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Abstract. We show how to apply convolution quadrature (CQ) to approximate the
time domain electric field integral equation (EFIE) for electromagnetic scattering. By a
suitable choice of CQ, we prove that the method is unconditionally stable and has the
optimal order of convergence. Surprisingly, the resulting semi discrete EFIE is disper-
sive and dissipative, and we analyze this phenomena. Finally, we present numerical
results supporting and extending our convergence analysis.
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1 Introduction

The exterior electromagnetic scattering problem is often solved in the frequency domain,
either by integral equations or by a finite element method. However, if the incoming
wave is broad band, it may be attractive to solve the problem in the time domain. In this
case we can again choose between volume based methods including the finite difference
or discontinuous Galerkin methods and time domain integral equations. It is the latter
technique that is the subject of this paper.

Historically the main difficulty with the time domain integral equation (TDIE) ap-
proach is stability. In recent years this problem has been overcome by using a time do-
main Petrov-Galerkin method [22] and this method is now the method of choice [1, 17].
However, in order to maintain stability, it is necessary to perform accurate integrations on
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complex domains obtained by intersecting regions between light cones with triangles in
the spatial mesh [21]. This rules out simple quadrature on the spatial mesh, and implies
that curvilinear patches (necessary for high order boundary representation) are difficult
to implement because of the potentially much more complex domain of integration. In
addition it is not easy to account for dispersive and dissipative media in such schemes
because it is necessary to have an expression for the fundamental solution (although sev-
eral engineering approaches have been suggested for specific media [14]). Convolution
Quadrature (CQ) offers a potential alternative that is the subject of this paper.

We now detail the problem to be solved. Suppose a perfect conductor occupies a
bounded Lipschitz polyhedron Ω ⊂ R

3 with boundary Γ := ∂Ω. Let Ωe := R
3\Ω. In

addition suppose Γ is connected and simply connected. The time domain electromagnetic
scattering problem is then to find E :=E (x,t)∈H(curl,Ωe) such that

Ett+curlcurlE =0, in Ωe×[0,T],

E ×n= g, on Γ×[0,T],

E (·,0)=Et(·,0)=0, on Ωe.

(1.1)

Here, n is the unit outward normal to Γ and g is a given tangential vector field on Γ,
vanishing for t ≤ 0, usually obtained as a suitable trace of the incident electromagnetic
field (that is g =−E i×n where E i is the incident field taken to be a regular solution of
Maxwell’s equations ). For convenience and without loss of generality, we have set the
speed of light c=1.

To formulate an integral equation for this problem we can use the ansatz that there is
a surface tangential field J := J(x,t) such that, for x∈Ωe,

Et(x,t)=M(∂t)J(x,t)

:=
∫ t

0

∫

Γ
k(x−y,t−τ)Jtt(y,τ)dσydτ−grad

∫ t

0

∫

Γ
k(x−y,t−τ)divΓJ(y,τ)dσydτ, (1.2)

where the time domain fundamental solution in three dimensions is k(x,t) := δ(t−|x|)
4π|x|

(this

is just the inverse Fourier transform of the usual frequency domain fundamental solution
[8]). In addition divΓ is the surface divergence.

If we now define the surface tangential projection ΠTu :=n×(u×n)|Γ, let x approach
Γ in (1.2), and use the boundary data from (1.1), we obtain the Electric Field Integral
Equation (EFIE). In particular, we need to find J such that, for all x∈Γ and 0≤ t≤T,

V(∂t)J(x,t)

:=ΠT

∫ t

0

∫

Γ
k(x−y,t−τ)Jtt(y,τ)dσydτ−gradΓ

∫ t

0

∫

Γ
k(x−y,t−τ)divΓJ(y,τ)dσydτ

=n×gt(x,t), (1.3)

where gradΓ is the surface gradient. Once J is computed, we can compute the electric
field E for x 6∈Γ by integrating (1.2). Clearly these integral equations need to be carefully
formulated in appropriate function spaces and we do this in the next section.
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In [18], Lubich introduced a new technique, convolution quadrature (CQ) (or opera-
tional quadrature), for discretizing convolutions particularly those arising from initial
value problems for partial differential equations of hyperbolic and parabolic type. In [19],
he used this technique to discretize a time domain integral equation for the Helmholtz
equation similar to the EFIE. In particular, he considered multistep methods applied to
non homogeneous linear initial boundary value problems for the temporal discretization
and a boundary integral Galerkin formulation for the spatial discretization. Under suit-
able constraints on the multistep method, this technique gives an unconditionally stable
and provably convergent time discretization.

Motivated by the work of Hackbusch, Kress and Sauter [10], we have already shown
numerical results from applying CQ to Maxwell’s equations in [24]. The excellent sta-
bility and convergence properties of the method motivate us, in this paper, to analyze
convergence. The error analysis we present in Section 3 rests on extending the analysis
of [22] to Lipschitz domains (using results from Hiptmair and Schwab [13]), and then
uses these results to obtain error estimates using the general theory from [19]. In par-
ticular, by modifying Lubich’s theory slightly, we obtain a fully discrete error analysis
(using Raviart-Thomas finite elements to discretize in space), and relate the method to a
particular time semi-discretization of (1.1). This then shows, surprisingly, that the semi-
discrete time domain integral equation is dissipative and dispersive, and we analyze this
phenomenon for some standard time integration techniques in Section 3.3.

One advantage of using time domain boundary integral equations is that the problem
is solved only on the boundary Γ, resulting in dimensional reduction. However a dense
matrix problem needs to be solved at each time step, and the solution at previous time
steps needs to be stored (at all previous time steps for CQ). However in [10], Hackbusch,
Kress and Sauter give a way to save storage by using a cutoff to obtain sparse matrices.
In addition H-matrix techniques can be used to further decrease computational cost [4]
and the method does tolerate small errors due to numerical quadrature [15].

The structure of the rest of the paper is the following. We introduce the variational for-
mulation in Section 2, which will give the properties of the boundary integral operators.
Based on these properties and Lubich’s technique, we can analyze the time discretization
error in Section 3. In addition, we investigate dispersion and dissipation. In Section 4,
we give the full space-time discretization using Raviart-Thomas elements on the surface.
Finally, some numerical experiments are performed in the Section 5, showing that the
numerical results having the predicted time convergence order and stability property.
Finally, we draw some conclusions.

2 Variational formulation

Before giving the precise statement of the EFIE, we give the notation used here (c.f. [6,13]).
Let curlΓ denote the surface curl on Γ, then let

Vγ :=γT(H
1(Ω)), where γT :v 7→v×n|Γ,
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VΠ :=ΠT(H
1(Ω)), where ΠT :v 7→n×(v×n)|Γ,

H−1/2(divΓ,Γ) :=
{

v∈V ′
Π | divΓv∈H−1/2(Γ)

}

,

H−1/2(curlΓ,Γ) :=
{

v∈V ′
γ | curlΓv∈H−1/2(Γ)

}

,

H(curl,Ωe) :=
{

v∈L2(Ωe), curlu∈L2(Ωe)
}

.

The norm for H−1/2(divΓ,Γ) is

‖v‖2
H−1/2(divΓ,Γ) :=‖v‖2

V′
Π
+‖divΓv‖2

H−1/2(Γ),

where V ′
Π is the dual space of VΠ. Similar spaces and norms can be defined for H−1/2(curlΓ,Γ).

The analysis of CQ applied to the EFIE is based on understanding Maxwell’s equa-
tion in the Laplace domain using the Laplace transform in time. Recall that the Laplace
transform of a function f is given by

L f (s) :=
∫ ∞

0
f (t)exp(−st)dt. (2.1)

The corresponding Laplace domain problem, for s= σ+iη with σ,η ∈R, σ≥ σ0 > 0, is to
find E :=L (E )∈H(curl,Ωe) such that

curlcurlE+s2E=0, on Ωe,

E×n= ĝ, in Γ,
(2.2)

where ĝ=L (g)∈H−1/2(divΓ,Γ). This motivates the use of a special norm on H(curl,Ωe)
given by

‖u‖2
H1,s(curl,Ωe)= |s|2‖u‖2

L2(Ωe)+‖curlu‖2
L2(Ωe).

As for the time domain problem, we have the ansatz representation in the Laplace do-
main

sE(x)=M(s)Ĵ(x) := s2
∫

Γ
Φ(x,y)Ĵ(y)dσy−grad

∫

Γ
Φ(x,y)divΓĴ(y)dσy, x 6∈Γ, (2.3)

and Ĵ satisfies the Laplace domain EFIE

V(s)Ĵ(x) := s2ΠT

∫

Γ
Φ(x,y)Ĵ(y)dσy−gradΓ

∫

Γ
Φ(x,y)divΓĴ(y)dσy

= sn×ĝ(x), x∈Γ,
(2.4)

where

Φ(x,y) :=
e−s|x−y|

4π|x−y|
, x 6=y,

is the fundamental solution of the Helmholtz equation in the Laplace domain. Note
that the operator V(s) (or M(s)) is the Laplace transform of V(∂t) (orM(∂t)), and V(s) :
H−1/2(divΓ,Γ)→H−1/2(curlΓ,Γ) [12].
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Lemma 2.1. Given ĝ∈H−1/2(divΓ,Γ), problem (2.2) admits a unique solution E∈H(curl,Ωe),
and

‖E‖H1,s(curl,Ωe)≤C(Γ,σ0)|s|
2‖ĝ‖H−1/2(divΓ,Γ).

Proof. For a smooth domain, the proof follows [22]. For a Lipschitz domain, again moti-
vated by [22], the above inequality can be proved by using techniques from [26, Chapter
I] and also trace and lifting theorems in [7,9]. We do not give the detailed proof here.

In the same way, we also have

Lemma 2.2. Given E∈H(curl,Ω∪Ωe) satisfying curlcurlE+s2E=0, let ϕ :=[curlE×n]|Γ/s,
where [·] denotes the jump across Γ, we have

‖ϕ‖H−1/2(divΓ,Γ)≤C(Γ,σ0)|s|‖E‖H1,s (curl,Ω∪Ωe).

To analyse the properties of V(s) (and V(∂t)), we define the following sesquilinear
form bs on H−1/2(divΓ,Γ)×H−1/2(divΓ,Γ) by

bs(ϕ,ξ) :=
∫

Γ

∫

Γ
s2Φ(x,y)ϕ(y)·ξ(x)dσydσx+

∫

Γ

∫

Γ
Φ(x,y)divΓ ϕ(y)divΓξ(x)dσydσx. (2.5)

The following theorem implies the invertibility of V(s) and the existence and unique-
ness of the solution to the time domain EFIE (2.4).

Theorem 2.1. For all ĝ∈H−1/2(divΓ,Γ), the integral equation V(s)Ĵ=sn×ĝ has the following
equivalent variational formulation: Find Ĵ∈H−1/2(divΓ,Γ), such that ∀ξ∈H−1/2(divΓ,Γ),

bs(Ĵ,ξ)= s
∫

Γ
n(x)×ĝ(x)·ξ(x)dσx . (2.6)

Then bs is continuous and coercive on H−1/2(divΓ,Γ)×H−1/2(divΓ,Γ) and

|bs(ϕ,sϕ)|≥C(Γ,σ0)
σ

|s|2
‖ϕ‖2

H−1/2(divΓ,Γ),

where C(Γ,σ0) is a constant depending on Γ and σ0.

Remark 2.1. The coercivity of |bs(ϕ,sϕ)| implies the invertibility of V(s) and the bound-
edness ‖V(s)−1‖≤C(Γ,σ0)|s|3/σ≤C(Γ,σ0)|s|3. Furthermore, the time domain EFIE V(∂t)
J=n×gt has a unique solution in a suitable time function space, i.e. V(∂t) is invertible.

Proof. We sketch the proof. Full detail in the case of a smooth domain can be found in [22]
with different s-dependent norms. Our case follows closely Terrasse [22] but generalized
to Lipschitz domains. The proof consists of the following steps:

Step 1. The continuity of bs follows from Bamberger and HaDuong’s [3] results for a
single layer potential,

|bs(ϕ,ξ)|≤C(Γ,σ0)|s|
3‖ϕ‖H−1/2(divΓ,Γ)‖ξ‖H−1/2(divΓ,Γ), ∀ϕ,ξ∈H−1/2(divΓ,Γ). (2.7)
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Step 2. For ϕ∈H−1/2(divΓ,Γ), define u :=M(s)ϕ/s in Ω∪Ωe, which satisfies

curl curlu+s2u=0, in Ω∪Ωe,

[curlu×n]/s= ϕ, on Γ.

Here [·] denotes the jump across Γ. For any v∈H(curl,R3), integration by parts and use
of the boundary condition shows that

a(u,v) :=
∫

Ω∪Ωe
curlu·curlv+s2u·v= 〈sϕ,vT〉,

where 〈·,·〉 denotes the duality pairing between H−1/2(divΓ,Γ) and H−1/2(curlΓ,Γ). Then
|a(u,su)|≥σ‖u‖2

H1,s (curl,Ω∪Ωe)
. Now, define f :=u×n|Γ ∈H−1/2(divΓ,Γ), then by the defi-

nition of u and the property of M(s), Vs ϕ= sn×f. So

a(u,u)= 〈sϕ,n×f〉.

It is not hard to conclude the following equality

a(u,u)=
s

s
bs(ϕ,ϕ).

Step 3. Using the results of step 2 and Lemma 2.2, we obtain

|bs(ϕ,sϕ)|= |a(u,su)|≥σ‖u‖2
H1,s (curl,Ω∪Ωe)≥C(Γ,σ0)

σ

|s|2
‖ϕ‖2

H−1/2(divΓ,Γ),

which completes the proof of the theorem.

3 Time discretization

Having proved the properties of V(s), we can discretize in time by using CQ [19] which
we now describe. Using the definition of Laplace transform (2.1), for s = σ+iη with
σ ≥ σ0 > 0 we have L (δ(·−R))(s) = exp(−sR), and the corresponding inverse Laplace
transform gives

δ(t−R)=
1

2π

∫

σ+iR
exp(st)exp(−sR)ds.

Using this expression and interchanging the order of integration

∫ t

0
δ(t−R−τ) f (τ)dτ=

1

2πi

∫

σ+iR
exp(−sR)F(s,t)ds,

where F(s,t) =
∫ t

0 exp(s(t−τ)) f (τ)dτ. For fixed s, F satisfies the ordinary differential
equation (ODE)

Ft= sF+ f , t>0, with F(s,0)=0.
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To discretize the convolution, we proceed to approximate F by a suitable ODE method.
Define the step size ∆t>0 and let tn =n∆t, we shall use a multistep method with k-steps
as follows:

k

∑
j=0

αjFn−j=∆t
k

∑
j=0

β j(sFn−j+ fn−j),

where fn= f (tn), and αj and β j are coefficients of the multistep method. Then the discrete
convolution can be defined by

∫ tn

0
δ(tn−R−τ) f (τ)≈

1

2πi

∫

σ+iR
exp(−sR)Fn(s)ds=

∞

∑
j=0

w
(0)
n−j(R) f j,

where w
(0)
j (R) are quadrature weights obtained as follows. We define

D(z) :=
α0+α1z+···+αkzk

β0+β1z+···+βkzk
=

∞

∑
n=0

dnzn,

where αj and β j are the multistep coefficients mentioned before. For the multistep meth-
ods we will use, α0/β0 >0 [19].

Using generating functions, we can compute the quadrature weights by

∞

∑
j=0

w
(0)
j zj =exp

(

−R
D(z)

∆t

)

.

To apply Lubich’s theory to the EFIE, it is necessary to choose the multistep method
to be A-stable, which implies that ℜ(D(z))>0 for |z|<1. Note that the multistep method
is of order p if D(e−∆t)/∆t=1+O(∆tp) as ∆t→0, but the order p for an A-stable method
is at most 2. One example of second order A-stable methods is the Backward Differenti-
ation Formulas 2 (BDF2): D(z)= (3−4z+z2)/2, another is the Trapezoidal rule: D(z)=
(2−2z)/(1+z). The standard first order example is the Backward Euler (BE) method
where D(z)=1−z. For BE we have

exp

(

−R
1−z

∆t

)

=exp

(

−
R

∆t

)

∞

∑
j=0

1

n!

(

R

∆t

)n

zn,

and so

w
(0)
j (R)=

exp(−R/∆t)

n!

(

R

∆t

)n

.

In Eq. (1.3), time derivatives are also involved. By the same arguments, using the fact
that s corresponds to a time derivative, we can obtain, for all z,

∫ tn

0
δ(tn−R−τ) ftt(τ)dτ≈

n

∑
j=0

w
(2)
n−j(R) f j ,
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with
∞

∑
j=0

w
(2)
j (R)zj =

(

D(z)

∆t

)2

exp

(

−R
D(z)

∆t

)

.

More generally, we can use the FFT to compute the coefficients numerically [19].
Convolution Quadrature can be interpreted via the discrete Laplace transform (the z-
transform) and is then seen to correspond to techniques in control engineering (see [24]
for more details).

3.1 Time discretization error analysis

Using convolution quadrature, we have the time discretized EFIE

V(∂∆t
t )Jn(x)=ΠT

∫

Γ

∑
n
j=0w

(2)
n−j(|x−y|)Jj(y)

4π|x−y|
dσy

−gradΓ

∫

Γ

∑
n
j=0 w

(0)
n−j(|x−y|)divΓJj(y)

4π|x−y|
dσy =n(x)×gt(x,tn). (3.1)

Note that the quadrature coefficients w
(2)
j (R) and w

(0)
j (R) are zero for j < 0, and this

implies that the scheme can be marched on in time since Jn is independent of Jj for j>n.

Theorem 3.1. Consider a convolution quadrature method based on an A-stable multistep method
of order p and having no poles for D(z) on the unit circle. Given boundary data g with sufficiently
many time derivatives and vanishing at t=0, the error in the surface current is bounded by

(

∆t
N

∑
n=0

‖Jn−J(·,tn)‖
2
H−1/2(divΓ,Γ)

)1/2

≤C∆tp‖n×g‖Hr,−1/2([0,T];curlΓ,Γ), (3.2)

where r satisfies r≥ p+4. The coefficient C depends on Γ and T=N∆t<∞, but is independent
of ∆t<∆t0, for some ∆t0 >0.

Remark 3.1. The space

Hα,−1/2([0,T];curlΓ,Γ) :=
{

v(·,t)∈H−1/2(curlΓ,Γ)∀t∈ [0,T]

and ‖v(·,t)‖H−1/2(curlΓ,Γ)∈Hα([0,T])
}

.

Remark 3.2. The condition on the poles of D(z) rules out the trapezoidal rule. Admis-
sible multistep methods are BE and BDF2. BDF3 is ruled out since it is not A-stable
(nevertheless, as we shall see, it can give conditionally convergent results).

Proof. The result follows from the remark after Theorem 2.1 and Lubich’s Theorem 5.1
of [19].



Q. Chen et al. / Commun. Comput. Phys., 11 (2012), pp. 383-399 391

Once we obtain the time discretized surface current Jn(x), we can compute

u∆t(x)=M(∂∆t
t )J∆t(x), (3.3)

where J∆t = (Jn,Jn−1,··· ,J0)T and similarly for u∆t. Then we solve ∂∆t
t E ∆t = u∆t, where

∂∆t
t E ∆ denotes applying the multistep method to the time discrete electric field each time

step. Now we have the following important result connecting the boundary integral
problem to the electrical field:

Theorem 3.2. Given smooth compatible data g and a multistep method as in the previous theo-
rem, u∆t computed by (3.3) satisfies the semi-discrete Maxwell system obtained by applying the
multistep method at each timestep:

curlcurlu∆t+(∂∆t
t )2u∆t=0, in Ωe,

u∆t×n=gt, on Γ,
(3.4)

where u∆t vanishes for all tn ≤0. Moreover, given the same assumptions as in Theorem 3.1, and
denoting un=u∆t(·,n∆t), the error is bounded by

(

∆t
N

∑
n=0

‖un−u(·,n∆t)‖2
H(curl,Ωe)+‖∂∆t

t un−∂tu(·,n×∆t)‖2
L2(Ωe)3

)1/2

≤C∆tp‖g‖Hr,−1/2([0,T];divΓ,Γ), (3.5)

where r≥ p+3. The pointwise error in time bounded as follows:

‖un−u(·,n∆t)‖H(curl,Ωe)+‖∂∆t
t un−∂tu(·,n∆t)‖L2(Ωe)

≤C∆tp|log(∆t)|‖g‖Hr′ ,−1/2([0,T];divΓ,Γ), (3.6)

where r′≥ p+7/2, and C depends on T=N∆t<∞ but is independent of ∆t≤∆t0.

Remark 3.3. The space

Hα,−1/2([0,T];divΓ,Γ) :=
{

v(·,t)∈H−1/2(divΓ,Γ)∀t∈ [0,T]

and ‖v(·,t)‖H−1/2(divΓ,Γ)∈Hα([0,T])
}

.

Proof. This is a straightforward extension of the proof of Theorem 5.2 of [19] using an ap-
propriate integral representation for the solution of the Laplace domain Maxwell system
(2.2), and Lemma 2.1.
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3.2 Dispersion and dissipation

The connection between the semi-discrete boundary integral problem and the semi-
discrete Maxwell system in Theorem 3.2 shows that the method will be dispersive
and probably dissipative. To analyze the dispersion and dissipation in the method,
we suppose that the semi discrete Maxwell system is satisfied in all space. Note that
(∂∆t

t )2u∆t+curlcurlu∆t = 0, implies div((∂∆t
t )2u∆t)= 0. Hence if divu∆t = 0 for tn ≤ 0, we

have divu∆t = 0 for all tn, and so (∂∆t
t )2u∆t =∆u∆t. Then it suffices to consider the semi

discrete wave equation
(∂∆t

t )2un=∆un.

Using the BE method this becomes

un−2un−1+un−2

∆t2
=∆un.

Then we seek a solution of the form un = exp(i(k·x−ω∆ttn)), and substituting into the
above equation we get

4exp(iω∆t∆t)

∆t2
sin2(ω∆t∆t/2)= |k|2.

We then obtain the asymptotic expansion

ω∆t=±|k|−
1

2
i|k|2∆t∓

1

2
|k|3∆t2+··· as ∆t→0.

The method would have no dispersion or dissipation error if |ω|=±|k|. But in our case,
we conclude the method does show both dispersion and dissipation. From the second
term on the right hand side we see the method is dissipative and from the third term we
see it has dispersion with a phase error of O(∆t2). However the method is isotropic (ω∆t

only depends on |k| not the direction of k).
By similar calculations, we have the relations of ω∆t and k for BDF2, BDF3 and the

trapezoidal rule respectively

BDF2: ω∆t=±|k|∓
1

3
|k|3∆t2+

i

4
|k|4∆t3+··· ,

BDF3: ω∆t=±|k|+
i

4
|k|4∆t3∓

3

10
|k|5∆t4+··· ,

Trapezoidal : ω∆t=±|k|∓
1

12
|k|3∆t2±

1

80
|k|5∆t4+··· .

Interestingly even through that the trapezoidal rule does not fit with the assumption of
Theorem 3.1 it gives rise to a dispersive but not dissipative method (see [4] for further
comments on how to use the trapezoidal rule). BDF3 also does not fit the theory, but can
perhaps be used in practice provided the time of integration is not too long.
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4 Full discretization

4.1 Space discretization

To obtain a fully discrete problem, we use Raviart-Thomas elements [5] of degree k de-
noted RT k(Γh) to approximate H−1/2(divΓ,Γ), where Γh denotes a non-degenerate reg-
ular and quasi-uniform triangulation of Γ with mesh size h>0. The Galerkin discretiza-
tion of the Laplace domain variational problem (2.6) is to find Ĵh ∈ RT k(Γh), for any
ξh ∈RT k(Γh)

bs(Ĵh,ξh)=
∫

Γ

∫

Γ
s2Φ(x,y)Ĵh(y)·ξh(x)dσydσx+

∫

Γ

∫

Γ
Φ(x,y)divΓĴh(y)divΓξh(x)dσydσx

=s
∫

Γ
n(x)×ĝ(x)·ξh(x)dσx. (4.1)

Lemma 4.1. The discrete Laplace domain Galerkin variational problem (4.1) has a unique solu-
tion Ĵh in RT k(Γh) with quasi-optimal convergence

‖Ĵ− Ĵh‖H−1/2(divΓ,Γ)≤C(Γ,σ0) inf
vh∈RT k(Γ)

|s|6‖Ĵ−vh‖H−1/2(divΓ ,Γ), (4.2)

and stability

‖Ĵh‖H−1/2(divΓ,Γ)≤C(Γ,σ0)
1

σ
|s|4‖n×ĝ‖H−1/2(curlΓ,Γ), (4.3)

where the constant C(Γ,σ0) is independent of s, Ĵ and h.

Proof. Because this is a Galerkin method, we have

bs(Ĵ− Ĵh,s(Ĵ− Ĵh))=bs(Ĵ− Ĵh,s(Ĵ−ξh)), ∀ξh ∈RT k(Γh),

and using the continuity and coercivity of bs from Theorem 2.1, we get the inequality

C(Γ,σ0)
σ

|s|2
‖Ĵ− Ĵh‖

2
H−1/2(divΓ,Γ)≤|bs(Ĵ− Ĵh,s(Ĵ− Ĵh))|= |bs(Ĵ− Ĵh,s(Ĵ−ξh))|

≤C(Γ,σ0)|s|
4‖Ĵ− Ĵh‖H−1/2(divΓ,Γ)‖Ĵ−ξh‖H−1/2(divΓ,Γ). (4.4)

To prove the stability, we consider the discretized sesquilinear form

bs(Ĵh,sĴh)=
∫

Γ
sn(x)×ĝ(x)·sĴh(x)dσx , (4.5)

then by coercivity of bs again

‖Ĵh‖H−1/2(divΓ,Γ)≤C(Γ,σ0)
1

σ
|s|4‖n×ĝ‖H−1/2(curlΓ,Γ). (4.6)

This completes the proof.
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Using the error estimates [13, Lemma 8.1], we obtain the following theorem:

Theorem 4.1. Suppose J∈Hα(divΓ,Γ) for some α>0. Let ε>0 and h≤h0 for some h0>0. Then
if Ĵh is the solution of discrete Galerkin variational problem (4.1) and Ĵ is the solution of Galerkin
variational formulation (2.6)

‖Ĵ− Ĵh‖H−1/2(divΓ,Γ)≤C(Γ,σ0)h
β|s|6‖Ĵ‖Hα(divΓ,Γ), (4.7)

where C is the constant independent of Ĵ, s, h, and β=min{3/2−ε,α+1/2−ε,1+k∗ ,α+k∗},
and k∗>0.

Remark 4.1. We refer to [7, 13] for the definition of k∗, which depends on the shape of Γ.
From [13], k∗≥1/2 if at most three edges of Γ meet at a vertex. Otherwise it depends on
how faces meet at vertices and can be arbitrarily small (and positive) in adverse structures
[7]. A quasi-uniform mesh is required to use the results of [13].

Proof. Following the proof of [13, Lemma 8.1, Theorem 8.2], r=min{k∗ ,max{0,1/2−ε}},
and using the quasi-uniformity of the mesh, there exists vh∈RT k(Γh), such that

‖Ĵ−vh‖H−1/2(Γ)≤Chr‖Ĵ−vh‖H(divΓ ,Γ)≤Chr+min{1,α}‖Ĵ‖Hα(divΓ,Γ),

‖divΓ(Ĵ−vh)‖H−1/2(Γ)≤Ch1/2‖divΓ(Ĵ−vh)‖L2(Γ)≤Ch1/2‖Ĵ−vh‖H(divΓ,Γ)

≤Ch1/2+min{1,α}‖Ĵ‖Hα(divΓ,Γ).

The error estimate follows from the above result.

Denote IhJ :=L −1(Ĵh) the inverse Laplace transform of Ĵh, then we have the stability
and convergence theorem:

Theorem 4.2. Suppose n×g∈Hl+4([0,T];H−1/2(curlΓ,Γ)) for l∈R, and h≤h0 for some h0>0,
then

‖IhJ‖2
Hl([0,T];H−1/2(Γ))+‖divΓ IhJ‖2

Hl ([0,T];H−1/2(Γ))

≤C(Γ,σ0,T)
{

‖n×g‖2
Hl+4([0,T];H−1/2(Γ))+‖curlΓ(n×g)‖2

Hl+4([0,T];H−1/2(Γ))

}

, (4.8)

and if J∈Hl+6([0,T];Hα(divΓ,Γ)) for some constant α>0, the

‖J− IhJ‖2
Hl ([0,T];H−1/2(Γ))+‖divΓ(J− IhJ)‖2

Hl([0,T];H−1/2(Γ))

≤C(Γ,σ0,T)h2β‖
{

‖J‖2
Hl+6([0,T];Hα(Γ))+‖divΓJ‖2

Hl+6([0,T];Hα(Γ))

}

, (4.9)

where β=min{3/2−ε,α+1/2−ε,1+k∗ ,α+k∗}, and k∗ is the constant in Theorem 4.1.
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4.2 Full discretization

We now consider the full space-time discrete problem of finding J∆t
h in RT k(Γh) at each

time step, such that

〈V(∂∆t
t )J∆t

h ,ξh〉= 〈n×g∆t
t ,ξh〉, ∀ξh ∈RT k(Γh)⊂H−1/2(divΓ,Γ). (4.10)

Here again 〈·,·〉 denotes the duality pairing between H−1/2(divΓ,Γ) and H−1/2(curlΓ,Γ).
By splitting J−J∆t

h =(J− IhJ)+(IhJ−J∆t
h ), where J∆t

h is the full spatial-time approximation,
we have the following theorem:

Theorem 4.3. Assume the conditions of Theorem 3.1 on the CQ scheme and assume a regu-
lar and quasi-uniform mesh on Γ. Given compatible boundary data g, and the Raviart-Thomas
method RT k(Γh) for the space discretization, the fully discrete problem (4.10) has a unique J∆t

h
that converges unconditionally as follows

‖J(·,n∆t)−Jn∆t
h ‖2

H−1/2(Γ)+‖divΓ(J(·,n∆t)−Jn∆t
h )‖2

H−1/2(Γ)≤O(∆t2p)+O(h2β). (4.11)

Proof. This result follows from Theorems 3.1 and 4.2 immediately.

5 Numerical experiments

We consider a sphere with diameter 0.5m. The scatterer is illuminated by a Gaussian
plane wave with the center frequency f0=120MHz and band width fbw=40MHz (see [24])
for details. This choice of parameters is not specially significant, but typical of those used
to test engineering algorithms. For spatial discretization, we use RT 1(Γh) with curved
patches. For the sphere, if we use the EFIE, due to the well known low frequency instabil-
ity, we observe a long term increase in the solution at later times using the basic CQ EFIE,
see Fig. 1. Note that the error bounds in Theorem 4.3 depend on T so allowing growth
in the solution that would be controlled as ∆t→0 for fixed T. This instability can be re-
moved by using a loop-tree decomposition [25]. All subsequent results are computed by
the stabilized method. Next the surface current is computed by three methods: BE, BDF2
and BDF3 shown in Fig. 2. Even though BDF3 is not covered by our theory, it works well
in this case.

Fig. 3 shows the radar cross section (RCS) of the sphere at 100MHz computed from
the surface current found by CQ with BE, BDF2 and BDF3 with the oversampling factor
ψ= 5 and ψ= 10, where the oversampling factor ψ= 1/(2( f0+ fbw)∆t). To compute the
RCS, the Fourier transform of the surface current is used in appropriate surface integrals
(see [2]). The error is computed by comparing the CQ RCS to the RCS found by the stan-
dard frequency domain method EFIE on the same mesh called the method of moments
(MoM) using an identical spatial discretization. So the reported error only includes time
discretization error. The convergence of BE, BDF2 and BDF3 are of order 1, 2 and 3 re-
spectively as shown in the Fig. 4. They agree with the theoretically predicted error order.
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Figure 1: The average surface current com-
puted by EFIE with/without the stabilization.

Figure 2: The average surface current by BE,
BDF2 and BDF3 with stabilization. Note that
the y-axis differs from that Fig. 1 to accommo-
date the undershoot of BDF3.

Figure 3: The RCS with oversampling factor ψ=5 and ψ=10 for the sphere as a function of elevation angle.

Figure 4: Relative least square RCS error as a function of the oversampling factor. The convergence rates agree
with our theory for BE and BDF2.
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Figure 5: The RCS for dielectric cube by MoM
and CQ using BDF2 (with two different over-
sampling factors).

Figure 6: The surface current computed by
EFIE using CQ with BDF2 for the cube scat-
terer with oversampling factor ψ= 10. Results
with and without stabilization are shown.

The CQ method is applicable to more general problems, for example, scattering by a
penetrable dielectric. This involves a system of time dependent integral equations [23].
This problem has not yet been covered by theory, but we have positive numerical results.
For example consider the cube scatterer with side length 0.5m filled with a non-dispersive
dielectric having relative permittivity εr = 3 and permeability µr = 2. The incident field
is same as for the previous example. Fig. 5 shows the RCS, and Fig. 6 shows the current
computed by BDF2 with and without stabilization. The results show good agreement
with the RCS computed by a frequency domain (MoM) code, and suggestion that stabi-
lization is more necessary in the case for a perfect conductor (compare Figs. 1 and 6)

6 Conclusion

For the time domain electromagnetic scattering problem exterior to a perfectly conduct-
ing Lipschitz polyhedral domain, we can derive an unconditionally stable time domain
method by using Lubich’s CQ technique for time discretization based on an A-stable
multistep method. We could also use CQ with an implicit Runge-Kutta method, which
can give a higher order of convergence and similar stability. The corresponding error
estimates have not been done (for acoustic wave problems see [4, 20]). For transmission
problems, we may also use CQ, as we have seen in Figs. 5 and 6. The case of acoustic
waves has been investigated by Laliena and Sayas [16]. We believe that similar error esti-
mates can be achieved for Maxwell’s equations, and this is currently under investigation.
Other future work will also include a proof of convergence of the method for a general
physical dispersive and dissipative medium.

Acknowledgments

The authors thank the NSF for funding this research under grant number DMS-0811104.



398 Q. Chen et al. / Commun. Comput. Phys., 11 (2012), pp. 383-399

References

[1] T. Abboud, J.C. Nedelec and J. Volakis, Stable solution of the retarded potential equations,
Proc. 17th Ann. Rev. Progress in Appl. Comp. Electromagnetics, Monterey, CA, March 2001,
146-151.

[2] C.A. Balanis, Advanced Engineering Electromagnetics, Wiley, 1989.
[3] A. Bamberger and T. HaDuong, Formulation variationnelle espace-temps pour le calcul par

potentiel retarde de la diffraction d’une onde acoustique(i), Math. Mech. in the Appl. Sci, 8
(1986), 405–435.

[4] L. Banjai, Multistep and multistage boundary integral methods for the wave equation,
Preprint.

[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.
[6] A. Buffa, M. Costabel, C. Schwab, Boundary element methods for Maxwell’s equations on

non-smooth domains, Numer. Math., 92(2002), 679-710.
[7] A. Buffa, M. Constabel, D. Sheen, On traces for H(curl,Ω) in Lipschitz domains, J. Math.

Anal. Appl., 276(2002), 845-867.
[8] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer,

Berlin, second ed., 1998.
[9] M. Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM

J. Math. Anal., 19(1988), 613-626.
[10] W. Hackbusch, W. Kress and S.A. Sauter, Sparse convolution quadrature for time domain

boundary integral formulations of the wave equation by cutoff and panel-clustering, Bound-
ary Element Analysis, Lect. Notes Appl. Comput. Mech., 20(2007), 113-134.

[11] W. Hackbusch, W. Kress and S.A. Sauter, Sparse convolution quadrature for time domain
boundary integral formulations of the waves equation, IMA J. Numer. Anal., 29(2009), 158-
179.

[12] R. Hiptmair, Coupling of finite elements and boundary elemenets in electromagnetic scat-
tering, SIAM J. Numer. Anal., 41(2003), 919-944.

[13] R. Hiptmair, C. Schwab, Natural boundary element methods for the electric field integral
equation on polyhedra, SIAM J. Numer. Anal, 40(2002), 66-86.

[14] G. Kobidze, J. Gao, B. Shanker and E. Michielssen, A fast time domain integral equation
based scheme for analyzing scattering from dispersive objects, IEEE T. Antenn. Propag.,
53(2005), 1215-1226.

[15] W, Kress and S. Sauter, Numerical treatment of retarded boundary integral equations
by sparse panel clustering, Technical report 17-2006, Universitat Zurich. Available at
http://www.math.unizh.ch/fileadmin/math/preprints/17-06.pdf

[16] A.R. Laliena and F.J. Sayas, Theoretical aspects of the application of convolution quadrature
to scattering of acoustic waves, Numer. Math., 112(2009), 637-678.

[17] M. Lu and E. Michielssen, Closed form evaluation of time domain fields due to Rao-Wilton-
Glisson sources for use in marching-on-in-time based EFIE solvers, IEEE Antenn. Propag.
Society Int. Symp., 2002.

[18] Ch. Lubich, Convolution quadrature and discretized operational calculus I and II, Numer.
Math, 52(1988), 129-145, 413-425.

[19] Ch. Lubich, On the multistep time discretization of linear initial-boundary value problems
and their boundary integral equations, Numer. Math., 67(1994), 365-389.

[20] Ch. Lubich and A. Ostermann, Runge-Kutta methods for parabolic equations and convolu-
tion quadrature, Math. Comput., 60(1993), 105-131.



Q. Chen et al. / Commun. Comput. Phys., 11 (2012), pp. 383-399 399

[21] B. Shanker, M. Lu, J. Yuan and E. Michielssen, Time domain integral equation analysis of
scattering from composite bodies via exact evaluation of radiation fields, IEEE T. Antenn.
Propag., 57(2009), 1506-1519.

[22] I. Terrasse, Resolution Mathematique et numerique de equations de Maxwell instationnaires
par une methode de potentiels retardes, PhD thesis, Ecole Polytechnique, 1993.

[23] X. Wang and D.S. Weile, Electromagnetic scattering from dispersive dielectric scatterers us-
ing the finite difference delay modeling method, IEEE T. Antenn. Propag., 58(2010), 1720-
1730.

[24] X. Wang, R.A. Wildman, D.S. Weile and P. Monk, A finite difference delay modeling ap-
proach to the discretization of the time domain integral equations of electromagnetics, IEEE
T. Antenn. Propag., 56(2008), 2442-2452.

[25] R.A. Wildman and D.S Weile, An accurate broad-band method of moments using higher
order basis functions and tree-loop decomposition, IEEE T. Antenn. Propag., 52(2004), 3005-
3011.

[26] J. Wloka, Partial Differential Equations, Cambridge, 1987.


