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Abstract. Parallel tempering simulation is widely used in enhanced sampling of sys-
tems with complex energy surfaces. We hereby introduce generalized canonical en-
semble (GCE) instead of the usual canonical ensemble into the parallel tempering to
further improve abilities of the simulation technique. GCE utilizes an adapted weight
function to obtain a unimodal energy distribution even in phase-coexisting region and
then the parallel tempering on GCE yields the steady swap acceptance rates (SARs)
instead of the fluctuated SARs in that on canonical ensemble. With the steady SARs,
we can facilitate assign the parameters of the parallel tempering simulation to more
efficiently reach equilibrium among different phases. We illustrate the parallel temper-
ing simulation on GCE in the phase-coexisting region of 2-dimensional Potts model, a
benchmark system for new simulation method developing. The result indicates that
the new parallel tempering method is more efficient to estimate statistical quantities
(i.e., to sample the conformational space) than the normal parallel tempering, specially
in phase-coexisting regions of larger systems.
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1 Introduction

To overcome the difficulties in sampling thermodynamical systems with the complex en-
ergy landscape, parallel tempering (PT, which is also referred to as replica exchange) [1,2]

∗Corresponding author. Email addresses: alwintsui@gmail.com (S. Xu), xzhou@gucas.ac.cn (X. Zhou),
oy@itp.ac.cn (Z.-C. Ou-Yang)

http://www.global-sci.com/ 1293 c©2012 Global-Science Press



1294 S. Xu, X. Zhou and Z.-C. Ou-Yang / Commun. Comput. Phys., 12 (2012), pp. 1293-1306

was developed and applied widely in simulations of many different systems. In the
standard PT, M identical systems (replicas) with their respective temperature Ti are per-
formed in parallel, two neighboring replicas exchange their microscopic configurations
(or temperatures equivalently) with a Metropolis probability. Due to the configuration
exchanges among replicas, PT is expected to have stronger abilities than the conventional
single-replica simulations in overcoming high free energy barriers which separate differ-
ent conformational regions. Since the implementation of PT is simple in comparison with
some other enhanced sampling methods, PT has been widely applied in simulations of
physical and biological systems, by using both Monte Carlo simulation and Molecular
Dynamics simulation (see a review [3]).

Efficient PT should have a significant swap acceptance rate (SAR, the average accep-
tance probability of the configuration exchanges). One of the primary issues of PT is
how to pre-set the parameters such as temperatures. For example, in canonical ensemble
(fixed number of particle N, volume V and temperature T) parallel tempering (NVT-PT),
we need to set the temperature of each replica to make SAR between each two adjacent
replicas be significant. Usually one performs a short PT simulation by initially supposing
a set of temperatures for the replicas and estimates SARs, then adjusts temperatures of
replicas based on the estimated SARs and runs another short PT simulation. Iterating
the process to make SARs reach a suitable value, such as 20∼ 30% [4]. However, this
way does not always work well, specially in phase-coexisting regions [5, 6]. In these re-
gions, conformational trajectories could go back and forth between the different phases,
the values of SAR may be large while the adjacent replicas locate in the same phase,
but become very small while they locate in different phases. Thus SAR becomes highly
time-dependent, it is hard to estimate SAR from short segments of simulations to set tem-
peratures of replicas. In addition, in such cases, it is questionable that the average value
of SAR in an entire PT simulation can characterize the efficiency of PT in sampling. For
equilibrating different phases, we actually need sufficient inter-phase exchange events
rather than total exchange events which measured by the average SAR.

SAR depends on the overlap of conformational energy distributions between adjacent
replicas [7]. Considering the fact that the energy fluctuation, σ, is proportional to N1/2,
where N is the size of system, for completely covering an interesting energy range, ∆E,
which is proportional to N, the number of required replicas, n∼∆E/σ∼N1/2. The simple
estimation implies PT is more efficient in small systems. J. de Pablo and coworkers [8]
had quantified this relationship between the overlap of distribution and the value of SAR.
They regard the energy distribution of replica as a Gaussian form and SAR of the two
adjacent replicas is approximate to

Pacc≃erfc
( κ√

2

)

, (1.1)

where κ ≡ (Ē2− Ē1)/(σ1+σ2), Ē1 and Ē2 are the mean energy of two Gaussian distri-
butions and σ1 and σ2 are variances, respectively. Other researchers [9–11] have also
discussed the relationship between the overlap of distribution and SAR. All of these in-
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vestigations are beneficial to estimate the number of required replicas in PT and to set
temperatures of replicas.

The Gaussian-like (or unimodal) energy distributions of simulation trajectories usu-
ally indicates a single phase and then almost constant SARs in PT, thus we might esti-
mate SAR and set parameters of PT from short trial simulations by the traditional way.
However, in phase-coexisting regions, the energy distribution of canonical trajectory is
usually a multiple-peak rather than unimodal function. Eq. (1.1), which was derived
from the Gaussian-form energy distribution supposition [8], will not give the estimate
of SAR. Then the traditional way to set temperatures of replicas is no longer efficient.
The difficulties could be overcome by replacing the canonical ensemble with a general-
ized ensemble to implement PT simulation, if the energy distribution in the generalized
ensemble is still unimodal even in phase-coexistence regions. Actually, many known
ensembles satisfy the requirement, such as the Gaussian ensemble developed by Hether-
ington et al. [12, 13], the Ray’s micro-canonical ensemble [14]. In this work, we present a
generalized canonical ensemble (GCE) to replace the canonical ensemble in traditional PT
simulations. GCE is a direct generalization of canonical ensemble. It can be also thought
as a derivative of Hetherington’s Gaussian ensemble [12,13]. More details about GCE are
given in the next section. In one word, the energy distribution in GCE can be unimodal
even in phase-coexisting regions, thus we can easily set the parameters of replicas in the
GCE-PT method, easily reach equilibrium between different phases and more efficiently
detect multiple-phase coexistence.

2 Method and theory

In the section, we first introduce the generalized canonical ensemble (GCE) and derive
the condition to form a Gaussian-like energy distribution function in GCE. Then we com-
bine the parallel tempering(PT) with the GCE to form GCE-PT simulation method. Fi-
nally, we derive the acceptance criterion of GCE-PT and theoretically analyze the abilities
of GCE-PT in sampling and its advantages in comparison with PT on canonical ensem-
bles (NVT-PT).

2.1 Generalized canonical ensemble

Simulation ensembles existing in references [12–18] differs in their conformational distri-
bution functions,

W(r)∝ e− f (V(r)),

where W(r) is the conformational distribution function of ensemble, V(r) is the potential
energy of microscopic conformation r. The distribution can be thought as that of the
canonical ensemble under effective potential Ve f f (r)= kBT f (V(r)) with the temperature
T. Here kB is the Boltzmann constant and we usually set it as unity in this paper. If
f (E)= βE=E/kB T, it is indeed the NVT canonical ensemble with the original potential
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energy surface V(r). It is easy to know the energy distribution in the f (E) ensemble is

P(E)∝ exp[S(E)− f (E)], (2.1)

where S(E)≡ lng(E) and g(E) is the density of states of system, which is defined as

g(E)≡
∫

δ(E−V(r))dr. (2.2)

S(E) is related to the micro-canonical entropy of system, which is an intrinsic property of
the system itself and independent on the selection of ensemble function f (E).

In this paper, we choose a particular f (E) function,

fgce(E)=βE+
α

2
(E−U)2 (2.3)

with three parameters β, α and U, to present a special ensemble, named as generalized
canonical ensemble (GCE). The usual NVT canonical ensemble is a special case of GCE
with α= 0. GCE can be thought as a derivative of the Gaussian ensemble presented by
Hetheriongton et al. [12, 13] where f (E)= α(E−U)2/2. The GCE conformational distri-
bution is

Wgce(µ)=exp[− fgce(Eµ)]. (2.4)

Here microscopic conformations were re-denoted by the discrete index µ and the con-
tinuous potential energy surface V(r) denoted by the discrete energy levels Eµ. As a
matter of fact, GCE introduces the quadratic item into the weight exponent to generalize
NVT ensemble. The parameters α and U are adjustable to make the width (and shape) of
the energy distribution under control. Challa and Hetherington [13] had illustrated the
relation between the energy distribution and α in the Potts model. We will further dis-
cuss how to use GCE generate a unimodal energy distribution even in phase-coexisting
regions and how to combine with parallel tempering simulation.

We define the first order derivative of ensemble function

β̃(E)≡ d fgce

dE
≡β+α(E−U). (2.5)

Eq. (2.5) describes a straight line across the point (U,β) in the E−β plane and the β̃(E)
curve of GCE generalizes the NVT horizontal line β̃(E)=β by a slope α. In Fig. 1, we show
the different β̃(E) curves of NVT, GCE and the Ray’s micro-canonical ensemble [14, 15].

Rewriting the energy distribution P(E)= eY(E) in Eq. (2.1) for GCE, we get

Y(E)=S(E)− fgce(E)+const. (2.6)

We expand Y(E) around a point E=U0,

Y(E)=Y0+Y
′
(U0)(E−U0)+

Y
′′
(U0)

2
(E−U0)

2+o((E−U0)
2). (2.7)
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Figure 1: (Color online) Comparison of ensembles and their energy distributions in a first-order phase-transition
system. The S-shaped curve S′(E) is the derivative of the system entropic function. The canonical ensemble

(NVT) curve of inverse temperature β̃(E) crosses the S-shaped curve and exhibits two distribution-stable regions
(A and C) and an unstable phase-coexistence region (around B). The generalized canonical ensemble (GCE)
and Ray ensemble [14,15], unlike NVT, can visit the phase-coexistence region and yield single-peak distributions.
The corresponding energy distributions under different ensembles are schematically plotted in the bottom panel.

Here Y
′

and Y
′′

mean the first and second order derivative of Y(E), respectively. In this
paper, we will use the simple notations of derivatives. In Eq. (2.7), if selecting U0 to make
Y
′
(U0)=0 (i.e., the extremal point of P(E)), the condition of P(E) following a Gaussian-

like distribution is Y
′′
(U0)<0, i.e., β̃

′
(U0)>S

′′
(U0), or specially α>S

′′
(U0) in GCE. Then

we have

P(E)≈Ce
− (E−Ū)2

2σ2 ,

where C is a constant. Ū and σ are the mean and variance of the Gaussian distribution,
respectively. The mean of energy Ū approximately matches the position of the peak (the
extremal point) of the Gaussian-like distribution, i.e., Ū≈U0. It is worthy to point out,
S
′′
(E) is the intrinsic property of system, thus it is independent on the selection of simu-

lation ensemble, β̃
′
(E). An energy region is stable (i.e., is sufficiently visited) in a special

ensemble β̃(E) when and only when the value of S
′′

in the region is smaller than that
of β̃

′
. In NVT, since β̃(E)≡ 0, we know that only the energy regions with negative S

′′
is

stable. The energy regions with positive S
′′
, which may correspond to multiple-phase co-

existence, is unstable (i.e., could not be sufficiently visited). However, by selecting larger
α in GCE to make α>S

′′
, the phase-coexistence region can be stabilized. In other words,

GCE can sufficiently visit the phase-coexistence regions and its energy distribution can
be Gaussian-like. The energy mean and fluctuation in GCE approximately satisfy,

S
′
(Ū)= β̃(Ū)=β+α(Ū−U), (2.8a)

1

σ2
=α−S

′′
(Ū). (2.8b)

Here the curve β̃(Ū) characterizes the selected simulation ensemble, thus can be named
as the exterior inverse temperature function. The curve S

′
(E) is determined by the system



1298 S. Xu, X. Zhou and Z.-C. Ou-Yang / Commun. Comput. Phys., 12 (2012), pp. 1293-1306

itself, thus can be named as the interior inverse temperature function. More explicitly,
the cross point of the curves β̃(E) and S

′
(E) gives the mean energy Ū and the fluctuation

of energy, σ2, is dependent on the difference between the slopes of the two curves at
the cross point. As α increases, the fluctuation σ decreases. By selecting suitable α in
simulation, using the obtained energy mean and fluctuation, we can easily estimate the
interior temperature at the mean energy, S

′
(Ū), thus form the whole curve S

′
(E) (or its

integral, S(E)).

There may exist multiple cross points between the β̃(E) and S
′
(E) curves. As shown

in Fig. 1, for the 2-dimensional Potts model near the phase-coexisting region, the S-
shaped S

′
(E) curve crosses with the NVT ensemble β̃(E)=β0 curve at A, B and C points.

According to the geometric relation between β̃(E) and the S
′
(E) curve of the system [19,

20], we know that a cross point of the curves β̃(E) and S
′
(E) is stable only when the

slope of the former is larger than that of the latter, simulations only visit the neighboring
energy regions of stable cross points and the energy distribution widths of simulations
are determined by the differences of the two slopes at the stable cross points. Judging
from the slopes of the curves β̃(E) and S

′
(E), we could obtain Gaussian-like distribu-

tions around point B in the GCE and Ray’s ensemble, but not in NVT ensemble, because
around point B the slope of the interior temperature is positive. As a result, the system
exhibits a first-order phase transition in NVT ensemble.

2.2 Parallel tempering on generalized ensembles

Similar to the conventional PT in canonical ensemble, PT simulation in generalized en-
semble performs a group of M replicas at the same time, with the selected generalized
ensemble distributions Wi(µ) in the i = 1,··· ,M replicas. Each replica runs an indepen-
dent Monte Carlo (MC) simulation and occasionally exchanges its own configurations
with the neighboring replica based on the Metropolis criteria [21, 22]. The calculation of
physical quantity can be derived from these generated conformations after re-weighting.
For example, to estimate the canonical average of any physical quantity Q, we can write
the expression as

〈Q〉=

M

∑
i=1

∑
j

Q(µi,j)Wi(µi,j)
−1e−βE(µi,j)

M

∑
i=1

∑
j

Wi(µi,j)
−1e−βE(µi,j)

, (2.9)

where µi,j is the jth conformation in the ith replica.

Assuming that replica 1 stays in state µ1 and replica 2 in state µ2, they take the prob-

ability distributions P1(µ1)∝ e− f1(Eµ1
) and P2(µ2)∝ e− f2(Eµ2

), respectively. The joint prob-
ability density of the entire system takes the value P1(µ1)P2(µ2) and P1(µ2)P2(µ1) before
and after the exchange, respectively. According to the detailed balance condition, we
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have the Metropolis acceptance probability of the configuration exchange,

α[(µ1,µ2)→ (µ2,µ1)]=min
{

1,
P1(µ2)P2(µ1)

P1(µ1)P2(µ2)

}

=min
{

1,exp(△A)
}

, (2.10)

where

∆A=− f1(E2)− f2(E1)+ f1(E1)+ f2(E2)=
∫ E2

E1

[β̃2(E)− β̃1(E)]dE, (2.11)

i.e., the area of the curves enclosed by β̃2(E) and β̃1(E) in the energy range E1 and E2.
Here β̃i(E) = d fi(E)/dE and Ei = Eµi

for i = 1,2. The result is correct in any ensemble
(i.e., any β̃(E)). In NVT ensemble, it recovers the well known result, ∆A=∆β∆E, where
∆β=β2−β1 and ∆E=E2−E1. In GCE, if

{

β̃1(E)=β1+α1(E−U1),
β̃2(E)=β2+α2(E−U2),

(2.12)

we have

∆A=
[

∆β+
∆α

2
∆E−(U2α2−U1α1)

]

∆E, (2.13)

where ∆α=α2−α1.
We investigate β̃1(E) and β̃2(E) in a system with first-order phase transition, as shown

in Fig. 2. In the single-phase region, the conformations of adjacent replicas can overlap
each other, Eq. (1.1) can be applied to estimate SAR. For example, the SAR between the
states A and B of two NVT ensembles is determined by

κ≡ (EB−EA)/(σB+σA).

If κ∼O(1), from Eq. (1.1), SAR is alsoO(1), thus PT simulation is sufficient. If κ≫1, SAR
will be almost zero, thus PT simulation is insufficient, unless more intermediate replicas
are applied. As N increases, κ increase as O(N1/2), it means that O(N1/2) intermedi-
ate replicas must be inserted between NVT1 and NVT2 to make SAR between adjacent
replicas be of O(1).

In multiple-phase coexistence regions, for example in [EA,ED], however, no matter
how many intermediate NVT ensembles are applied, the middle part of the energy range
(the canonical unstable phase-coexisting region) could not be frequently visited by any of
these replicas, κ is always much larger than unity. In these case, the acceptance rate of ex-
changes between different phases, such as the states A and D, will be determined by the
area δSAHDJ rather than κ. Since the energy difference of two phases is in O(N), we have
to set δβ∼O(1/N) in order to make the area ∆SAHDJ∼O(1), (thus the inter-phase SAR,
exp[−δS], is also in O(1)). Here δβ is the difference of β between adjacent NVT ensem-
bles. It is worthy to point out that the inter-phase exchange is more important in reaching
equilibrium among phases than the intra-phase exchange. The average value of SAR in
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Figure 2: (Color online) Comparisons of the Swap Acceptance Rate (SAR) of parallel tempering in the ensembles
NVT and GCE. The derivative of system entropic function S′(E) indicates the system of first-order phase
transition. In NVT simulations, the SAR of replica exchanging in the same phase (e.g., from A to B) is
calculated from two overlapping unimodal distributions, whereas the SAR value in the different phases, for
example state exchanging from A to D, is determined approximately by the area δSAHDJ. In GCE simulations,
unimodal energy distributions can be produced to keep SAR steady even in phase-coexisting region.

whole simulation, which contributes from both intra-phase and inter-phase exchanges,
actually could not well characterize the efficiency of PT in enhanced sampling. For exam-
ple, if we select δβ based on Eq. (1.1) so that κAB∼1 but δSAHDJ≫1, i.e., the intra-phase
swaps are accepted with a larger probability but the inter-phase swaps are nearly unable
to be accepted. The value of SAR may fluctuate between a large value (corresponding
to intra-phase exchanges) and almost zero (corresponding to inter-phase exchanges). In
these cases, the large SAR does not indicate the PT simulation is sufficient. Therefore, a
significant SAR in the short trial NVT-PT simulation might become very small in the next
segments of simulation. It means the traditional way to set temperatures of replicas of PT
could not be used. Actually, in setting parameters of replicas in phase-coexisting regions,
instead of requiring κ∼1, we should require that the area enclosed by adjacent β̃ curves
and the corresponding average energies in two phases, such as δSAHDJ, is of O(1). Thus,
if supposing the β range of phase-coexisting region is independent on the system size N
(or decreasing not faster than N−1/2 as increasing N), the number of required replicas in
phase-coexisting regions will increase faster than the previous expectationO(N1/2).

In GCE-PT, we can apply a positive α and adjust U to form a stable unimodal energy
distribution even in the phase-coexisting regions of system, where S

′′
(E) is positive so

that it is unstable in NVT ensemble. Therefore, by inserting intermediate GCE replicas,
the entire energy range can be completely covered, i.e., all κ can always be set of O(1)
and SAR nearly remains a constant during the simulation. By selecting suitable α, it is
easy to make the energy fluctuation of GCE be also O(N1/2) but the single-peak energy
distribution is kept, thus the previous conclusions of NVT-PT in single-phase regions are
correct in both single-phase and multiple-phase regions for GCE-PT. For example, the
parameters of GCE-PT replicas can be easily set from short trial simulations, Eq. (1.1) and
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SAR characterizes the efficiency of PT in enhanced sampling and the number of require
replicas is in O(N1/2) in the entire energy range.

3 Results of 2D Potts model

We take the well known 2D Potts model as an example to demonstrate the advantages of
GCE-PT. The Hamiltonian of 2D Potts model is defined as

H=−∑
〈i,j〉

Jδ(qi,qj),

where the summation is taken over all nearest neighboring pairs on 2D lattice, each spin
takes the value qi = 1,··· ,Q and δ is the Kronecker delta. For the 2D Potts model, when
Q > 4, it exhibits the first order phase transition, with the transition temperature βc =
1/(KBTc) = ln(1+

√
Q) in the thermodynamical limit [23, 24]. For convenience, in the

following studies, we set J = 1 and Q= 10 and take periodic boundary condition in the
2D lattice.

3.1 Fluctuation of SAR

We used N = L2, L= 32, Q= 10 Potts model to test the fluctuation of SAR along time in
phase-coexistence region.

In NVT-PT simulation, the inverse temperatures of three replicas uniformly take

[

β1, β2, β3

]

=[1.4195, 1.4230, 1.4265],

where the phase transition point in the thermodynamical limit βc = 1/Tc ≈ 1.42606 is
between β2 and β3. Replica exchange strategy takes the even/odd algorithm [25], that
is, each replica exchanges its conformation with its two neighbors. The entire run of
each replica is 106MC cycles (1MC cycle =N random spin-varying steps) and sampling
once each MC cycle. The entire simulation is equally divided into 20 segments (i.e., each
segment is 106/20MC cycles), in each segment we independently calculate the average
SAR, st, t=1,··· ,20.

Similarly, we performed three GCE-PT replicas, whose conformations can continu-
ously cover the coexistence region. For convenience, we rewrite the GCE weight expo-
nent fi(E) as

fi(E)=βiE+
αi

2N
(E−uiN)2=N

[

βie+
αi

2
(e−ui)

2
]

, (3.1)

where e = E/N, βi = 1.426, αi = 1.2 (i = 1,2,3) and the three ui also take the uniformly
spaced values as follows

[u1, u2, u3]=[−1.41, −1.44, −1.47].
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The SAR in GCE-PT was calculated in the same way as NVT-PT.

We check the conformational energy distribution (Fig. 3) and investigate the SAR val-
ues changing over the simulation time t (Fig. 4). In NVT-PT, each of the three NVT distri-
butions shows a double-peak distribution characterized by the first order phase transition
and the SARs between them fluctuate largely as time t. When two adjacent replicas stay
in the same phase, their energy distributions largely overlap and the SAR value is large.
Whereas in different phases, since the energy difference of the two phases is much larger
than the summation of energy fluctuations in the phases (i.e., κ≫1), the acceptance rate of
inter-phase exchanges is determined by the area δS=δβδE. In the simulation, δβ=0.0035,
the energy difference between two phases is about 600∼800 (see Fig. 3), thus δS≈2∼3,
the acceptance rate, e−δS, is small but still significant. It implies that the applied temper-
ature interval is slightly large but still suitable for getting sufficient exchanges between
different phases. In GCE-PT, each of the three GCE histograms displays a single peak
in the phase-coexisting region and the SAR between them is nearly a constant in time,
about 0.45. Thus, the parameters of replicas can be easily set from short trial simula-
tions. In addition, GCE-PT can sufficiently visit phase-coexisting regions then can detect
multiple-phase coexistence.

3.2 Efficiency of sampling

Taking L = 60 and Q = 10 Potts model as an example, we compare the efficiencies of
NVT-PT and GCE-PT simulations. Wang-Landau method [26] was also performed for
comparison.

In NVT-PT, we simulated 40 replicas, each of them take βi from an evenly spaced in-
terval [1.401,1.45], thus δβ≈0.001. Since the energy difference between two phases in the
system is about 3000, the area between two phases enclosed by β̃(E) curves of adjacent
replicas, δS≈ 3, is slightly large but still of O(1). It implies the acceptance rate of inter-
phase exchanges is small but may be still significant. Similarly, the GCE-PT simulation
contains 40 replicas, each of them take ui from an evenly spaced interval [−1.785,−0.853]
and other parameters of GCE take the same values: αi = 1.5 and βi = 1.426, i = 1,··· ,40
(see Eq. (3.1)). It is possible to use smaller (and energy-dependent) α to make GCE distri-
bution be still single-peak, then the number of replicas could be further decreased. The
suitable α can be selected by estimating the values of S

′′
(E) at different E points from

trial simulations. In this paper, we do not focus on selection of α in GCE-PT in order
to decrease the number of replicas, but show the ability of GCE-PT in covering phase-
coexisting regions. In both NVT-PT and GCE-PT simulations, each replica runs 106MC
cycles, which is divided into 20 equal segments and we estimate SAR in each segment, st

(t=1,··· ,20), in the same way as the previous sections. In Wang-Landau method, we use
the terminated factor f =7×10−9 and 85% of the flatness (these parameters are explained
in [27]).

In Fig. 5(a) and (b), we show the energy histogram of NVT-PT and GCE-PT simula-
tions, respectively. The results clearly show the single-peak distribution of GCE even in
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(histogram) of the parallel tempering simulations
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Figure 4: Comparisons of SAR in time t: γ̄t be-
tween replicas of NVT (and GCE) parallel temper-
ing simulations. NVTi,j denotes γ̄t between NVTi

←→ NVTj and GCEi,j denotes GCEi ←→ GCEj.

γ̄t is calculated every 106/20MC cycles.
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(f) Figure 5: (Color online) Using GCE-PT, NVT-PT and

Wang-Landau method to estimate physical quantities.
(a) and (b) are the energy histogram of the 40 repli-
cas of NVT-PT and GCE-PT. (c) and (d) are the
39 SAR values with error bars of NVT-PT and GCE-
PT. The interior inverse temperature functions (the
derivative of logarithmic density of states) calculated
from Wang-Landau method (e, WL) and GCE-PT (e,
GCE). GCE-PT, NVT-PT and Wang-Landau method
are applied to estimate the internal energy function
of temperature T (f). The inset gives the U/N func-
tions of T in larger temperature range.

the phase-coexisting region and the overlapping between adjacent GCEs’s distributions.
Thus their SAR can be expected from Eq. (1.1) and the number of replicas is of O(N1/2).
In contrast, the energy distributions in NVT ensembles are double-peaked in the phase-
coexisting regions, the energy gap between two phases is proportional to N, thus in the
gap (i.e., phase-coexisting) region, the β interval of adjacent replicas must decreases as
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O(1/N), more NVT replicas than O(N1/2) might be needed in the phase-coexistence re-
gion. In Fig. 5(c) and (d), we show the means and fluctuations of SARs in NVT-PT and
GCE-PT, respectively. SARs in NVT-PT have larger mean values and larger fluctuations
in comparison with that in GCE-PT.

In Fig. 5(e), we estimate the density of states (more exactly, the interior inverse tem-
perature S

′
(E)) of 2D Potts model by GCE-PT and Wang-Landau method. The two re-

sults are consistent with each other. In principle, it is also possible to estimate S
′
(E) of

the coexistence region from NVT-PT,

S
′
(E)=βi+

H
′
i(E)

Hi(E)
(3.2)

for any NVTi with the inverse temperature βi. Hi(E) is the histogram of the ith NVT
replica. However, in practice, the estimate of S

′
(E) requires sufficient H(E), thus the

S
′
(E) in the phase-coexisting regions can not be well estimated in NVT-PT, since no

replica visit the region frequently.
In Fig. 5(f), we present the U−T diagrams based on the estimation of GCE-PT and

Wang-Landau method. In the coexistence region, the average energy estimated by NVT-
PT deviates from the other two results; in single-phase regions, the results of all the three
methods are consistent each other. Note that in Fig. 5(c) the average SAR of NVT-PT
(about 89%) turns out much higher than GCE-PT’s 22%. However, the high SAR in NVT-
PT does not mean efficient sampling. The main reason is that most of the conformational
exchanges in NVT-PT are intra-phase exchanges and the inter-phase exchanges are still
not sufficient, thus the equilibrium between phases is hard to be reached.

4 Conclusions and discussions

Parallel tempering on NVT ensemble (NVT-PT) is an important enhanced sampling sim-
ulation method, which is widely used in many different systems. Swap acceptance rate
(SAR) between adjacent replicas is required to be significant for efficiently sampling and
the requirement is applied to set parameters of replicas. The SAR is usually estimated
based on the ratio of the energy difference of adjacent replicas to the summation of their
fluctuations, κ = (Ē2− Ē1)/(σ1+σ2), thus the number of required replicas in NVT-PT is
expected to be in O(N1/2) as the size of system N. However, all these well known re-
sults about NVT-PT may be incorrect in phase-coexisting regions where we usually hope
to use parallel tempering simulations. In the phase-coexisting regions, SAR of NVT-PT
may be not steady in time thus it is difficult to set parameters of replicas by short trial
simulations. In addition, the number of required replicas in the phase-coexisting regions
might be of O(N) rather than the usual expectation in single-phase regions,O(N1/2).

In this work, we find that parallel tempering on generalized canonical ensemble
(GCE-PT) is able to obtain the steady and efficient SAR even in the phase-coexisting re-
gions, since GCE can regulate the energy distribution to avoid the occurrence of the first
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order phase transition. GCE can visit both the phase-coexisting and single-phase regions
with Gaussian-type energy distribution and the energy fluctuation could be of O(N1/2)
in the whole energy region, thus the previous results about NVT-PT in single-phase re-
gions can still hold for GCE-PT in both single-phase and phase-coexisting regions. For
example, due to the steady SARs in GCE-PT, we can easily determine the optimal param-
eters in parallel tempering; GCE-PT only needs O(N1/2) replicas in both single-phase
and coexisting regions; SARs can be well used to evaluate the efficiency of GCE-PT in en-
hanced sampling. Since the energy fluctuation in GCE with positive α is slightly smaller
than that in NVT, in single-phase regions, the number of replicas in GCE-PT might be
slightly larger than that in NVT-PT. However, in phase-coexisting regions, less replicas
in the GCE-PT are needed. In practical simulations, we may apply different α in dif-
ferent replicas to get both the Gaussian-type distribution and larger energy widths. For
example, first we can apply α=0 (i.e., NVT ensemble) to run a trial PT simulation, then
increase α in some replicas but keep α=0 in the others. In one word, as a generalization
of NVT-PT, the new method, GCE-PT, is more efficient and more flexible in enhanced
sampling of complex systems.
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