometry of the vocal folds was
chosen as linear function according to [15, 22] as

a f (x)=0.77120x [m]

(linear shape, approximation of the vocal fold for female – model F) or the vocal fold with
intermediate bulging approximated in [15] according to [4] as

am(x)=1.858x−159.861x2 [m]

(parabolic shape, approximation of the vocal fold for male – model M), see Figs. 1 and
2. Here, x∈ 〈0,L〉 [m], where L is the length of the vocal fold L= 6.8 [mm]. A constant
vocal fold density ρh is assumed and the three dimensionality is addressed by assuming
a uniform distribution of the aerodynamic quantities along the depth of the vocal fold h
(dimension in the third direction). Further, the channel half-width (at time t=0) is chosen
as H0=maxx∈〈0,L〉a(x)+g0, where g0 is the initial half-gap, i.e. g(0)=2g0. The subglottal
part of the length L0 as well as the supraglottal part of the length L2 was separated from
the vocal folds part of the length L by the two very narrow and deep slots enabling to
model the vertical motion of the vocal fold at the points of the channel discontinuity,
i.e. between the parts ΓWt and ΓD (see Fig. 4). This buffer zone does not influence the
flow because the vibration amplitudes are very small up to the flutter instability and
they are situated inside the boundary layer.

In the numerical simulations, the following slot dimensions were used: ∆L/L=0.02
and ∆H0/L=0.05−0.2 depending on g0 in order to avoid collisions of the masses m1 and
m2 at the bottom of the slot.

2.2 Arbitrary Lagrangian Eulerian method

In order to treat the fluid flow on moving domains, the so-called Arbitrary Lagrangian
Eulerian method is used, cf. [19]. We assume that A =A(ξ,t) =At(ξ) to be an ALE
mapping defined for all t∈ (0,T) and ξ ∈Ω0, which is smooth enough and continuously
differentiable mapping of Ω0 onto Ωt. We define the domain velocity wD=wD(x,t) defined
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Figure 1: The considered geometry of the vocal folds for the female model F (left) and example of the vocal
fold in displaced position (right).
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Figure 2: The considered geometry of the vocal folds for the male model M (left) and example of the vocal fold
in displaced position (right).

for any x∈Ωt and t∈ (0,T) by

wD(A(ξ,t),t)=
∂A

∂t
(ξ,t), for all ξ∈Ω0 and t∈ (0,T). (2.1)

Furthermore the symbol DA/Dt denotes the ALE derivative, i.e. the time derivative with
respect to the reference configuration. For the ALE derivative holds

DA f

Dt
(x,t)=

∂ f

∂t
(x,t)+wD(x,t) ·∇ f (x,t). (2.2)

2.3 Flow model

The fluid flow is governed by the incompressible Navier-Stokes equations written in ALE
form

DAv

Dt
+
(

(v−wD)·∇
)

v−ν△v+∇p=0, ∇·v=0, in Ωt, (2.3)
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Figure 3: The computational domain Ωt for models F (above) and M (bellow) surrounding the vocal fold shape
given by a f (x) and am(x), respectively. The lower shaded part is used for computations assuming the symmetry
boundary condition on the axis of symmetry.
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Figure 4: The detail of buffer zone.

where v = v(x,t) is the flow velocity vector (v = (v1,v2)T), p = p(x,t) is the kinematic
pressure (i.e. pressure divided by the constant fluid density ρ), ν is the kinematic viscosity.

The boundary of the computational domain ∂Ωt consists of mutually disjoint parts ΓD

(wall), ΓI (inlet), ΓO (outlet), ΓS (axis of symmetry) and the moving part ΓWt (oscillating
wall). The following boundary conditions are prescribed

v(x,t)=0, for x∈ΓD, (2.4a)

v(x,t)=wD(x,t), for x∈ΓWt, (2.4b)

v2=0,
∂v1

∂y
=0, on ΓS, (2.4c)

−(p−pre f )n+
1

2
(v·n)−v+ν

∂v

∂n
=0, on ΓO, (2.4d)
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where n denotes the unit outward normal vector, pre f denotes a reference pressure value
and α− denotes the negative part of a real number α, see also [5, 11]. On the inlet one of
the two following conditions is used on ΓI

−(p−pinlet)n+
1

2
(v·n)−v+ν

∂v

∂n
=0, (2.5a)

or v(x,t)=(V0,0)T, (2.5b)

which means that either the inlet flow velocity V0 is given – Eq. (2.5b) – or the inlet pressure
is prescribed pinlet = pre f +∆p – Eq. (2.5a). The reference pressure pre f can be chosen
arbitrarily, for what follows we set pre f = 0. Finally, we prescribe the initial condition

v(x,0)=v0(x) for x∈Ω0. The initial configuration Ω0 is shown in Fig. 3 for the channel
shapes considered for the models F and M, respectively.

2.4 Structure model

The vibrating part (vocal folds) of the channel walls is governed by an aeroelastic two
degrees of freedom model, i.e. the motion of ΓWt is driven by the displacements w1(t)
and w2(t) (upward positive) of the two masses m1 and m2, respectively (see Fig. 5). The
displacements w1(t) and w2(t) are then described by the following equations (see [14] for
details)

M

(

ẅ1

ẅ2

)

+B

(

ẇ1

ẇ2

)

+K

(

w1

w2

)

=

(

−F1

−F2

)

, (2.6)

where M and K are the mass and stiffness matrices, respectively, given by

M=

(

m1+
m3
4

m3
4

m3
4 m2+

m3
4

)

, K=

(

c1 0
0 c2

)

,

where m1,m2,m3 are the equivalent masses, c1,c2 are the spring constants,

B= ε1M+ε2K

is the matrix of the proportional structural damping where ε1, ε2 are the proportional
damping coefficients (see [15, 16]) and F1,F2 are the aerodynamic forces (downward pos-
itive).

2.5 Coupling conditions

The fluid flow model (2.3) is coupled with the equation of motion (2.6) by interface con-
ditions. First, the boundary condition (2.4b) must be satisfied on ΓWt where the domain
velocity is given by Eq. (2.1). Further, the aerodynamic forces F1,F2 in (2.6) depend on
flow velocity v and pressure p. The forces F1 and F2 are computed with the aid of the
aerodynamical lift force FL and the aerodynamical torsional moment M as

F1(t)=−
FL(t)

2
−

1

2l
M(t), F2(t)=−

FL(t)

2
+

1

2l
M(t), (2.7)
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Figure 5: Aeroelastic two degrees of freedom model (with masses m1, m2, m3) in displaced position (displace-
ments w1 and w2) and resulting aerodynamic forces F1 and F2.

where l denotes the distance of the masses m1 and m2 from the center (see Fig. 5). The
aerodynamical quantities are evaluated as follows

FL(t)= h
∫

ΓWt

2

∑
j=1

τ2jnjdS, M(t)=−h
∫

ΓWt

2

∑
i,j=1

τijnjr
ort
i dS, (2.8)

where rort
1 =−(x2−xC2), rort

2 = x1−xC1 and

τij =ρ

[

−pδij+ν

(

∂vi

∂xj
+

∂vj

∂xi

)]

.

By τij we denote the components of the stress tensor, δij denotes the Kronecker symbol,
n=(n1,n2) is the unit outer normal to ∂Ωt on ΓWt and (xC1,xC2)=(0,L/2).

Furthermore, the transformation of the vocal fold surface at time instant t with the
given reference (ξ1,ξ2)∈ΓW0 is given by At(ξ1,ξ2)=(X,ξ2) where

X= ξ1+
1

2l
[(L/2+l−ξ1)w1(t)+(ξ1−L/2+l)w2(t)], (2.9)

and where the displacements in x-direction were neglected (possible for small values of
w1, w2). The ALE mapping is then at every time instant t obtained by an extension from
ΓW0 on Ω0, cf. [21, 23].

3 Numerical approximation

In this section the numerical approximation of the mathematical model presented in Sec-
tion 2 is briefly described, a more detailed description can be found e.g. in [21].
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3.1 Time discretization

We consider a partition 0=t0<t1< ···<T, tk=k∆t, with a constant time step ∆t>0, of the
time interval (0,T) and approximate the solution v(·,tn) and p(·,tn) (defined in Ωtn) at
time tn by vn and pn, respectively. For the time discretization the second order backward
difference formula (BDF2) is applied, i.e.

DAv

Dt
(x,tn+1)≈

3vn+1−4v̂n+v̂n−1

2∆t
, where x∈Ωn+1, (3.1)

where v̂n and v̂n−1 are the approximate solutions vn and vn−1 defined on Ωn and Ωn−1,
respectively, and transformed onto Ωn+1. Further, we approximate the domain velocity
wD(x,tn+1) by wn+1

D , where

wn+1
D (x)=

3Atn+1
(ξ)−4Atn (ξ)+Atn−1

(ξ)

2∆t
, x=Atn+1

(ξ), x∈Ωn+1.

Then the time discretization leads to the following problem in domain Ωn+1

3vn+1−4v̂n+v̂n−1

2∆t
−ν△vn+1+

(

(vn+1−wn+1
D )·∇

)

vn+1+∇pn+1=0, (3.2a)

∇·vn+1=0, (3.2b)

equipped with boundary conditions (2.4) and (2.5a). Here, we do not consider the weak
formulation of the inlet velocity condition (2.5b), that is more simple to treat compared
to the inlet pressure condition (2.5a).

3.2 Weak formulation and spatial discretization

For solving of Eq. (2.3) by FE method, the time-discretized problem is reformulated in a
weak sense. By W=H1(Ωn+1) the velocity space is defined, by X⊂W the sub-space of
test functions being zero on the Dirichlet part of the boundary is denoted as

X=
{

ϕ=(ϕ1,ϕ2)∈W : ϕ=0 on ΓWtn+1
∩ΓD, ϕ2=0 on ΓS

}

,

and by Q=L2(Ωn+1) the pressure space is denoted. Using the standard approach, cf. [21],
the solution v=vn+1 and p= pn+1 of problem (2.3) satisfies

a(U,V)+B(U,V)= f (V), U=(v,p) (3.3)
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for all V=(z,q)∈X×Q, where

a(U,V)=

(

3

2∆t
v,z

)

+ν(∇v,∇z)+cn(v;v,z)−(p,∇·z)+(∇·v,q) , (3.4a)

cn(w,v,z)=
∫

Ωn+1

(

1

2
(w·∇v)·z−

1

2
(w·∇z)·v−(wn+1

D ·∇)v·z

)

dx, (3.4b)

B(U,V)=
∫

ΓI∪ΓO

1

2
(v·n)+v·zdS, (3.4c)

f (V)=
1

2∆t

(

4v̂n−v̂n−1,z
)

−
∫

ΓI

pinletv·ndS−
∫

ΓO

pre f v·ndS, (3.4d)

U=(v,p), V=(z,q) and by (·,·) we denote the scalar product in the space L2(Ωn+1).
Further, the weak formulation is approximated by the use of FEM: we restrict the

couple of spaces (X,M) to FE spaces (Xh,Mh) and the computational domain Ωt is ap-
proximated by an admissible triangulation Th. Based on the triangulation Th the equal
order finite elements are used, and the Galerkin Least-Squares(GLS) stabilized method is
applied, [10].

3.3 Coupling algorithm

The motion equations are discretized in time with the aid of the 2nd or 4th order back-
ward difference formula and the coupled fluid-structure model is solved with the aid of
partitioned strongly coupled scheme, which enforces both the dynamical coupling con-
ditions (2.7), (2.8) and the kinematical condition (2.4b). In the practical implementation
the fluid flow and the structure motion are approximated repeatedly per every time step
in order to converge to a solution which satisfy both conditions. The detailed description
of the numerical approximation of a similar coupled model can be found, e.g. in [21].

4 Numerical results

For the numerical analysis the following parameters were used. The three masses
m1,m2,m3 were determined by

m1,2=
1

2l2
(I+me2±mel), m=m1+m2+m3, (4.1)

where the distance of the masses m1 and m2 from the center was l = L/2 (see Fig. 5),
and the total mass m of the vocal folds, the inertia moment I and the eccentricity e were
computed using the vocal fold shape and its density ρh=1020 kg/m3, length (depth of the
channel) h=18 mm and thickness L=6.8 mm, see [16] for details. The fluid density was
ρ= 1.2 kg/m3 and the kinematic viscosity ν= 1.58×10−5m2/s. In all the computations
the following sub-glottal and supra-glottal lengths were used L0 = 4×L, L2 = 4×L (see
Fig. 3).
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4.1 Aeroelastic simulations for model F with inlet pressure condition

First, the problem of interaction of air flow with aeroelastic model F shown in Fig. 1 was
considered with the inlet pressure boundary condition. The considered initial half-gap
was chosen g0 =0.3 mm. The structural parameters and the natural frequencies f1, f2 for
the structure vibrating in vacuo are listed in Table 1. The computations were performed in
the computational domain Ωt shown in Fig. 3, where H0=5.54416 mm. The displacement
of the vocal fold part denoted by ΓWt with the length L was given by (2.9).

Table 1: Structural parameters considered for the model F.

Input data for model F
shape a f (x) f1 [Hz] 100

m [kg] 3.274×10−4 f2 [Hz] 160
I [kg/m2] 1.341×10−9 c1 [N/m] 44.8
e [m] 1.133×10−3 c2 [N/m] 84.6
ε1[s−1] 120.35 ε2 [s] 6.12×10−5

On the inlet the pressure was prescribed and the problem was approximated using the
inlet pressure formulation. The results are shown in Fig. 6, where the aeroelastic response
w1(t), w2(t) and the mean inlet velocity in dependence on time t are shown for several
prescribed pressure differences ∆p ≈ 100−3200 Pa (inlet velocity V0 oscillated around
V0≈0.55−3.13 m/s). In this range, the simplified method in [15] predicted the aeroelastic
instability of type flutter for the inlet velocity Vcrit=0.87 m/s, but in the mentioned paper
the inlet/outlet velocity formulation was used.

The vibrations of the vocal fold in Fig. 6 dies out for all the values of the inlet pres-
sure with no significant decrease or increase of the aerodynamic damping. Particularly,
the (aerodynamic) damping is quite strong for all the studied cases. The aeroelastic in-
stability was never observed for the physically relevant values of the inlet pressure (val-
ues of ∆p up to 5000 Pa were tested). This behaviour is probably caused by “additional
damping” effects due to the inlet pressure boundary condition prescribed. Particularly,
in Fig. 6 the inlet velocity oscillations are shown, where the inlet velocity is increasing
with a wider opening of the glottal part g(t) and similarly decreasing with a narrower
enclosure of g(t). The inlet velocity oscillations (as well as consequently the flow rate
oscillations) influence the aerodynamic forces and are leading to damped vibrations of
the structure.

4.2 Aeroelastic simulations for model F with inlet velocity condition

The problem with the same input parameters used in Section 4.1 was also numerically
analyzed with the inlet velocity boundary condition.

The values of the inlet velocity V0 were considered in the range 0.2−0.7 m/s in order
to detect the critical velocity for the flutter type of aeroelastic instability leading to self-
sustained vibrations of the vocal fold. The aeroelastic responses are shown in Fig. 7 for
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Figure 6: The mean inlet velocity oscillations (left column) and the aeroelastic response of the system w1(t),
w2(t) (middle and right columns) for model F and the prescribed inlet pressure boundary conditions. The inlet
pressure was chosen a) ∆p = 100Pa, b) ∆p = 200Pa, c) ∆p = 400Pa, d) ∆p = 800Pa, e) ∆p = 1600 Pa, f)
∆p=3200Pa.

the inlet velocities V0 = 0.45 m/s, V0 = 0.55 m/s, V0 = 0.6 m/s and V0 = 0.65 m/s. For the
velocities 0.45 m/s and 0.55 m/s the structural vibrations are damped in time and the
aeroelastic system is stable. Nevertheless, the aerodynamical damping for the velocity
0.55 m/s is weaker compared to the lower inlet velocity result. With the further increase
of the inlet velocity to V0 = 0.6 m/s the self oscillations can be observed in Fig. 7c). For
the inlet velocity V0=0.65 m/s the vibrations of the vocal folds are growing very fast (see
Fig. 7d). The simulation for V0 = 0.65 m/s is only shown in the time interval to 0.175 s,
where the computations crashed due to the high distortion of the computational mesh.
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Figure 7: The aeroelastic response of the aeroelastic system for model F with the prescribed inlet velocity; the
graphs of w1(t), w2(t) in dependence on time t are shown for the different inlet velocities a) V0=0.45m/s, b)
V0 =0.55m/s, c) V0 =0.6m/s and d) V0 =0.65m/s.

4.3 Aeroelastic simulations for model M

Furthermore, the aeroelastic model of flow interaction with the vocal fold given by the
parabolic shape am(x) shown in Fig. 2 was analyzed. For this case the considered initial
half-gap was g0 = 0.3 mm, H0 = 5.7 mm and the structural parameters are listed in Table
2 (see also [15, 16]). The aeroelastic response w1(t), w2(t) is shown in Fig. 8 and plotted
over time in terms of displacements for inlet flow velocities V0 = 1.0−1.2 m/s. For the
inlet velocities lower or equal to 1.1 m/s the vocal fold oscillations die in time due to
both structural and aerodynamic damping. For the flow velocity V0 = 1.15 m/s the self-
oscillations of the vocal folds were obtained.

Simulation examples of the flow velocity distribution in the glottis during the aeroe-
lastic instability for V0 = 1.5 m/s are shown in Fig. 9 at several time instants marked in
the graph of w1(t) and w2(t). The maximal flow velocities in the channel are increasing
when the glottal gap is becoming narrower, i.e. for high values of w2(t); the maximum
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Figure 8: The response of the aeroelastic system for model M with the prescribed inlet velocity boundary
condition; the graphs of w1(t), w2(t) in dependence on time t are shown for the different inlet velocities a)
V0 =1.0m/s, b) V0 =1.1m/s, c) V0 =1.15m/s and d) V0 =1.2m/s.

Table 2: Structural parameters considered for the model M.

Input data for model M
shape am(x) f1 [Hz] 100
m [kg] 4.812×10−4 f2 [Hz] 160
I [kg/m2] 2.351×10−9 c1 [N/m] 56
e [m] 0.771×10−3 c2 [N/m] 174.3
ε1[s−1] 120.35 ε2[s] 6.12×10−5

flow velocity in the glottal gap is lower than 40 m/s, which is in agreement with reality.
Small changes in the position of the flow separation point on the vocal fold surface can
be also detected in the flow field patterns in the glottal gap (see e.g. the details in Fig. 9
at the time t3 and t5).
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Figure 9: The aeroelastic response w1(t), w2(t) for model M for the inlet velocity 1.5 m/s (above). The flow
velocity isolines in the channel (middle panel) with details in the glottal gap (bellow) shown at five time instants
t1, t2, ···, t5 marked in the graphs of w1(t) and w2(t).

4.4 Comparison of the results with simplified theory

The results obtained by the developed numerical method based on the FE solution of the
2D Navier-Stokes equations are compared with the results computed by the perturbation
theory for 1D potential flow model [15] in Fig. 10. The computed flutter airflow veloci-
ties V0, f lutter, the pressure drop ∆p f lutter, i.e. the so-called phonation threshold pressures
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Figure 10: Comparison of the flutter velocities, the sub-glottal pressures (phonation threshold pressures – PTP)
and the flutter (phonation) frequencies computed by the FE method with the simplified flow theory [14–16].

(PTP), and the flutter frequencies F0, i.e. the so-called fundamental phonation frequen-
cies, are shown in dependence on the prephonatory glottal half gap g0 for the male and
female models of the vocal folds. The computed results: V0, f lutter ≈ 0.5−4 m/s (corre-
sponding to the flow rates 0.1−0.9 l/s), ∆p f lutter≈100−700 Pa and F0≈130−150 Hz are
in physiologically relevant intervals for the phonation threshold in humans; the values
for V0, f lutter and ∆p f lutter for the female model are lower than for the male model and
the opposite is valid for the phonation frequencies; the computed values V0, f lutter and
∆p f lutter increase with the prephonatory glottal half-gap g0 (see e.g. [2, 13, 14]).

In general, the flutter velocities V0, f lutter resulting from the FE simulations are lower
than the flutter velocities computed according to the simplified theory presented in [15].
These differences (see Fig. 10) can be explained by the fluid viscosity considered in the
FE simulations because the developed boundary layer on the surface of the vocal fold
model results in narrowing of the glottal gap g0. The second reason can be the position
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of the flow separation point which was in [15] artificially fixed at the vocal fold supra-
glottal edge, however, according to the FE computations the flow separation point was
slightly moving (see Fig. 9). These differences are smaller for the female model because
the triangle shape satisfies better the conditions used in the simplified theory. The differ-
ence between the FE results and the results of the simplified theory [15] for the critical
pressure drops ∆p f lutter and the flutter frequencies F0 is much smaller (see Fig. 10).

5 Conclusion

In this paper the coupled FSI problem of air flow through a vibrating glottal region was
numerically analyzed using finite element solution of the Navier-Stokes equations and
the comparison to the results obtained by the simplified flow theory [15, 16] was pre-
sented. An attention was paid to investigation of the flutter boundary for which self-
sustained vibrations of vocal folds occur: the physical meaning of such instability is the
so-called phonation onset which is an important voice production characteristic in hu-
mans.

The aeroelastic response was studied in dependence on the type of the inlet bound-
ary condition used. The inlet pressure and inlet velocity formulations were used, and the
numerical results for the case with the same geometrical shape and the same structural
parameters were compared. For the inlet pressure boundary condition the vibrations of
the vocal fold were strongly damped for all values of the inlet pressure in the range corre-
sponding to physiological flow rates and no self oscillations were observed. In the same
range of the flow rates with the prescribed inlet velocity the self-sustained oscillations
were obtained. The results show that the presence of self oscillations of vocal folds is in-
fluenced by the prescribed inlet boundary condition. This is extremely important as the
in- and out-let boundary conditions are the “artificial boundaries” for which the values
of aerodynamical quantities are only known approximately.

Furthermore, the numerical results of the simulations for two different aeroelastic
problems were compared to the results computed by the simplified theory published
in [15, 16], yielding acceptable agreement in the prediction of the aeroelastic instability,
especially the so-called phonation threshold pressure given by the flutter type of insta-
bility. The agreement in the critical pressure drop is good, although there is a difference
in the predicted flutter velocity. This can be caused by several necessary simplifications
used in [15] and [16], where the fluid viscosity was neglected and the flow separation was
assumed strictly at the outflow edge of the vocal folds (see also [8] for similar analysis).

The developed numerical method for finding the phonation onset parameters given
by the aeroelastic instability of the vocal folds is much more complex than the mathemat-
ical model studied in the papers [14–16], and for the channel flow gives more accurate
and detailed information on the flow field pattern in the glottis. Nevertheless, one needs
to face several difficulties, which are not treated in the original mathematical model. Par-
ticularly, as for the approximate solution of the Navier-Stokes equations the use of highly
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distorted meshes is not possible and the motion of the vocal folds must be smoothed by
a neighbouring buffer zone not considered in the mentioned papers.
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