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Abstract. We study the inverse problem of recovering the scatterer shape from the
far-field pattern(FFP) in the presence of noise. Furthermore, only a discrete partial
aperture is usually known. This problem is ill-posed and is frequently addressed us-
ing regularization. Instead, we propose to use a direct approach denoising the FFP
using a filtering technique. The effectiveness of the technique is studied on a scatterer
with the shape of the ellipse with a tower. The forward scattering problem is solved
using the finite element method (FEM). The numerical FFP is additionally corrupted
by Gaussian noise. The shape parameters are found based on a least-square error esti-
mator. If ũ∞ is a perturbation of the FFP then we attempt to find Γ, the scatterer shape,
which minimizes ‖ u∞−ũ∞ ‖ using the conjugate gradient method for the denoised
FFP.
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1 Introduction

We consider the inverse problem of recovering the scatterer shape from the FFP of the
scattered wave. Inverse problems of this type occur in various application such as remote
sensing, ultrasound tomography, seismic imaging and radar/sonar detection. They are
difficult to solve since they are ill-posed and nonlinear. The ill-posedness is frequently
addressed via regularization. Many of the reconstruction methods, such as linear sam-
pling, factorization [4], incorporate some type of regularization.

We propose to directly smooth the (noisy) FFP before the reconstruction. After smooth-
ing, any reconstruction method can be used. For difficult problems, especially with many
free parameters, one will frequently require a regularization in addition to the smoothing.
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However, for the simpler problems presented here no regularization is used. Our tech-
nique may be interpreted as an implicit regularization imposed on the FFP rather than on
the solution. The efficiency of the proposed technique is demonstrated on the problem
of recovering the parameters of the scatterer with the shape of the ellipse with a tower
(hard case). This shape may be considered as a simplified imitation of a real submarine.
There are three parameters describing the shape in this case: the ellipse semi-axis a and b
and the height of the tower h (see Fig. 1).

Figure 1: Ellipse with the tower.

2 General description of the problem

The problem is formulated as recovering a body shape Γ from the measured FFP. Usually,
the body shape Γ is parameterized by a few parameters that should be recovered. The
noise source may be either experimental or computational. The problem is complicated
by the fact that in practice only a fraction of the data can be obtained. The given FFP is
only measured at discrete angles and one can not usually obtain the data in a complete
circle/sphere in the far field but only in some portion of the FFP.

We consider the problem for the total wave u = uinc+us in terms of the incoming
wave, uinc=eikx·d,|d|=1, where d is the direction of the incident plane wave. We solve the
reduced wave equation in two dimensions exterior to a given body, so

∆2u+k2u=0, in R
2\Ω,

where Ω is the scattering object. Along the boundary one can impose either a Dirichlet
condition corresponding to a sound-soft body or a Neumann condition corresponding to
a sound-hard body. In this study we consider an impenetrable sound-hard body and so



Y. Olshansky and E. Turkel / Commun. Comput. Phys., 11 (2012), pp. 271-284 273

∂u
∂ν =0 on Γ the boundary of the obstacle. The far field asymptotic solution is given by

us(x)=
eıkr

r
1
2

[
u∞

( x

r

)
+O

(
1

r

)]
, as r−→∞, u∞

( x

r

)

is the FFP. For the forward problem to be well posed we impose the Sommerfeld radiation
condition in the farfield. In two dimensions this given by:

r
1
2

(
∂us

∂r
−ıkus

)
−→0, as r−→∞.

The amplitude factor u∞ is the far field pattern of the scattered wave. It has been proved
in inverse scattering theory [1] that the scattering amplitude, also known as FFP, registers
all the information both of physical as well as geometrical character, about the scattering
obstacle. The inverse problem is to reconstruct Γ given the FFP. We express this as

F(Γ)
( x

r

)
=u∞

( x

r

)
.

The operator F assigns to every suitable boundary Γ the corresponding FFP. The inverse
problem is not a well-posed problem, i.e. it is well known that adding a small perturba-
tion to the FFP can cause an exponentially large change to the shape of the scatterer [1].
Furthermore, since the scatterer is described by finite number of parameters, in general
there will be no solution that exactly matches the given FFP. Hence, we shall only con-
sider a least-squares solution to the problem. If ũ∞ is a perturbation of the exact FFP then
we shall attempt to find Γ which minimizes

‖u∞−ũ∞ ‖2 .

The conjugate gradient method (CG) is used to minimize ‖u∞−ũ∞ ‖2 [2].

3 Numerical solution based on the finite element method

We now solve the exterior Helmholtz equation using a finite element code (FEM) with
linear elements. If we multiply the Helmholtz equation by a test function v, integrate
over D and integrate by parts one obtains:

∫

D
(∇u·∇v−k2uv)dx−

∫

Γint

∂u

∂ν
vds−

∫

Γext

∂u

∂ν
vds=0, (3.1)

where we denote by Γint and Γext the inner and outer boundaries.
At the inner boundaries we impose a boundary condition on the body Bus |Γint

=
−Beikx·d where B is a boundary operator that characterizes the type of the scatterer. For
a sound-soft body B is a Dirichlet operator and a Neumann derivative operator for a
sound-hard body.
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At an outer elliptic surface we impose an absorbing boundary conditions using the
formula of Kriegsmann et al. [5]

∂us

∂ν
= iku− ζus

2
− ζ2us

8(ik−ζ)
− 1

2(ik−ζ)

∂2us

∂s2
, (3.2)

where ζ is the curvature of the ellipse. The outer ellipse has parameters 3a,3b, where a,b
are parameters of the ellipse scatterer.

We replace D by a domain Dh that consists of a collection of four-node quadrilaterals
elements Q finite elements. We define an N×M dimensional subspace Hh of H1(Dh) by
constructing an appropriate set of global basis functions ϕl,l=1,2,··· ,N×M. A mesh of
60×300 linear elements was used in a polar-like coordinate system around the ellipse and
tower. The stiffness, mass and boundary element matrices were calculated by mapping
from this generalized polar system to polar coordinates. Refining the grid did not signifi-
cantly change the results indicating that the waves are well resolved. Our approximation
of (3.1) then consists of seeking a function uh in Hh,

uh=
N

∑
j=1

uj ϕ(xj,yj), (3.3)

such that uj unknown coefficients and

∫

D
(∇uh ·∇v−k2uhv)dx−

∫

Γint

∂u

∂ν
vds−

∫

Γext

∂u

∂ν
vds=0, (3.4)

where v=φl,l=1,2,··· ,N×M is the test function.
Upon substituting (3.3) into (3.4) and simplifying terms, we arrive at the linear alge-

braic system of equation

N

∑
j=1

Zljuj=Fl , l=1,2,··· ,N×M, (3.5)

where Zij are

Zlj =Klj−k2 Mlj−Slj =
∫

D
(∇ϕl ·∇ϕj−k2 ϕl ϕj)dx−

∫

Γext

∂u

∂ν
ϕjds, (3.6)

and Fl are ∫

Γint

∂u

∂ν
ϕlds. (3.7)

For Dirichlet conditions, the test function v is zero on Γint so the term (3.7) will be zero.
In the matrix form Eq. (3.5) is

(M−k2K−S)pu=F, (3.8)
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where pu=(u1,u2,··· ,uN×M) is the obtained scattering solution of (3.5).
The FFP is given by

F(a,b,h)=u∞(x̃)=
ei π

4√
8πk

∫

Γint

(
∂us(y)

∂ν
+ikx̃ ·yus(y)

)
e−ikx̃·yds, (3.9)

where x̃∈S1={x∈R
2||x|=1} and ν is the outward normal to Γint and pu=(u1,u2,··· ,uN×M)

is the obtained scattering solution of (3.5). To compute (3.9) a Gauss quadrature formula
was applied.

The FFP is calculated by integrating along Γint(the scatterer) with the FEM solution us

and the calculated ∂us
∂ν .

4 Nonlinear conjugate gradient method

We consider the problem of minimizing f (x) for all x ∈R
m, where f (x) is a nonlinear

function. This is referred to as a non-linear unconstrained optimization problem. The
standard approach for solving this problem is to start from an initial approximation x0

and then to proceed by using an iterative formula of the form:

xj+1= xj+sdj, j=0,1,2,··· . (4.1)

In order to use this formula the values for the scalar s and the vector dj have to be deter-
mined. The vector dj represents a direction of search and the scalar s determines how far
we should step in this direction. A simple choice for a direction of search is to take dj as
the negative gradient vector at the point xj.

For a sufficiently small step value this can be shown to guarantee a reduction in the
function value. This leads to an algorithm of the form

xj+1= xj−s∇ f
(

xj

)
, j=0,1,2,··· , (4.2)

where

∇ f (x)=

(
∂ f

∂x1
,

∂ f

∂x2
,··· , ∂ f

∂xm

)

and s is a small constant value. This algorithm is called the steepest descent algorithm.
The minimum is reached when the gradient is zero.

We can select the step s which gives the maximum reduction in the function value in
the current direction. This procedure is known as a line-search method. This is formally
described as minimizing

f
(

xj−s∇ f
(

xj

))
(4.3)

in respect to s. The optimal s is such that the derivative of f
(

xj−s∇ f
(

xj

))
with respect

to s is zero. Differentiating f
(

xj−s∇ f
(

xj

))
with respect to s leads to:

d f
(

xj−s∇ f
(

xj

))

ds
=−

(
∇ f
(

xj+1

))T∇ f
(

xj

)
=0. (4.4)
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This shows that with the line search the successive directions of the algorithm are orthog-
onal.

This is not the fastest way of reaching the optimum value since the changes in suc-
cessive directions are large; i.e. the overall search path is wobbling. In distinction with
the steepest descent method, the conjugate gradient method takes dj+1 a combination of
the previous direction dj and the negative gradient direction in the new position gj+1 =
∇ f
(

xj+1

)
:

dj+1 =−gj+1+γdj. (4.5)

The criterion used for selecting γ is that successive directions of search should be conju-

gate, i.e.
(
dj+1

)T
Hdj =0 for the Hessian of the function f , where

H=

[
∂2 f

∂xj∂xl

]
. (4.6)

It was shown in Fletcher and Reeves [7] that the requirement of conjugacy leads to a
value

γ=

(
gj+1

)T
gj+1

(
gj

)T
gj

. (4.7)

Thus the conjugate gradient algorithm given by Fletcher and Reeves has the form:

• Step 0: Input value for x0 and accuracy ε. Set j=0 and compute dj=−∇ f
(

xj

)
.

• Step 1: Determine sj which is the value of s that minimizes f
(
xj+sdj

)
Calculate xj+1 where

xj+1=xj+sjdj and compute gj+1=∇ f
(
xj+1

)
. If ||gj+1||< ε then terminate with solution xj+1

else go to step 2.

• Step 2: Calculate new conjugate direction dj+1 where dj+1=−gj+1+γdj and γ is given by (4.7).

• Step 3: j= j+1; go to step 1.

For a nonlinear function the Polak-Ribiere form of

γ=

(
gj+1−gj

)T
gj+1(

gj

)T
gj

(4.8)

was shown to be more effective than Eq. (4.7). The conjugate gradient with the Polak-
Ribiere form [6] of γ is implemented in function conjgrad.m of the Netlab software [2].

The algorithm terminates when both the change between sequential iteration values
and the change in the function values is sufficiently small:

||xj+1−xj||<10−6 and | f (xj+1)− f (xj)|<10−6. (4.9)

It required 3 iteration for our case. In order to explore a radius of convergence Rc =
0.01,0.02,··· ,1, we consider M=4 initial guesses with

al
init = a+Rc cos

2πl

M
, bl

init=b+Rc sin
2πl

M
, hl

init =h+Rc sin
2πl

M
,

where l = 0,1,··· ,M−1 and a, b are exact ellipse values and h the height of the tower
(Fig. 2).



Y. Olshansky and E. Turkel / Commun. Comput. Phys., 11 (2012), pp. 271-284 277

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

convergence radius=0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,,0.2, ... 1 

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Figure 2: Ellipse with tower of a= 5; b= 1, h= 0.5, incident angle 450, wave number k= 2. Initial guess is

a=5+Rc, b=1+Rc, h=0.5+Rc. Number of scattering directions 4 θ=610,680,690,700.

5 Simultaneous smoothing and parameter estimation

Assume that f (t) is a clean signal and F(t) is its noisy observation. We further assume:

F(t)= f (t)+n(t), (5.1)

where n(t) is independent additive Gaussian noise with a zero mean and variance σ2.
Let the digitized version (discrete representation) of F(t) sampled at times ti be:

Fi= fi+ni. (5.2)

To smooth the noise we replace Fi by a weighed averaging over its neighbors j:

F̂i=
i+N

∑
j=i−N

Fjwj−i=
i+N

∑
j=i−N

(
f j+nj

)
wj−i, (5.3)

where 2N+1 is the length of the filter window and the weights are constrained to be
nonnegative and to sum up to one:

N

∑
j=−N

wj =1, wj≥0. (5.4)

In Fig. 3 we display an example of wj−i for i=0 and so

F̂0=∑
j

Fjwj.
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Figure 3: Adaptive filter.

The smoothed value F̂i is a normal random variable with mean ∑
i+N
j=i−N f jwj−i and vari-

ance σ̂2:

σ̂2 =E
( N

∑
j=−N

njwj

)2
=σ2

N

∑
j=−N

w2
j . (5.5)

We see from Eqs. (5.4)-(5.5) that σ̂2 ≤ σ2 and that the smoothed value F̂i has less noise
than the original observation Fi. However, there is a bias in the true estimation of fi

due to term ∑
i+N
j=i−N f jwj−i. Thus, there is a tradeoff between the noise reduction and the

introduced bias. Our goal is to find window coefficients that balance between them.

5.1 Optimal weight coefficients

The optimal weight coefficients wopt should minimize the error between F̂i and the real
value fi:

wopt=argmin
w

Ê,

Ê=E
(

F̂i− fi

)2
=

(

∑
j

wj−i f j− fi

)2

+σ2∑
j

w2
j ,

(5.6)

where w satisfies Eq. (5.4). We also constrain the filter to be symmetric wj=w−j.

If we know the real signal in advance, an optimal filter is a solution of a quadratic
problem (QP)

Ê=

(

∑
j

wj−i f j− fi

)2

+σ2∑
j

w2
j , (5.7)
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with linear constraints

wk≥0,
K

∑
k=−K

wk=1, wk=w−k.

However, the signal is not known in advance, but is a parametric analytical function of
the ellipse parameters.

The idea is to estimate the ellipse parameters and optimal signal smoothing sequen-
tially until convergence is reached. The ellipse parameters are estimated by minimiz-
ing the mean squared error (MSE) between the best ”smoothed” observation and ideal
parametric FFP. Afterwards the best adaptive filter is found by solving a QP with linear
constraints. We use the MINQ software of [3] to find the filter coefficients. Then the ob-
tained filter is used to smooth the signal. In the first iteration, the ellipse parameters are
estimated from the noisy data which is equivalent to using the Kronecker filter wj=δ(j).

5.2 Quadratic problem implementation

Let

Ê=

(
k

∑
j=−k

wj f j− f0

)2

+σ2

(
k

∑
j=−k

w2
j

)
. (5.8)

Then

Ê=

(
k

∑
j=−k

wj f j− f0

)2

+σ2

(
2

1

∑
j=−k

w2
j +w2

0

)
, (5.9)

Ê=

(
1

∑
j=−k

wj

(
f−j+ f j

)
− f0

)2

+σ2

(
2

1

∑
j=−k

w2
j +w2

0

)
, (5.10)

Ê=‖(wt f̃ − f0‖2+σ2

(
2

1

∑
j=−k

w2
j +w2

0

)
, (5.11)

where f̃ = f−j+ f j. So that

Ê=wtG̃w−2 f0 f̃ tw+ f t
0 f0, (5.12)
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where G̃= f̃ f̃ t+σ2D,

D=




2 0 0 0 . . . . . 0
0 2 0 0 . . . . . 0
0 0 2 0 . . . . . 0
0 0 0 2 . . . . . 0
0 0 0 0 2 . . . . 0
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 . . . . . 2 0
0 0 0 . . . . . 0 1




.

Translating the constrained condition

wi>0,
k

∑
j=−k

wj=1=2
1

∑
j=−k

wj+w0

to matrix form yielding




1 0 . . . . . 0
0 1 0 . . . . .
0 0 1 0 .
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 . . . . 0 1 0
2 2 2 2 2 2 2 1







w−k

.

.

.

.

.

.
w0




≥




0
.
.
.
.
.
0
1




.

6 Wavelet denoising

This section describes an alternative smoothing technique to that of Section 5. We shall
use the wavelet denoising technique [8–11] to smooth the noisy far field before recovering
the shape parameters. We represent the FFP using a wavelet expansion

f (x)=
∞

∑
k=−∞

cJk ϕJk+
∞

∑
j=J

∞

∑
k=−∞

djkψjk, (6.1)

where {
cjk =

(
f ,ϕjk

)
,

djk =
(

f ,ψjk

)
,

(6.2)

and J is the starting index (usually, J = 0). It is well known [14] that random noise is
mainly located in the d-coefficients. So by setting the smaller d coefficients to zero, much



Y. Olshansky and E. Turkel / Commun. Comput. Phys., 11 (2012), pp. 271-284 281

of the noise will be eliminated. This denoising technique was proposed and analyzed
by Donoho [8–10] and by Antoniadis [12] and Johnstone [11]. It is often referred to as
wavelet shrinkage. A thresholding function Tε is applied to the d-coefficients: dnk →
Tε(dnk). The most commonly used thresholding function are hard thresholding

Tε =

{
0, |x|≤ ε,

x, |x|> ε,
(6.3)

or soft thresholding

Tε =





x−ε, x> ε,

0, |x|≤ ε,

−x+ε, x>−ε,

(6.4)

where ε∈ [0,∞) is the threshold parameter. The general de-noising procedure involves
three steps:

1. Decomposition: Select a wavelet type mother function and the decompose FFP to some level N.

2. Thresholding: Apply thresholding to the d-coefficients with the threshold parameter selected
adaptively per level.

3. Synthesis: Reconstruct the signal using the modified d-coefficients.

The main decisions in using the wavelet technique are the choice of the mother wavelet
and the threshold parameter selection technique. We found the symmlet8 [13] mother
function to be useful in our application. The threshold parameter ε was chosen using soft
heuristic SURE thresholding [8–11] and averaged the obtained signals.

7 Results

We present results of the reconstruction in the presence of additive Gaussian noise in
addition to the computational FFP. We estimate the parameters of the scatterer from the
discrete FFP over a partial aperture both with and without smoothing. The results are
presented in Figs. 4-6 for an ellipse with an aspect ratio 5:1 and different tower heights
h = 0.2,0.3,0.4,0.5,0.6. The incident angle in our simulation is taken 450 and the wave
number is k=2. The reconstruction error E between the estimated and the true value is
calculated as: √

(
â−a

a
)2+(

b̂−b

b
)2+(

ĥ−h

h
)2,

where a, b and h are the exact ellipse values and â, b̂, ĥ are the values estimated by the
CG method.

Our experiments demonstrate that prior smoothing is useful and improves recon-
struction. Pre-smoothing using adaptive filtering led to better results (smaller recon-
struction errors) than wavelet de-noising.
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Figure 4: Ellipse with tower of a=5; b=1 with 20% Gaussian noise, incident angle 450,wave number k=2. Initial
guess is a=5.3, b=1.3, h=(0.25,0,35,0.45,0.55,0.65). Number of scattering directions 4 θ=610,680,690,700.
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Figure 5: Ellipse with tower of a=5; b=1 with 20% Gaussian noise, incident angle 450,wave number k=2. Initial
guess is a=5.3, b=1.3, h=(0.25,0,35,0.45,0.55,0.65). Number of scattering directions 4 θ=600,630,660,690.
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Figure 6: Ellipse with tower of a=5; b=1 with 20% Gaussian noise, incident angle 450,wave number k=2. Initial
guess is a=5.3, b=1.3, h=(0.25,0,35,0.45,0.55,0.65). Number of scattering directions 4 θ=650,770,880,950.
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We also investigate the dependence of the quality of the reconstruction on the amount
of available data. It was found that the minimum number of scattering directions re-
quired in the FFP for reconstruction of the scatterer is four. We present three cases with
different scattering directions i.e. different aperture angles and different locations of the
discrete receivers, but the same minimal number, 4 of directions (i.e. the number of dis-
crete FFP samples). The results are presented in Figs. 4-6.

In the first experiment (Fig. 4), the scattering directions are taken non-uniformly, i.e.
the distance between the sequential scattering direction is variable. The scattering direc-
tion range is between 610−700. In the second experiment (Fig. 5), the same interval is
covered uniformly by the scattering directions. In the third experiment (Fig. 6), the scat-
tering directions are taken non-uniformly, but their range is extended and lies between
650−950.

Comparing the two first experiments (Figs. 4, 5), we see that reconstruction from scat-
tering directions with non-uniform sampling leads to better results compared with a uni-
form sampling. The third experiment (Fig. 6) shows that reconstruction from a larger
dynamical range of scattering directions does not improve the results.

We also conducted experiments with the correlated Gaussian noise (Gaussian noise
with the non-diagonal covariance matrix). In our experiments the correlated Gaussian
noise of increasing level was considered (See Table 1). As the noise level increases the re-
construction error also grows and again the additive filtering was superior to the wavelet
de-noising.

Table 1: Reconstruction errors for the ellipse with tower of a=5; b=1, h=0.5 with correlated Gaussian noise,

incident angle 450,wave number k=2. Initial guess is a=5.3, b=1.3, h=0.55. Number of scattering directions

4 (θ=610,680,690,700). The errors E1 and E2 are estimated with additive and wavelet filtering respectively and
E3 without filtering.

noise level 5% 10% 15% 20%
E1 0.0047 0.0093 0.0098 0.0110
E2 0.0080 0.0101 0.0121 0.0141
E3 0.0115 0.0289 0.0481 0.0524
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