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Abstract. This paper concerns the numerical stability of an eikonal transformation
based splitting method which is highly effective and efficient for the numerical so-
lution of paraxial Helmholtz equation with a large wave number. Rigorous matrix
analysis is conducted in investigations and the oscillation-free computational proce-
dure is proven to be stable in an asymptotic sense. Simulated examples are given to
illustrate the conclusion.
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1 Introduction

Fast and accurate analysis of optical wave devices such as waveguides and couplers
have been crucial to the development of light integrated systems [4, 13]. Core parts of
such analysis often involve advanced computational procedures for investigating the
wave propagation characteristics of the particular system. While the beam propagation
method, which is based on fast Fourier transforms, has been popular in the study [7,8,17],
different finite difference schemes are also employed in the research. To improve the ac-
curacy of a numerical method used, a traditional approach is to increase the density of
the grid or decrease the mesh step sizes utilized [4, 8, 9]. With a uniform mesh and step
size, the cost for doing so may quickly become prohibitive if a high wave frequency is
encountered. Nonuniform mesh structures and step sizes, on the other hand, may offer
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certain advantages in the situation [9,15]. However, they are often cumbersome to imple-
ment in industrial applications [3, 13]. The issue of computational efficiency has become
increasingly important in certain applications, in particular in the development of highly
accurate, yet rapid numerical methods for solving paraxial, or parabolic, wave equations
in order to separate inaccuracies inherent in numerical methods from inaccuracies due to
paraxial wave approximations under modern laser configurations [12, 13, 16].

Consider a slowly varying envelope approximation of the light beam. A frequently
used paraxial optical wave model is the Helmholtz equation,

2iκ0l0Ez =Exx+Eyy+κ2
0[l

2(x,y,z)−l2
0 ]E, (x,y,z)∈D, (1.1)

where E is the electric field function of the light wave within a narrow cone, z is the beam
propagation direction, x,y are transverse directions perpendicular to the light, i=

√
−1,

κ0 is the wavenumber in free space, l0 is the reference refractive index and l(x,y,z) is
the cross section index profile [4, 7, 9]. The differential equation provides solutions that
describe the propagation of electromagnetic waves in the form of either paraboloidal
waves or Gaussian beams. Most lasers emit beams that take the latter form [4, 8]. The
paraxial wave equation (1.1) can be viewed as a simplification of Maxwell’s field equa-
tions [1, 8, 11, 13]. Without loss of generality, we set D={a< x<b, c<y<d, z> z0}.

Since the wave parameter κ=κ0l0 is large in optical applications, the field function E
is highly oscillatory. This may considerably impair our desire for a higher computational
efficiency as well as accuracy in a traditional way, since mesh steps cannot be unrealisti-
cally small [6, 14, 18].

This motivates the latest search for eikonal transformation based numerical methods.
The idea is straightforward. Let φ(x,y,z) and ψ(x,y,z) be sufficiently smooth real func-
tions satisfying conditions

|φz|≪κ|φ|, |φzz|≪κ2|φ|, (x,y,z)∈D. (1.2)

We then look for the solution of (1.1) in the form of

E(x,y,z)=φ(x,y,z)eiκψ(x,y,z), (x,y,z)∈D. (1.3)

In fact, functions φ and ψ are closely related to the amplitude and ray, or eikonal, func-
tions corresponding to the electric field E, respectively. The constraint (1.2) coincides with
the basic feature of paraxial waves, that is,

sinθ≈ θ, tanθ≈ θ,

where θ is the angle between the beam vector and optical axis [1, 8]. Transformations
similar to (1.3) have also been used frequently in Wentzel-Kramers-Brillouin (WKB), or
semiclassical, approximations in quantum physics.

The aim of this paper is not for a refinement of existing models, or a continue devel-
opment of new schemes. Instead, we will focus at the numerical stability of the latest
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alternative direction implicit (ADI) method acquired. Our discussion will be comprised
as follows. In the next section, a key feature of the eikonal transformation (1.3) will be
explored. From it, the detailed matrix structure of our transformation based ADI scheme
will be derived. Section 3 will be devoted to investigations of the asymptotic stability
of the eikonal splitting method via rigorous matrix spectrum analysis. Finally, in Sec-
tion 4, computational experiments illustrating the numerical stability of the underlying
algorithm will be presented. Concluding remarks will also be given.

2 Eikonal transformation based ADI method

Consider a typical Gaussian beam solution of the Helmholtz equation (1.1). Under a
proper re-scaler, the function at z= z1 ≥ z0 can be approximated by

E(x,y,z1)=2p1ep1(x2+y2), (x,y)∈A, (2.1)

where A= {(x,y) : |x|,|y|≤ r0 =2
√

2/q1}, p1 =1/[2(1+iz1)], q1 =1/
√

2(1+z2
1) [1, 8]. Set

z1=102. In Fig. 1, we show the field function E which is, by nature, highly oscillatory. This
feature often makes a computational grid refinement extremely costly or even impossible.

Now, recall the mapping (1.3). It is not difficult to observe that (2.1) can be trans-
formed into

E(x,y,z1)=φ(x,y,z1)e
iψ(x,y,z1), (x,y)∈A,

where

φ(x,y,z1)=
√

2q1e−q2
1(x2+y2) and ψ(x,y,z1)=q2

1z1(x2+y2)−cos−1q1.

We simulate functions φ, ψ in Fig. 2. Apparently, neither of them is oscillatory although
the original complex field distribution E is highly oscillatory. The interesting observation
indicates that relatively large step sizes can be employed if φ and ψ are the solutions
to be sought. Needless to say, this implies a useful potential for the development of
highly applicable, yet simple structured, numerical procedures to realize our ultimate
goals in computational efficiency as well as accuracy. This encourages our continuing
explorations in the eikonal splitting method via (1.3).

Let functions φ, ψ be sufficiently smooth and φ 6=0. For the simplicity in notations, we
denote p=κ2(ℓ2/ℓ2

0−1). Now, a substitution of (1.3) into (1.1) yields the following pair of
nonlinear differential equations,

φz=α(ψxx+ψyy)+ f1, (2.2a)

ψz =β(φxx+φyy)+ f2, (2.2b)

where

α=
φ

2
, β=− 1

2κ2φ
, f1=φxψx+φyψy, f2=

1

2
[(ψx)

2+(ψy)
2−p]. (2.3)
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Figure 1: The real part, imaginary part and modulus of the field function E given in (2.1). Spatial steps
hx = hy = 0.5 are used. The second column is for intersections of the wave functions and the Y-Z plane. To
view more details, the spacial domain is slightly reduced from its original size.

Note that solutions of Eqs. (2.2a)-(2.3) are not oscillatory even when κ is large. As
a consequence, mesh steps to be employed for the numerical solution can be relatively
large. Needless to say, this makes fast computations of the paraxial differential equa-
tion (1.1) solution more realistic. In fact, elementary studies of different discretization
procedures for (2.2a)-(2.3) have been carried out in a number of recent publications (for
instance, see [3, 16, 17] and references therein).
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Figure 2: Functions φ and ψ corresponding to (2.1). Spatial steps hx = hy = 0.5 are used. Again, the second
column is for intersections with the Y-Z plane. The spacial domain is slightly reduced from its original size to
match that in Fig. 1.

Although different finite difference approximations of (2.2a) and (2.2b) have been con-
structed, analysis of their numerical stabilities still need to be carefully explored. In fact,
instabilities of certain eikonal schemes have been reported in laboratorial computations
where particular large beam propagation distances are considered [7, 16, 18].

To comprise an ADI scheme, we may denote that

w=

[
φ
ψ

]
, f =

[
f1

f2

]
, M=

[
0 α
β 0

]
. (2.4)

Thus, (2.2a) and (2.2b) can be formulated in a matrix form,

wz=Mwxx+Mwyy+ f , (x,y,z)∈D. (2.5)

In this paper, we consider a standard initial condition,

w(x,y,z0)= g0(x,y), a≤ x≤b, c≤y≤d, (2.6)

where g0 is sufficiently smooth, together with homogeneous Dirichlet boundary condi-
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tions,

w(a,y,z)=w(b,y,z)=w(x,c,z)=w(x,d,z)=0,

a≤ x≤b, c≤y≤d, z≥ z0. (2.7)

We note that applications of homogeneous Neumann, Robin, or transparent bound-
ary conditions may lead to different amplification matrices in subsequent linear systems.
But nevertheless, their discussions are similar. We will consider a second boundary con-
dition in simulation experiments but leave detailed investigations to forthcoming papers.

Consider a three-dimensional mesh region Dh,τ superimposing part of D, where the
spatial grids are uniform and grids in the light propagation direction are given by

zσ = z0+
σ−1

∑
k=0

τk, σ=0,1,2,··· .

Note that, while spatial steps hx=(b−a)/n and hy=(d−c)/n are fixed by a given integer
n, τk are variable. Since the ADI scheme is of single step in z, without loss of generality,
we use τ=τk in our investigations although proper z-adaptations, such as the z-stretching
strategy [7], can be introduced during any stages of computations.

We further adopt standard notations for the discretization of (2.4),

f σ
i,j =( f1(xi,yj,zσ), f2(xi,yj,zσ))

⊺,

wσ
i,j=(φ(xi,yj,zσ),ψ(xi,yj,zσ))

⊺,

and, with (2.3),

Mσ
i,j =

[
0 ασ

i,j

βσ
i,j 0

]
, ασ

i,j =
φ(xi,yj,zσ)

2
, βσ

i,j =− 1

2κ2φ(xi,yj,zσ)
, (2.8)

where

κ≫1, maxφ≥φ(xi,yj,zσ)≥minφ>0, (xi,yj,zσ)∈Dh,τ ,

in which both minφ and maxφ are independent of n [1, 16].

Based on central finite differences in space, an ADI discretization of (2.5)-(2.7) yields
the following coupled systems of equations,

(I2n2−µMσ)wσ+ 1
2 =(I2n2+ηNσ)wσ+

τ

2
f σ, (2.9a)

(
I2n2−ηNσ+ 1

2
)
wσ+1=

(
I2n2+µMσ+ 1

2
)
wσ+ 1

2 +
τ

2
f σ+ 1

2 , (xi,yj,zσ)∈Dh,τ , (2.9b)
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where Ik denotes a k×k identity matrix, µ = τ/(2h2
x) and η = τ/(2h2

y) are dimensional
Courant numbers and for i, j=1,2,··· ,n, σ=0,1,2,··· ,

f σ =( f σ
1,1, f σ

2,1,··· , f σ
n,1,··· , f σ

n,n)
⊺∈R

2n2
, (2.10a)

wσ =(wσ
1,1,wσ

2,1,··· ,wσ
n,1,··· ,wσ

n,n)
⊺∈R

2n2
, (2.10b)

Mσ =diag(Mσ
1 ,Mσ

2 ,··· ,Mσ
n), (2.10c)

with

Mσ
j =




−2Mσ
1,j Mσ

1,j

Mσ
2,j −2Mσ

2,j Mσ
2,j

. . .
. . .

. . .

Mσ
n,j −2Mσ

n,j




, (2.11)

Nσ =




−2Nσ
1 Nσ

1

Nσ
2 −2Nσ

2 Nσ
2

. . .
. . .

. . .

Nσ
n −2Nσ

n


, (2.12)

with

Nσ
j =diag

(
Mσ

1,j,M
σ
2,j,··· ,Mσ

n,j

)
. (2.13)

Given that I2n2−µMσ and I2n2−ηNσ+1/2 are invertible. Eqs. (2.9a) and (2.9b) can be
conveniently converted to the following linear system

wσ+ 1
2 =(I2n2−µMσ)−1(I2n2+ηNσ)wσ+

τ

2
gσ

1 , (2.14a)

wσ+1=
(

I2n2−ηNσ+ 1
2
)−1(

I2n2+µMσ+ 1
2
)
wσ+ 1

2 +
τ

2
g

σ+ 1
2

2 , (2.14b)

where

gσ
1 =(I2n2−µMσ)−1 f σ,

g
σ+ 1

2
2 =(I2n2−ηNσ+ 1

2 )−1 f σ+ 1
2 .

Therefore

Aσ=(I2n2−µMσ)−1(I2n2+ηNσ), (2.15a)

Pσ=(I2n2−ηNσ+ 1
2 )−1(I2n2+µMσ+ 1

2 ) (2.15b)
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are amplification matrices corresponding to the eikonal ADI scheme implemented. Fur-
ther, we denote

Sσ =diag(Nσ
1 ,Nσ

2 ,··· ,Nσ
n )∈R

2n2×2n2
, L= tridiag(1,−2,1)∈R

n×n,

T1= In⊗L⊗ I2∈R
2n2×2n2

, T2= L⊗ I2n∈R
2n2×2n2

,

where ⊗ stands for a standard Kronecker product [10]. We observe readily from (2.10c)
and (2.12) that

Mσ=SσT1, Nσ =SσT2.

3 Stability analysis

It is apparently that the ADI method (2.14a) and (2.14b) is not stable in the classical von
Neumann sense in general. This can be seen via a similar mesh structure investigated
in [2]. However, on the other hand, the split scheme exhibits tremendous advantages
in short distanced beam propagation simulations as compared with its peers [14, 16]. In
fact, in highly oscillatory problem computations, excellent algorithmic simplicity and ap-
plicability are often more favorable [1, 6, 16]. Nevertheless, a straightforward asymptotic
stability analysis can be extremely meaningful in applications.

Definition 3.1. Consider a finite difference method with an amplification matrix Φ for
solving an oscillatory problem associated with a high wave number, that is, κ≫1. We say
that the numerical method is asymptotically stable if there exists a constant d > 0 such
that

ρ(Φ)=1+O
( 1

κd

)
,

where ρ(·) is the spectral radius and the constant d is called the asymptotical stability
index of the method.

Since d>0, we may notice that the higher the wave number is, the smaller the quantity
1/κd can be. In fact, 1/κd → 0 monotonically as κ →∞. As a consequence, the value of
ρ(Φ) can be extremely close to the unity in most optical wave computations we have
tested.

There are stronger, more rigorous and sophisticated stability criteria existing. Most
of them, however, do not offer any direct assessment of contributions of the solution
frequency to the numerical stability. This issue has become significant, or even crucial,
when highly oscillatory wave functions are concerned [6,14,16]. Definition 3.1 provides a
weaker, but simple and straightforward, tool for assessing algorithms for approximating
solutions of highly oscillatory problems. It is proven to be effective in practical computa-
tions, and can be viewed as an extension of those for highly oscillatory integrals studied
in [6].
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Theorem 3.1. The oscillation-free eikonal transformation based ADI method (2.14a), (2.14b) is
asymptotically stable with a stability index one.

We prove our result in following three steps.

Step I (Estimates of matrix spectral radii)

Assume κ to be an arbitrary positive parameter. Let ej be the j-th column of the 2n2×
2n2 identity matrix. Then

P=[e1,e3,··· ,e2n2−1,e2,e4,··· ,e2n2 ]

is a 2n2×2n2 permutation matrix. Furthermore, we have

P⊺SσP=

[
0 Λσ

α

Λσ
β 0

]
,

where

Λσ
α =diag(ασ

1,1,ασ
2,1,··· ,ασ

n,1,ασ
1,2,··· ,ασ

n,n),

Λσ
β=diag(βσ

1,1,βσ
2,1,··· ,βσ

n,1,βσ
1,2,··· ,βσ

n,n),

in which ασ
i,j and βσ

i,j are defined in (2.8). Moreover, we observe that

P⊺T1P= I2n⊗L and P⊺T2P= I2⊗L⊗ In.

Thus,

P⊺MσP=P⊺SσT1P=

[
0 Λσ

α(In⊗L)
Λσ

β(In⊗L) 0

]
≡ M̂σ, (3.1)

P⊺NσP=P⊺SσT2P=

[
0 Λσ

α(L⊗ In)
Λσ

β(L⊗ In) 0

]
≡ N̂σ. (3.2)

Recall (2.8). Base on the definition of the spectral norm we have

‖Λσ
α‖2=

maxφ

2
=O(1), ‖Λσ

β‖2=
1

2κ2minφ
=O

( 1

κ2

)
. (3.3)

It follows immediately that ‖L‖2<4=O(1). This implies that

‖L⊗ In‖2=‖L‖2 =O(1). (3.4)

Consequently, we arrive at the following lemma.

Lemma 3.1. The spectra of Mσ and Nσ are bounded by O(1/κ).
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Proof. We first show that ‖M̂2
σ‖2=O(1/κ2). By (3.1), we have

M̂2
σ=

[
Λσ

α(L⊗ In)Λσ
β(L⊗ In) 0

0 Λσ
β(L⊗ In)Λσ

α(L⊗ In)

]
.

Hence, according to (3.3) and (3.4),

‖M̂2
σ‖2 ≤‖Λσ

α‖2‖L⊗ In‖2‖Λσ
β‖2‖L⊗ In‖2=O

( 1

κ2

)
.

We thus conclude that

ρ(Mσ)=ρ(M̂σ)=O
(1

κ

)
.

Analogously, by (3.2), we have

‖N̂2
σ‖2=O

( 1

κ2

)
and ρ(Nσ)=ρ(N̂σ)=O

(1

κ

)
.

Thus, the lemma is proved.

Although the above lemma provides strong estimates for matrices M̂2
σ, N̂2

σ , if we view
κ as an arbitrary positive parameter, we still cannot claim that

‖M̂σ‖2, ‖N̂σ‖2=O
(1

κ

)
.

But nevertheless, we may show following useful results.

Lemma 3.2. The norms ‖M̂σ‖2 and ‖N̂σ‖2 are well bounded, i.e.,

‖M̂σ‖2, ‖N̂σ‖2=O(1).

Proof. According to (3.1), we have

M̂σM̂⊺

σ =(I2n⊗L)

[
(Λσ

α)
2 0

0 (Λσ
β)

2

]
(I2n⊗L).

Thus, by applying estimates (3.3) and (3.4), we obtain that

‖M̂σ‖2=
√

ρ(M̂σ M̂⊺

σ)≤
√

4·ρ((Λσ
α)

2)·4=O(1).

The estimate ‖N̂σ‖2=O(1) is analogously resulted.
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Step II (A final preparation for the asymptotical stability)

Recall (2.15a). It is observed that

Aσ=(I2n2−µMσ)−1(I2n2+ηNσ)≡ I2n2+Bσ,

where
Bσ=(I2n2−µMσ)−1(ηNσ+µMσ).

In following discussions, we will complete a final preparation leading to

‖B2
σ‖2=O

( (µ+η)3

κ2

)
. (3.5)

In conventional laser applications, values of κ range from 104 to 106. Therefore, without
loss of generality, we may assume that both µ/κ and η/κ are much less than unity.

Similar to those in (3.1) and (3.2), we may permute Bσ by P in the following way:

B̂σ≡P⊺BσP=(I2n2−µM̂σ)
−1(ηN̂σ+µM̂σ)

=(I2n2−µ2M̂2
σ)

−1(I2n2+µM̂σ)(ηN̂σ+µM̂σ)

=(I2n2−µ2M̂2
σ)

−1µM̂σ(ηN̂σ+µM̂σ)+(I2n2−µ2M̂2
σ)

−1(ηN̂σ+µM̂σ)

≡C−1M1+C−1M2, (3.6)

where

C= I2n2−µ2M̂2
σ

=

[
In2−µ2Λσ

α(In⊗L)Λσ
β(In⊗L) 0

0 In2−µ2Λσ
β(In⊗L)Λσ

α(In⊗L)

]

≡
[

C1 0
0 C2

]
, (3.7a)

M1=µM̂σ(ηN̂σ+µM̂σ), (3.7b)

M2=ηN̂σ+µM̂σ =

[
0 Λσ

α L2

Λσ
βL2 0

]
, (3.7c)

in which L2=µIn⊗L+ηL⊗ In and thus, consequently ‖L2‖2=O(µ+η).
The following lemma offers norm estimates for several most relevant matrices to be

used in our final proof of the main theorem.

Lemma 3.3. Utilizing notations given in (3.6)-(3.7), we have

(i) ‖C−1‖2=O(1) and consequently ‖C−1
1 ‖2=O(1), ‖C−1

2 ‖2=O(1);

(ii) ‖C−1M1‖2=O
(µ2+η2

κ2

)
;

(iii) ‖M2‖2=O(µ+η);

(iv) ‖(C−1M2)2‖2=O
(µ2+η2

κ2

)
.
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Proof. First, according to (3.7a) and Lemma 3.1, we have

‖C‖2≥1−µ2‖M̂2
σ‖2=1−O

(µ2

κ2

)
.

Note the fact that the ratio µ/κ is sufficiently small. We thus conclude that ‖C−1‖2=O(1).
On the other hand, from (3.7a), it can be observed that ‖C−1

1 ‖2=O(1) and ‖C−1
2 ‖2=O(1)

by definitions of the matrices. This completes our proof of (i).
Further, by (3.7b), we have

M1=µηM̂σN̂σ+µ2M̂2
σ.

Recall Lemma 3.1. The second term on the right-hand side of the above equation obeys
the estimate ‖µ2 M̂2

σ‖2=O(µ2/κ2).
Now, we can observe from (3.1) and (3.2) that

M̂σN̂σ =

[
Λσ

α(L⊗ In)Λσ
β(In⊗L) 0

0 Λσ
β(L⊗ In)Λσ

α(In⊗L)

]
.

Therefore, according to (3.3),

‖M̂σN̂σ‖2=O
( 1

κ2

)
.

It follows further that

‖C−1M1‖2=O
(µ2+η2

κ2

)

and this ensures (ii).
As for (iii), based on (3.7c), we find that

‖M2‖2=
√

ρ(M2M⊺

2 )=
√

ρ(L2(Λσ
α)

2L2)=O(µ+η).

On the other hand, a straightforward matrix multiplication leads to

C−1M2=

[
0 C−1

2 ΛαL2

C−1
1 ΛβL2 0

]
.

This indicates that

(C−1M2)
2=

[
C−1

2 ΛαL2C−1
1 ΛβL2 0

0 C−1
1 ΛβL2C−1

2 ΛαL2

]
.

Note that ‖C−1
1 ‖2,‖C−1

2 ‖2 =O(1), ‖Λα‖2 =O(1), ‖L2‖2 =O(µ+η) and ‖Λβ‖2 =O(1/κ2)
from our existing results. Consequently,

‖(C−1M2)
2‖2≤‖C−1

2 ‖2‖Λα‖2‖L2‖2‖C−1
1 ‖2‖Λβ‖2‖L2‖2=O

(µ2+η2

κ2

)
.

This completes our proof.
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Step III (Estimates of the amplification matrices)

We first show that

‖B̂2
σ‖2=O

( (µ+η)3

κ2

)
.

Recall (3.6). By using Lemma 3.3 we acquire that

‖B̂2
σ‖2=‖(C−1M1)

2+(C−1M2)
2+C−1M1C−1M2+C−1M2C−1M1‖2

≤‖(C−1M1)
2‖2+‖(C−1M2)‖2

2+‖C−1‖2‖M1‖2‖C−1‖2‖M2‖2

+‖C−1‖2‖M2‖2‖C−1‖2‖M1‖2

=O
(µ2+η2

κ2

)
+O

(µ4+η4

κ4

)
+O

(µ3+η3

κ2

)
+O

(µ3+η3

κ2

)

=O
(µ3+η3

κ2

)
.

The above result ensures the following estimate,

ρ(Aσ)=1+ρ(Bσ)=1+O
( (µ+η)

3
2

κ

)
.

Now, recall (2.15b). By the same token, we may show analogously that

ρ(Pσ)=1+O
( (µ+η)

3
2

κ

)
.

Therefore Theorem 3.1 must be true. This indicates that if the Courant numbers η and µ
are bounded, then the eikonal transformation based ADI finite difference scheme (2.14a),
(2.14b) is asymptotically stable with an asymptotical stability index one. This completes
our arguments.

4 Numerical experiments and concluding remarks

Purpose of this section is to demonstrate the structure simplicity and numerical stability
of the eikonal transformation based ADI method through self-contained tests and exper-
iments. To this end, we let p(x,y,z)≡ p be a constant. Based on (1.1) we consider the
following typical paraxial model along with homogeneous boundary conditions [16],

2iκEz =Exx+Eyy−pκ2E, (x,y)∈A, z> z1, (4.1a)

Eγ=0, (x,y)∈∂A, z≥ z1, (4.1b)

E(x,y,z1)=2p1ep1(x2+y2), (x,y)∈A, (4.1c)

where ∂A is the boundary of A, Eγ is the normal derivative of E along ∂A and A, p1,
q1 are defined in (2.1). The problem (4.1a)-(4.1c) facilitated by a constant p has been
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playing an extremely important role in monochromatic laser beam modeling and propa-
gation computations. A reliable numerical solver must possess a long term stability until
the traveling beam focuses or collapses for target oriented applications [8, 9, 17]. There-
fore, differences between numerical solutions over large amounts of z-advancements are
traditionally used as an important examination. This is also adopted in following exper-
iments. Two different values of p, namely, p=0 and p=100 are considered.

Without loss of generality, we take κ = 104, z1 = 100 together with sufficiently large
spacial step sizes hx=hy=0.4. We further adopt dimensional Courant numbers µ=η=5.0,
2.0, which lead to transverse step sizes τ1 = 0.8, τ2 = 0.32, respectively, for the implicit
numerical method. Central difference approximations are adopted for approximating
the derivative functions involved in f1 and f2, that is,

(φx)
σ
i,j≈

φσ
i+1,j−φσ

i−1,j

2hx
, (φy)

σ
i,j≈

φσ
i,j+1−φσ

i,j−1

2hy
,

(ψx)
σ
i,j≈

ψσ
i+1,j−ψσ

i−1,j

2hx
, (ψy)

σ
i,j≈

ψσ
i,j+1−ψσ

i,j−1

2hy
,

i, j=1,2,··· ,n, σ=1/2,1,3/2,··· .

On the Matlab platform, we first advance for 5000 steps in the transverse direction with
τ1. Then the experiment is repeated with τ2 for 12500 steps in the z-direction. Numer-
ical solutions acquired from two tests agree precisely at terminal location z = 4000 and
absolute errors between them are neglectful. As an illustration of the stable evolution of
the numerical solutions, in Fig. 3, we show differences of the real part, imaginary part
and modulus of the numerical solution at z= 4000 as compared with that of the initial
function (4.1c). The computed energy functions of the laser wave indicate an excellent
consistency with their expected physical features, although we may find that amplitudes
of the function E become significantly large in the p=100 case as compared with the p=0
case. This phenomenon is physically correct.

Now, to exam further the numerical stability in an extreme fashion, together with
hz =0.8 and µ=η=5.0, we advance underlying ADI calculations up to z=8000 in 10000
steps. The decomposed real and imaginary parts of the numerical solution E8000 is given
in Fig. 4. A three-dimensional modulus plot of the field function is presented in Fig. 5. It
is interesting that both sets of solutions exhibit the correct wave patterns precisely. This is
especially important to the design of beam propagations in nano or micro devices [13,14].

We further plot the difference between modulus of the computed solution E(x,y,z8000)
and E(x,y,z1), where z8000=z1+8000τ in Fig. 6 for p=0,100, respectively. We may notice a
significant difference between the case with nontrivial source term and without a source
tern. However, both differences follow precisely the pattern of the modulus functions
and stay as limited as compared with their respective electric fields E.

To summarize, in this paper, via rigorous matrix spectrum analysis, we have proved
the asymptotical stability of the ray transformation based finite difference method (2.14a)
and (2.14b), which arises in the development of fast and accurate numerical methods for
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Figure 3: Y-Z intersections of the real part, imaginary part and modulus of the difference between the recovered
highly oscillatory solution E5K and the initial function E0 (from the top to bottom; Left: p=0, Right: p=100),
τ=0.32 is used.

solving the paraxial wave equation (1.1). This result ensures the applicability and basic
reliability of the splitting computations for highly oscillatory problems, in particular in
near focusing optical computations. Similar analysis can be fulfilled for the local one-
dimensional (LOD) method [15,16,18]. The novel eikonal splitting is not only simple and
straightforward, but also oscillation-free in computations. Thus relatively large steps can
be utilized, as demonstrated in our numerical examples. Further, the eikonal scheme is
capable of solving problems with linear source terms. In the event if a nonlinear source
term is preferred in Eq. (1.1) or (4.1a), a proper linearization should be employed prior to
an application of the eikonal splitting procedure.

The matrix investigation conducted in this paper can also be extended for examin-
ing similar oscillation-free algorithms, in particular eikonal transformation based meth-
ods for solving different Gaussian beam oriented problems such as Kukhtarev sys-
tems in photorefractive wave and wave-material interaction computations [1, 13, 18] and
Maxwell’s equations in large electromagnetic fields [5, 6]. Although asymptotic dis-
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Figure 4: Y-Z intersections of the real and imaginary parts of the recovered highly oscillatory wave solution
E10K in 10000 z-steps (from the top to bottom; Left: p=0, Right: p=100).

Figure 5: A three-dimensional view of the modulus of the field distribution E10K. 10000 z-steps are executed
with hx =hy =0.4, τ=0.8 (Left: p=0, Right: p=100).

Figure 6: A three-dimensional view of the difference in modulus between the numerical solution E10K and initial
function E0. Solutions are advanced up to 10000 z-steps with hx=hy=0.4, τ=0.8 (Left: p=0, Right: p=100).
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cussions involving (2.14a) and (2.14b) currently exist only with homogeneous first and
second boundary conditions and uniform spacial grids, transparent or nonlocal bound-
ary conditions together with grid adaptations [15, 16] may also be applied. In addition,
more advanced splitting strategies, such as the adaptive splitting, iterative splitting and
asymptotic splitting [2, 15, 16, 18], can also be incorporated with the eikonal transforma-
tion. The study of eikonal formulas accommodating multi-valued φ, ψ functions, more
rigorous stability definitions associated with highly oscillatory wave applications, how-
ever, are still in its infancy. These are, needless to say, among our future endeavors.
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