
Commun. Comput. Phys.
doi: 10.4208/cicp.110211.121211a

Vol. 12, No. 4, pp. 1257-1274
October 2012

Computational Aspects of Multiscale Simulation with

the Lumped Particle Framework

Omar al-Khayat1,∗ and Hans Petter Langtangen2,3

1 Computational Geosciences, CBC, Simula Research Laboratory, P.O. Box 134, NO-
1325 Lysaker, Norway.
2 Department of Informatics, University of Oslo, P.O. Box 1080, Blindern, NO-0316
Oslo, Norway.
3 Center for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, NO-
1325 Lysaker, Norway.

Received 11 February 2011; Accepted (in revised version) 12 December 2011

Available online 17 April 2012

Abstract. First introduced in [2], the lumped particle framework is a flexible and nu-
merically efficient framework for the modelling of particle transport in fluid flow.
In this paper, the framework is expanded to simulate multicomponent particle-laden
fluid flow. This is accomplished by introducing simulation protocols to model particles
over a wide range of length and time scales. Consequently, we present a time ordering
scheme and an approximate approach for accelerating the computation of evolution of
different particle constituents with large differences in physical scales. We apply the
extended framework on the temporal evolution of three particle constituents in sand-
laden flow, and horizontal release of spherical particles. Furthermore, we evaluate the
numerical error of the lumped particle model. In this context, we discuss the Velocity-
Verlet numerical scheme, and show how to apply this to solving Newton’s equations
within the framework. We show that the increased accuracy of the Velocity-Verlet
scheme is not lost when applied to the lumped particle framework.

AMS subject classifications: 65L12, 65L70, 68W25, 86-08, 34E13, 34E99

Key words: Multiscale modelling, lumped particle model, Velocity-Verlet scheme.

1 Introduction

A wide range of scientific and engineering challenges involve physics on multiple time
and length scales. This is particularly the case with the modelling of particle-laden fluids.

∗Corresponding author. Email addresses: omark@simula.no (O. al-Khayat), hpl@simula.no (H. P. Langtan-
gen)

http://www.global-sci.com/ 1257 c©2012 Global-Science Press



1258 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

These flows often involve physical processes on widely different length and time scales.
One specific challenge lies in the fact that particle size rarely is uniform, often varying
many orders of magnitude. Consequently, multiscale methodologies must be developed
to be able to resolve the physics of these flows. From a computational point of view,
new numerical strategies are required to deal with this class of problems [1, 5]. This
paper attempts to answer some of the questions that arise in multicomponent modelling
of sand-laden fluid flow. The analysis of these issues will be done within the lumped
particle model. Specifically, we will focus on the computational challenges of multiscale
modelling within this framework.

One of the challenges in modelling sand-laden flows is that the physical processes
involved interact over many different length and time scales. For instance, the dynamics
of the fluid and the suspended particles occur on time scales which may differ in many
orders of magnitude. Moreover, the variable size of the suspensions adds another layer of
complexity. The particle sizes range from smallest clay of micrometer in diameter to the
much larger millimeter-sized gravel. Recall Fig. 1 that shows the relative size differences
in these particles. The effect of a constant external force on the different particle types
will typically lead to different resultant outcomes. Moreover, the fluid phase evolves
in its own temporal scale which often differs from that of the particles. We will in this
section describe one way of simulating such multiscale physics with the lumped particle
model.

Figure 1: Typical sand particles suspended in fluids.

The lumped particle model is a flexible and numerically efficient framework for the
modelling of particle transport in fluid flow, which takes into account fundamental fea-
tures of particle flow, including advection, diffusion and dispersion of the particles. This
framework reproduces particle flow properties inherent in both continuum and discrete
approaches, and correctly reproduces advection and diffusion phenomena as special
cases [2].

This paper will study computational aspects of multiscale modelling with the lumped
particle framework. Specifically, we will study how an implementation of a sand-laden



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1259

Figure 2: Tank experiment of a sand-laden multicomponent flow. The image is from [4].

flow with many differently sized particle constituents can be accomplished. Here, we
develop a set of protocols to handle computations ranging over physical length scales
spanning many orders of magnitude. These simulation protocols are in essence a set of
rules of thumb designed to make the framework more efficient. Moreover, since numeri-
cal accuracy is a key issue, we will investigate alternative methods for solving the particle
equations of motion.

We will first repeat the most important aspects of the framework in Section 2. More-
over, in Section 3.1, we will study the Velocity-Verlet scheme for solving Newton’s equa-
tions, and show how to apply the method within our framework. Thereafter, we will
discuss our multiscale approach in Section 4. Finally, in Section 5, we present a series
of numerical experiments for investigating the numerical accuracy and efficiency of the
framework.

2 Overview of the lumped particle model

We will now give a short account of the lumped particle modelling framework. The
framework is based on a mesoscopic hybrid continuum-particle approach, where groups
of particles constitute a particle lump. Instead of tracking the individual dynamics of
each particle, a weighted spatial averaging procedure is used to evolve the particles in
the computational domain. The external forces are applied to the lump of particles, from
which an average position and velocity is derived. Hence, the particles are in a sense con-
sidered as a continuum, but where the particle nature heavily influences the dynamics.
In the following description, we will restrict our attention to a two-dimensional regular
lattice.

When computing the evolution of the particles, the particle lumps are partitioned into
smaller entities, known as quasi-particles, which are then transported according to local
physical effects. These smaller entities recombine into new particle lumps at the target
destinations. We partition the computational domain into a regular lattice, with physical



1260 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

Figure 3: The lumped representation of particles. Particles within a grid cell are treated as a single entity. Here,
ṽ is the average velocity and ds is the offset from the particle centroid to the cell center.

spacing parameters ∆x and ∆y. Time is discretized into increments of ∆t. As shown in
Fig. 3, the lattice defines a set of grid cells, each having a center point xp. The distribution
N(xp,t), and the velocity V(xp,t) are defined as the number of particles inside the cell
and the average velocity of these particles, respectively. Moreover, we define an error
measure ds to track the distance of the particle centroid to the cell center. The compu-
tation of the temporal evolution of these variables consists of three distinct steps which
replace the conventional full particle-tracking approach.

The first step is a dispersion step, where the particle lump is split into smaller parts,
the quasi-particles. Each of these quasi-particles have a dispersion velocity cm, which quan-
tifies the direction of the quasi-particle movement. It is in this step that the kinematics
of these quasi-particles is calculated. The second step is the recombination step, where
quasi-particles are recombined to form a new particle lump at the destination sites. In
preparation for the next time step, the dispersion velocities are calculated at this stage as
well. The third step is a diffusion step, which enables the modelling of Brownian motion
and similar phenomena. In this paper, however, we will not discuss the diffusion step
further. Interested readers are referred to [2].

In the dispersion step, we compute the force acting on the particle lump in each grid
cell. Using the average velocity as a basis, an acceleration is calculated numerically from
Newton’s second law applied to the particle lump. Here, Newtons second law can be
written as

dvp

dt
=−

1

τp

(

vp−u
)

+

(

1−
̺ f

̺p

)

g. (2.1)

By solving the above equation, the particle position x can be found from

dx

dt
=vp. (2.2)

Here, we have defined

τp=
d2

p ̺p

18µ
. (2.3)



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1261

The particle relaxation time τp is a measure of the particle’s response to a changing fluid
velocity. In Eq. (2.1), vp and u are the particle and fluid velocities respectively, while dp

is the particle diameter, and g is the gravitational acceleration. Furthermore, ̺ f and ̺p

are the fluid and particle densities respectively, and µ is the dynamic fluid viscosity. The
first term on the right hand side is the drag force on the particle, and the second term
represents the combined effect of gravity and buoyancy.

A discrete solution of Eq. (2.1) is obtained by an explicit forward Euler method in
time. Let tℓ= ℓ∆t with ℓ being the time step index. A temporal discretization of Eq. (2.1)
becomes

∆vℓ

∆t
=−

1

τp

(

Vℓ−1−uℓ−1
)

+

(

1−
̺ f

̺p

)

g, (2.4)

where ∆vℓ/∆t is the acceleration of each individual particle in the current grid cell. We
will apply this acceleration to the quasi-particles. The average velocity Vℓ−1 is used as the
basis for the force calculation, modeling the overall drift of the particle lump. Whereas
the fluid velocity uℓ−1 is assumed to be known, either analytically or as a numerical
approximation generated by a separate solver for fluid flow.

The displacement ∆xℓ of the quasi-particles will depend on the dispersion velocities.
The above acceleration is then applied to the quasi-particles within a grid cell, thereby
changing their dispersion velocities ci. Since quasi-particles attains the new velocity ck+
∆vℓ, we can numerically integrate Eq. (2.2) to obtain the displacement,

∆xℓk =
∫ tl

tl−1
vpdt=

(

ck+
∆vℓ

2

)

∆t. (2.5)

As a result, the quasi-particles are transported to their target cells, corresponding to trav-
eling with their respective velocities in the given time increment ∆t. Fig. 4 illustrates the
dispersion procedure.

The distance a quasi-particle travels does not usually correspond to an integer mul-
tiple of one grid cell. As a means to track this error, an error correction vector ds(xp) is
introduced, which quantifies the offset of the centroid of the particle lump relative to xp,
and can also serve as a measure of positional error. A quasi-particle displacement algo-
rithm is used to calculate the target grid cell and the new error correction vector ds+. Let
Ij be the initial grid cell and Ik be the target grid cell, where k and j are grid cell index
vectors. If dsi and ki denotes the i’th component of ds and the grid cell index vector
respectively, then these three are updated at each time step by

ds̃i = si−

[

si

∆xi

]

∆xi, (2.6)

ki = ji+

[

si

∆xi

]

+

[

dsi+ds̃i

∆xi

]

, (2.7)

ds+i =dsi+ds̃i−

[

dsi+ds̃i

∆xi

]

∆xi, (2.8)



1262 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

Figure 4: Dispersion of the particle lump. The particle lump is divided into three quasi-particles which are
dispersed within the domain.

where si is i-th component of the displacement vector calculated by Eq. (2.5). Here, [·]
denotes the closest integer value. The full derivation of this algorithm is given in [2].

In the recombination step, the quasi-particles entering the grid cells are recombined
into a new lumped particle. Fig. 5 gives an illustration of this procedure. A new mean
velocity V and error measure ds are calculated as the averages of the respective velocities
and error measures of the quasi-particles. Using a momentum balance approach, we also
calculate new dispersion velocities. Further details about these calculations can be found
in [2].

This completes the overview of the lumped particle model. It should be noted that
many aspects of the framework has been omitted in this rendition, but we have included

Figure 5: Recombination of quasi particles. Quasi-particles entering grid cells recombine into new particle
lumps.



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1263

enough detail for the further development of the framework. For instance, recently
we have extended the framework to include the effects of particle collisions in densely
packed flows. In [3], we use the modelling framework to reproduce the hindered set-
tling effect, the reduction of the effective drag force on a settling particle, to very good
accuracy and with complete consistency with experiments.

3 Numerical improvements

An important issue with the simulation of particle clusters whose size range many orders
of magnitude is the efficiency of the numerical model. And as outlined Section 2, the
current discretization of Newton’s equations uses an explicit Euler scheme. It is well
known that this scheme is neither particularly accurate nor numerically efficient. The
key issue here is the stiffness of the discretized equation (2.4), which places restrictions
on the size of the time increment ∆t. In this section, we will explore one alternative
numerical scheme, and show how to apply it within the lumped particle framework.

3.1 Velocity-Verlet algorithm

First introduced in [6], the Velocity-Verlet numerical method for calculating velocities and
positions discretely in time, which is widely used in molecular dynamics simulations
[7]. The Velocity-Verlet method is often called a semi-implicit scheme, since in many
cases the implicit nature of the derived equations is only superficial, meaning that explicit
expressions are possible to obtain. We will first present a short derivation of the method,
followed by an overview of how the Velocity-Verlet scheme is to be applied within our
framework.

In the Velocity-Verlet scheme, the standard midpoint difference approximation for the
derivative of the velocity v of a particle is used. We obtain

v(t+∆t)=v(t)+[v‘(t+∆t)+v‘(t)]
∆t

2
+O(∆t3). (3.1)

Observe that all quantities at time t+∆t are to be evaluated at spatial position x(t+∆t),
which is given by

x(t+∆t)= x(t)+∆tv(t)−
∆t2

2τp

[

(v(t)−u(t))+τp F̄(t)
]

+O(∆t3). (3.2)

Here, we have set v‘(t) =−1/τp(v(t)−u(t))+ F̄(t), where F̄(t) are all the body forces
acting on the particle that do not depend explicitly on the velocity. In general, this is
not usually the case, specially when more complicated forces are included, such as the
Saffman lift force. We are therefore assuming that the drag force is the only velocity



1264 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

dependent quantity. Inserting the expression for v‘(t) into Eq. (3.1) gives

v(t+∆t)=v(t)+
∆t

2τp

[

τp F̄(t)+τp F̄(t+∆t)+u(t)+u(t+∆t)
]

−
∆t

2τp
[v(t+∆t)+v(t)]+O(∆t3). (3.3)

Eq. (3.3) is in principle an implicit expression for the velocity. In its current form, how-
ever, it is possible to obtain an explicit equation by a straightforward rearrangement of
the terms. We obtain

v(t+∆t)=
1−η

1+η
v(t)+

η

1+η

[

τp F̄(t)+τp F̄(t+∆t)+u(t)+u(t+∆t)
]

+O(∆t3), (3.4)

where η= ∆t
2τp

.

3.2 Application of the Velocity-Verlet scheme in the lumped particle model

We will now show how to apply the Velocity-Verlet algorithm within the framework,
effectively replacing Eqs. (2.5) and (2.4). Firstly, the body forces considered in this paper

are restricted to gravity and buoyancy. Consequently, F̄(t)=
(

1−
̺ f

̺p

)

g= constant.

As we did previously in the explicit Euler scheme, we use the average velocity Vℓ−1 as
the basis for the force calculation on the quasi-particle instead of the dispersion velocities
ck. Using Eq. (3.2), we obtain

∆xℓk = ck∆t−
∆t2

2τ2
p

(

Vℓ−1−uℓ−1
)

+
∆t2

2τp

(

1−
̺ f

̺p

)

g. (3.5)

This expression effectively replaces Eqs. (2.4) and (2.5). With this value for the displace-
ment, we can obtain the new target grid cell with Eqs. (2.6)-(2.8), which corresponds to
the spatial position where the value of uℓ=u(t+∆t) is evaluated. Consequently, the new
quasi-particle velocity are calculated with

vℓ

k =
1−η

1+η
ck+

η

1+η

[

2τp

(

1−
̺ f

̺p

)

g+uℓ−1+uℓ

]

. (3.6)

These two equations are the only modifications done to the core algorithm of the lumped
particle model. All other aspects of the framework is left intact. In Section 5.2, we will
investigate the numerical accuracy and efficiency of this new approach.

4 Multiscale modelling approach

A fluid flow consisting of many particle types can almost automatically be accommo-
dated within the framework of the lumped particle model. Particles of the same average



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1265

size and shape can be divided into n distinct groups, each with a separate lumping pro-
cedure. With the inclusion of an external solver for the fluid phase, we need to run a set
of n+1 simulation entities to be able to calculate the evolution of the sand-laden fluid
flow. In addition to being coupled, these components require different time scales to re-
solve the physics they represent. What we need is a procedure to be able to calculate the
solution of a series of components which represent physics on different scales.

The basic idea of our multiscale modelling approach is to resolve the physics on the
shortest time scales first, then those processes that occur on higher time scales. Moreover,
time averaged quantities are used in the coupling of the simulation components.

In this setting, we will denote the different simulation entities as a data component
or simply a component. Instances of such components could be the simulator represent-
ing the fluid or one of the different particle constituents. Moreover, member variables or
members are a set of quantities that is updated at each time integration step which de-
scribe the system modelled. For instance, member variables of a component describing
a suspension can be the velocity and the concentration of the particles within a grid cell.
Therefore, the data components can be viewed as a self-contained simulation engine re-
sponsible for calculating the state of their members. Calculating the members of a data
component is what we will refer to as to resolve it. In this setting, resolving will mean
to perform the time integration of the mathematical model represented by the data com-
ponent. Note that these concepts of components and members in the simulation model
directly onto an object-oriented implementation.

4.1 Sequential propagation of data components

The simulation process consists of calculating the member values of the data components
during a time increment ∆t, which we will refer to as the global time step. We assume that
a characteristic time scale τc is associated with a given data component.

Assuming that we have m data components, we can define a natural hierarchy
{τ1

c ,τ2
c ,··· ,τm

c } consisting of the characteristic time scales, where τ1
c ≤ τ2

c ≤ ··· ≤ τm
c . As

will be explained further down, this set is used when prescribing the order the compo-
nents are resolved. In the following discussion, the global time increment ∆t is chosen to
be equal to the maximum time scale of the components involved in the simulation. That
is, ∆t= τm

c , but the method introduced here does not require this in general. In Section
5.2, we perform some experiments to compute the error of the numerical scheme. This
calculation will give us some indication of how ∆t should be chosen to minimize the
numerical error.

The goal during the time increment is to advance the modeled system from time t to
t+∆t. This is accomplished by what we call a sequential propagation of the components in
the hierarchy. With this we mean that the first component is advanced to time t+τ2

c , after
which the second component is advanced to that same time. Then the third component
is resolved to t+τ3

c , after which the first and second component are advanced from t+τ2
c

to t+τ3
c . This process continues until all the components are resolved. Fig. 6 shows an



1266 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

Figure 6: Multiscale time evolution of three data components. Three data components have a characteristic
time scale τ1

c , τ2
c and τ3

c , respectively. During each time increment ∆t= τ3
c , data component “1” is evolved

to time t+τ2
c in increments τ1

c . After which, the data component “2” is evolved to time τ2
c . This is shown in

figure B above. Note the yellow bar representing the time increment τ2
c /τ1

c − [τ2
c /τ1

c ]. In figure C, the third

data component is evolved to time t+τ3
c . Finally, data component 2 and 3 are evolved to time t+τ3

c , as shown
in figure D.

example of this procedure with three data components. The order of resolving the com-
ponents in this fashion is chosen to minimize the error of the calculation, since all of the
components should in principle be resolved simultaneously. When resolving each data
component, the time increment must be less or equal to the value required by the numer-
ical scheme. Hence, higher time increment values sent to the component are partitioned
into smaller quanta, requiring many calls to the numerical solver routine before the com-
ponent is resolved. In modeling turbidity flow the difference in specific components is
many orders of magnitude, often requiring 106 calls for the smallest particles. This is a
big issue that will be handled in Section 4.3.

4.2 The coupling of data components

In general, the evolution of a data component is dependent on the states of other compo-
nents in the simulation. For instance, a data component describing solid particles needs
the velocity of the fluid to be able to calculate the drag force. Moreover, if the particle
concentration is large, then the fluid component will be affected by the particle dynam-
ics. Hence, within this multiscale framework, we require a mechanism to handle these
effects. For simplicity, we will assume that the data components are coupled on the equa-
tion level only. This means that changes in the geometry, like deposition of particles on
the ocean floor, will not be viewed as a data coupling, even though it is important for the
components evolution.



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1267

We can define the influence of a component onto another component. In principle, this
is a time averaged quantity of some of the members of the data components which an-
other data component requires to be resolved. Usually, this is could be the fluid velocity,
but it could also be some derived quantity like angular momentum. Hence, the influence
of a data component are certain physical quantities that must be calculated during a time
increment. In the beginning of the simulation, each data component instructs the others
involved, which influence it requires and how to calculate it. Each time a data compo-
nent is resolved, it calculates the influence required by other components. Note that an
influence for a data component can be updated many times before it is actually used.
Hence, a weighted time average is used when calculating the influence.

We will now outline how a coupling between data components can be accomplished.
Consider three data components, each representing a sand constituent in steady fluid
flow. Depending on the specific model considered, these components will interact in
some manner. Assuming that the interactions can be modelled with a force term, New-
ton’s second law on sand constituent i will be given by

dvi
p

dt
=−

1

τi
p

(

vi
p−u

)

+

(

1−
̺ f

̺i
p

)

g+
1

mi
p
∑
k 6=i

Fk. (4.1)

Here, the force term ∑k 6=i Fk represents the time averaged force from each of the other
sand constituents. In our nomenclature, the time averaged force term Fk is the influence
from component k on constituent i. Observe that since we are describing a flexible frame-
work for coupling data components, it is beyond the scope of this paper to quantify the
exact form of the coupling force F. The exact form of the force Fk will depend on the
modelling setting.

4.3 Accelerated resolving of data components

One challenge when resolving the data components is that the smallest particles usually
have a relaxation time τp many of orders of magnitude smaller than the larger ones.
This can easily be seen by noticing that τp ∝ d2

p. Hence, the difference in relaxation time
between gravel and small sand particles 6 orders of magnitudes, which roughly translates
to 106 time loop calls for the small sand data component for every one of the gravel
particles. We will in this section describe how to address this challenge, which would
otherwise render our proposed method inefficient and impractical if left unresolved.

To remedy this problem, we can first consider some basic properties of the physical
system. Assume that we have two data components, one representing large particles and
the other the much smaller ones, with characteristic time τ1

c and τ2
c , respectively. Here,

τ2
c ≫ τ1

c . Since the forces on the smaller particles depend on these dynamical variables,
the forces can be viewed as constant during the characteristic time τ2

c . In many cases
this can simplify the underlying equations for the smaller particles, even allowing for an
exact solution of the equations to be found. We can therefore assume that only very small
changes are possible. This is at least the case for Eq. (2.1).



1268 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

Let c =
(

cx,cy

)

be the dispersion velocity of a quasi-particle, and V =
(

Vx,Vy

)

. By
assumption, all external forces F=(Fx,Fy) are constant in the time increment τ2

c . Hence,
the displacement s=(sx,sy) and the new dispersion velocity c+=

(

c+x ,c+y
)

for the quasi-
particle can be obtained by the exact solution of Eqs. (2.2) and (4.1). This gives

c+x =ux+τ
1
p Fx+(Vx−ux−τ

1
p Fx)e

−
τ2
c

τ1
p , (4.2)

c+y =uy+τ
1
p Fy+τ

1
p ḡ+(Vy−uy−τ

1
p Fy−τ

1
p ḡ)e

−
τ2
c

τ1
p , (4.3)

sx =
(

ux+τ
1
p Fx

)

τ
1
p+(Vx−ux−τ

1
p Fx)τ

1
p

(

1−e
−

τ2
c

τ1
p

)

, (4.4)

sy=
(

uy+τ
1
p Fy+τ

1
p ḡ
)

τ
2
c +(Vy−uy−τ

1
p Fy−τ

1
p ḡ)τp

(

1−e
−

τ2
c

τ1
p

)

. (4.5)

These equations replace the standard numerical scheme described in Section 2. Note that
we have also set

ḡ=−

(

1−
̺ f

̺p

)

g, (4.6)

and u=(ux,uy) is the fluid velocity.
Care must be taken, however, when applying the exact solutions to the quasi-particles

movement. If the quasi-particle passes through more than one grid cell during the time
step, the forces from the other data components may be different from the grid cell of
origin. Therefore, a simple check of the external forces is added to the framework. Here,
we calculate the difference between the respective forces in the interceding grid cells. If
a significant difference is found, the quasi-particle is moved to an intermediate grid cell,
where the dispersion step is repeated for the respective quasi-particle. A significant dif-
ference is in this context a value higher than 5% relative difference between the forces in
the two grid cells compared. In practice, however, we have yet to encounter this problem
in simulations. The smaller particles typically travel one or two grid cells at the most
during the time increment τ2

c .

5 Numerical experiments

In this section we will present a series of applications of the multiscale lumped particle
model, aimed as a proof of the concepts presented in this paper.

5.1 Simulation of three sand constituents in still water

Consider a set of sand particles suspended in a fluid. These sand particles vary greatly
in diameter, but we can categorize them into groups with the same average size. Fig. 1
shows the relative size differences in these particles. In a sand-laden flow, the largest



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1269

particles is usually called gravel particles, with size ranging from about 2 mm to 5mm.
Intermediate sized particles with diameter from about 2.0−0.05mm in size, are often
referred to as sand. Silt are an even smaller particle group with diameters as small as
0.002mm. The smallest particles in a sand-laden flow, known as clay, are of size less than
0.002mm. Note that this is a very rough partitioning of the suspensions, but will suffice
for the cases discussed in this paper. This simulation will serve to exemplify the coupling
of data components and to show simple but important results concerning suspension
flows.

There are three particle types involved in the simulation, which are small sized gravel,
large and medium sized sand. The particles are to be released with an initial vertical ve-
locity in a fluid at rest. Hence, there are in principle four data components to be resolved
at each time step. The member values of the particle components are the velocity and po-
sition. Moreover, none of the constituents interact at this stage, being only influenced by
gravity and the fluid. The particles are assumed not to influence the fluid, which allows
us to omit the fluid component in the simulation.

All of the particles obey Newton’s second laws as described in Section 2, with
the diffusion step being turned off for all constituents. The size of the particle con-
stituents are set to 3.0 mm, 0.3mm and 0.03mm, respectively. With a particle density
of ̺p=2634kg/m3, and a fluid viscosity µ=1.002×10−3m2/s, we calculate the relaxation
time for each particle constituent to be τp = 0.525s, τp = 5.25 ·10−1s and τp = 5.25 ·10−3s.
The relaxation time will be used as the characteristic time scale of the data components.
Observe that the relaxation time of the clay particles is 4 orders of magnitude smaller
than that for the gravel particles.

Moreover, a global time step length of ∆t=0.05s is chosen, with about 300 time steps
being simulated. Note that this time step length is larger than the relaxation time for
the smallest particles. To resolve the physics of these particles, we must choose a time
step length less than the value of τp. We tackle this issue by letting the data components
partition the global time step into smaller time increments consistent with this criteria, as
explained in Section 4.

We use the physical domain [0.0,20.0]×[0.0,20.0], which is partitioned in 251×201 grid
cells. The particles, of which there are 102500 of each constituent, are distributed evenly
in a rectangular area. The fluid is set to be at rest and the gravitational acceleration g is set
to 9.81m/s2. We initialize the particles with a velocity v=(v0,0.0) with, v0 =0.1m/s for
the Gravel, v0=1.0m/s for the sand particles and v0=30.0m/s for the clay particles. Note
that since the clay particles will be severely impeded by the fluid, we use an unnaturally
high speed to be able to display their evolution easier. The boundary conditions are set to
simple ”no-slip” bounce back, which in this context means that quasi-particles entering
a wall are simply reversed in direction. Note, however, that boundary effects are not the
focus of this paper. Consequently, we will not discuss the behaviour of particles at wall
sites.

Fig. 7 depicts the results of the simulation. Here, we present three figures in dif-
ferent magnifications showing the center of mass displacement of the different particle



1270 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

(a) Initial view (b) A magnified view

(c) An even larger magnified view

Figure 7: Centre of mass displacement
for three particle constituents in still wa-
ter. Gravel, sand and clay particles are
distributed in a rectangular area within a
domain filled with still fluid, where only the
center of mass displacement is shown. All
of the particles were initialized with a hor-
izontal velocity and are effected by gravity
as well. What can be observed is the faster
deposition of the larger particles compared
to the smaller ones.

constituents. Firstly, we can observe a graded deposition of the particles. The larger and
heavier particles gets deposited before the smaller ones, which is what to expect since
one can show that the limiting velocity in the y-direction is vy = τp ḡ. Thirdly, we note
that the heavier particles travel further than the lighter ones. At first glance this may be a
surprise, but by solving the Newtons’ equations analytically for this simple case, we can
show that particles in still water will not travel further than SD=τp v0. After this distance,
the particles will deposit onto the ocean floor with no horizontal movement. This can also
be seen in Fig. 7, where the yellow particles almost seem to stop in the x-direction. This
result would change if we apply a constant fluid velocity to the particles. The smaller
particles would travel much farther than the larger ones.

Finally, we tested the efficiency of the multiscale approach described in Section 4. The
computation time required to simulate the system described above is usually of the or-
der of hours. Hence, it serves as a good case to illustrate the gain in efficiency of our
proposed approach. We will study two situations, one with two constituents in the phys-
ical domain, and one with three constituents, like the one described above. In both of
these settings, we will investigate three scenarios consisting of different efficiency strate-



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1271

Figure 8: Total computation time of the lumped particle framework using different approaches.

gies. The particles will evolve from t= 0.0s to t= 15.0s as before, but with varying time
increments depending on the chosen strategy. The first strategy is actually the ”default”
approach, where we use the minimum time increment required to accurately simulate the
evolution of the smallest particles. For the clay particles, this time increment is ∆t=0.025s
(More on accuracy in Section 5.2). The second strategy is the multiscale approach de-
scribed in Section 4. Finally, the third strategy is using the accelerated approach where
the exact solution is used which was discussed in Section 4.3.

Fig. 8 shows the timing saved on using the accelerated procedure as compared to us-
ing the traditional algorithm. As is shown on the chart, we can observe a substantial time
saving in using the accelerated resolution of data components compared to the conven-
tional approach. For instance, for three particle constituents, the conventional approach
takes over 7 hours to complete the simulation, while it takes only a few minutes for the
accelerated approach. This is approximately a 96 fold increase in efficiency for the model,
which we think is a substantial improvement.

Observe that the testing of the algorithm is carried out on a high end laptop with
no substantial optimization of code. It will be possible to further improve the efficiency
of the lumped particle modelling framework, like moving to parallel architectures. More
testing is, however, required in more physically complex settings, where more non-trivial
forces on the particles are prevalent.

5.2 Numerical error trials

We want to quantify the error of the numerical model for the lumped particle framework.
This has implications on how small we must choose ∆t for a given particle relaxation time
τp. Moreover, these experiments will serve as a verification of the numerical model. We
will compare the results of the original numerical scheme with that of the Velocity-Verlet
implementation.



1272 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

We saw in the previous section how inefficiency of the explicit Euler scheme, which
would be impractical to use in other than highly trivial physical settings. Consequently,
we clearly require an alternative method for solving Newton’s equations. In Section 3, we
discussed the Velocity-Verlet scheme, and described how to apply this method within the
lumped particle framework. In principle, the system of equations described by Eqs. (3.3)
and (3.4) are of second order accuracy. However, with the added complexities arising
with the lumping procedure, it is not clear that this property is conserved within the
framework.

We will now test the accuracy and efficiency of the two different numerical schemes
within our modelling framework. Restricting our attention to one particle constituent,
we perform as series of experiments aimed at computing the horizontal displacement of
particles with the added effects of gravity and buoyancy. Similar to the previously stud-
ied case, the displacement will converge towards the finite value SD=τpv0. The particles
are initiated with a horizontal speed v0 = 5.0, with the relaxation time set to τp = 2.314s.
Moreover, the physical domain is the rectangular area [0.0,400.0]×[0.0,40.0], which is par-
titioned in 201×201 grid cells. In each experiment, we measure the deposition distance
SD at time t=30.0.

For the complete series of experiments, we calculate the convergence rate

rn =
log(en/en+1)

log(∆tn/∆tn+1)
. (5.1)

Here, en is the relative error in the computed deposition distance, and ∆tn is the corre-
sponding time increment for experiment n. For completeness, we conduct the same series
of experiments using the explicit Euler scheme.

Table 1: Comparison between the explicit Euler scheme and the Velocity-Verlet scheme.

∆t Time steps en : E-Euler rn : E-Euler en : V-Verlet rn V-Verlet
1.0 30 0.214 1.000 0.045 1.999
0.8 37 0.170 1.000 0.029 1.999
0.6 50 0.128 1.000 0.016 1.999
0.5 60 0.106 1.000 0.011 1.999
0.4 75 0.085 1.000 0.007 1.999
0.3 100 0.064 1.000 0.004 1.999
0.25 125 0.053 0.999 0.003 2.000
0.2 150 0.043 1.000 0.002 1.999

Table 1 shows the combined results of the numerical experiments. Moreover, Fig. 9
shows the error of the two schemes as a function of decreasing time increment. For the
explicit Euler scheme, we observe that the error in the numerical scheme is substantial for
high values of ∆t. For ∆t= 1.0, which corresponds to a relative time increment ∆t/τp =
0.43, the relative error is approximately 20%. Notice that the relative error is very high.
As expected, the results also show that we can reduce this error by reducing the time



O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274 1273

Figure 9: Relative error in the deposition distance.

increment. We can conclude that if a given physical setting allows for a relative error of
5%, the time increment for each particle constituent would have to be

∆t.0.13τp. (5.2)

This is approximately a tenth of the particle relaxation time for each respective con-
stituent.

If we consider the Velocity-Verlet scheme, two main results can be concluded from
these data. Firstly, the Velocity-Verlet scheme is second order convergent compared to the
first order nature of the explicit Euler scheme. Hence, the second order convergence rate
of the Velocity-Verlet scheme is not lost when applied within our framework. Secondly,
we notice a great increase in the accuracy of the results for the Velocity-Verlet scheme
compared to the explicit Euler scheme. In contrast to the explicit Euler scheme, if a given
physical setting allows for a relative error of 5%, the time increment for each particle
constituent would have to be

∆t.0.43τp, (5.3)

which is approximately 4 times higher than the value for the explicit Euler scheme. This
signifies a substantial increase in the applicability of the lumped particle framework.

6 Conclusion

In this paper, we presented extensions to the lumped particle framework for the simu-
lation of multicomponent particle-laden fluid flow. By considering a multiphase fluid
comprised of sand of different size, we showed how to couple the time evolution of the
particle constituents. The concepts developed within this paper also fit very well with an



1274 O. al-Khayat and H. P. Langtangen / Commun. Comput. Phys., 12 (2012), pp. 1257-1274

object-oriented implementation. Moreover, we presented a sequential propagation pro-
tocol for the effective computation of particle transport, and showed how to speed up
these calculations for components which scale differ many orders of magnitude. Some
aspects of the interactions between constituents was briefly discussed, exemplified by a
force coupling term in Newtons second law.

Furthermore, a few numerical experiments on a three-component sand laden flow
were discussed. These trials agreed qualitatively with results on deposition of sand par-
ticles. We discussed the numerical error of the lumped particle modelling framework.
We also studied the Velocity-Verlet scheme within the framework, and showed that the
efficiency and accuracy of our modelling framework were substantially increased when
compared to the previously used explicit Euler scheme. Moreover, the second order con-
vergence rate of the Velocity-Verlet scheme was not lost when applied within the frame-
work. Consequently, for a given relaxation time τp and error tolerance, we obtained an
upper bound for the time increment ∆t.

Acknowledgments

The presented work was funded by a research grant from Statoil. The work has been
conducted at Simula Research Laboratory as part of CBC, a Center of Excellence awarded
by the Research Council of Norway.

References

[1] J. E. Aarnes, V. Kippe, and K-A. Lie. Mixed multiscale finite elements and streamline methods
for reservoir simulation of large geomodels. Advances in Water Resources, 28(3):257–271,
2005.

[2] O. al Khayat, A. M. Bruaset, and H. P. Langtangen. A lumped particle modeling frame-
work for simulating particle transport in fluids. Communication in Computational Physics,
8(1):115–142, 2010.

[3] O. al Khayat, A. M. Bruaset, and H. P. Langtangen. Particle collisions in a lumped particle
model. Communication in Computational Physics, 10(4):823–843, 2010.

[4] J. Neufeld. The experimental nonlinear physics group, the university of toronto.
http://www.physics.utoronto.ca/ nonlin/turbidity/turbidity.html, 2007.

[5] W. Ren and W. E. Heterogeneous multiscale method for the modeling of complex fluids and
micro-fluidics. Journal of Computational Physics, 204(1):1–26, 2005.

[6] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation method
for the calculation of equilibrium constants for the formation of physical clusters of molecules:
Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649, 1982.

[7] M. E. Tuckerman, B. J. Berne, and A. Rossi. Molecular dynamics algorithm for multiple time
scales: Systems with disparate masses. Journal of Chemical Physics, 94(2):1465–1469, 1991.


