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Abstract. For the numerical simulation of time harmonic acoustic scattering in a com-
plex geometry, in presence of an arbitrary mean flow, the main difficulty is the co-
existence and the coupling of two very different phenomena: acoustic propagation
and convection of vortices. We consider a linearized formulation coupling an aug-
mented Galbrun equation (for the perturbation of displacement) with a time harmonic
convection equation (for the vortices). We first establish the well-posedness of this
time harmonic convection equation in the appropriate mathematical framework. Then
the complete problem, with Perfectly Matched Layers at the artificial boundaries, is
proved to be coercive + compact, and a hybrid numerical method for the solution
is proposed, coupling finite elements for the Galbrun equation and a Discontinuous
Galerkin scheme for the convection equation. Finally a 2D numerical result shows the
efficiency of the method.

AMS subject classifications: 35Q35, 65N30
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1 Introduction

The reduction of noise is becoming today a main objective whose progress is, in particu-
lar, related to a better understanding of the complex phenomena occurring when acoustic
waves propagate in presence of a mean flow. For instance, the radiation of the sound pro-
duced by aircraft engines is strongly influenced by the presence of the flow around the
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airplane. Several methods have been developed to solve the time-domain Linearized Eu-
ler Equations, but the treatment of the artificial boundaries still raises open questions.
On the other hand, the time-harmonic problem has been considered only in the simplest
case of a potential mean flow, apart for some attempts to solve the model of Galbrun in a
general flow [9]. Galbrun’s system corresponds to a linearized model whose unknown u

is the perturbation of the Lagrangian displacement. It results in second order equations
in time and in space, at first sight similar to more classical wave models. Contrary to the
Linearized Euler Equations, Galbrun’s system does not involve any derivatives of the
mean flow quantities.

Our objective is to develop a numerical method to solve time-harmonic Galbrun’s
system, in a quite general case in the sense that the geometry, and therefore the mean
flow, can be complex. As a consequence, discretization methods written on an unstruc-
tured mesh will be privileged. It is now well-known that a direct resolution using finite
elements combined with Perfectly Matched Layers does not work. Extending an ap-
proach originally applied to time-harmonic Maxwell equations, we have shown that the
difficulties can be overcome by writing a so-called augmented equation. This augmented
equation requires the evaluation of

ψ=curlu,

which becomes the main difficulty.

This approach has been developed in 2D and applied successively to the case of a
uniform flow and to the case of a non-vanishing parallel shear flow. In the first case, ψ
can be computed a priori [2,8] and in the second case, it is explicitly related to u by a non-
local convolution formula [4]. A simplified approach has been proposed in the case of a
low Mach flow [3]: we can then replace the exact non-local expression of ψ by a simple
local formula. This low Mach approach has been validated in the case of both a potential
and a parallel flow, for which reference solutions are available.

The objective of the present paper is to get rid of the low Mach hypothesis. The
main part of the paper is devoted to the theoretical study of the time-harmonic advection
equation satisfied by ψ. The well-posedness results that we establish cannot be directly
deduced from known results on the classical advection equation [7], but the techniques
we use are inspired from [1].

The outline of the paper is the following. The model is briefly described in Section
2, including the augmented equation for u, the hydrodynamic equation for ψ and the
Perfectly Matched Layers. Details can be found in [3]. Section 3 is devoted to the theo-
retical study of the time-harmonic advection equation. Well-posedness is deduced from
an inf-sup condition, which is proved for a flow which ”fills” the domain, in the sense
of [1]. These results are used in Section 4 to prove that the complete problem in (u,ψ)
with Perfectly Matched Layers is of Fredholm type if the flow varies slowly. A numerical
method, coupling classical finite elements for u with a Discontinuous Galerkin scheme
for ψ is finally described in Section 5 and some numerical results are presented.
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2 A model for acoustic scattering in a complex flow

2.1 Geometry and flow

Let Ω∞ = {(x1,x2)∈R
2; x2 > h(x1)} where h is a continuous positive function such that,

for some positive r, h(x1)=0 for |x1|>r. We suppose that Ω∞ is filled with a compressible
inviscid fluid and that the boundary Γ∞ ={(x1,x2)∈R

2; x2=h(x1)} is rigid. The fluid is
moving and the flow, which is stationary, is characterized by its non uniform fields of ve-
locity v0, density ρ0, pressure p0 and sound velocity c0, which solve in Ω∞ the stationary
Euler equations:

{

div(ρ0v0)=0,

ρ0v0 ·∇v0+∇p0 =0.
(2.1)

On the rigid boundary:

v0 ·n=0 (Γ∞), (2.2)

where n denotes the normal vector to Γ∞ pointing to the exterior of Ω∞. Finally, for a
barotropic fluid, the state law reads:

∇p0= c2
0∇ρ0. (2.3)

We suppose that the flow is subsonic and uniform far from the perturbation:

∃R>0, ∀ |x|>R, v0(x)=v∞e1 and (ρ0(x),p0(x),c0(x))=(ρ∞,p∞,c∞).

This means that the half disk DR={(x1,x2); x2>0 and x2
1+x2

2 <R2} of radius R contains
the perturbed area of the propagation domain. We suppose for instance that v∞ > 0.
Finally, we assume for simplicity that all quantities related to the mean flow are regular
enough in the sense that ρ0, p0, c0 and v0 are in C2(Ω∞). This regularity will be used to
define the operators B and C below.

Figure 1: Mean flow.
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2.2 The augmented Galbrun equation

The Galbrun equation is a linear equation which models the propagation of small pertur-
bations of the previous mean flow, which can be produced by an acoustic source. In time
harmonic regime (with a e−iωt time dependence, ω>0), this equation takes the following
form:

ρ0
D2u

Dt2
−∇

(

ρ0c2
0divu

)

+divu∇p0−t∇u·∇p0 = f (Ω∞), (2.4)

where the convective derivative Du/Dt is defined by:

Du

Dt
=−iωu+∇u·v0

and f is a source term, compactly supported in DR∩Ω∞, such that curlf∈ L2(Ω∞). The
unknown u is the perturbation of displacement. Its normal component vanishes on the
rigid boundary:

u·n=0 (Γ∞). (2.5)

Let us notice that outside the perturbed area DR, Eq. (2.4) takes the following simplified
form:

D2u

Dt2
−c2

∞∇(divu)=
1

ρ∞

f. (2.6)

It is well-known that a direct finite element discretization of (2.4) (using Lagrange el-
ements) leads to a polluted result, due to a lack of H1 coerciveness. A way to restore
coerciveness is to consider the following ”augmented” formulation:

ρ0
D2u

Dt2
−∇(ρ0c2

0divu)+curl
(

ρ0c2
0(curlu−ψ)

)

+divu∇p0−t∇u·∇p0 = f, (2.7)

where we have introduced a new unknown

ψ=curlu

called here the ”vorticity” (in the literature, the vorticity is usually defined as the curl of
the Eulerian velocity). It has been proved in [3] that ψ satisfies the following equation

D2ψ

Dt2
=−2

D

Dt
(Bu)−Cu+

1

ρ0
curlf (2.8)

with

Bu=
2

∑
j=1

∇v0,j∧
∂u

∂xj
(2.9)

and

Cu=
2

∑
j,k=1

( ∂v0,k

∂xj
∇v0,j∧

∂u

∂xk
−v0,j∇

∂v0,k

∂xj
∧ ∂u

∂xk

)

+
1

ρ0

2

∑
j=1

( 1

ρ0c2
0

∂p0

∂xj
∇p0−∇

( ∂p0

∂xj

))

∧∇uj. (2.10)
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Notice that Cu=Bu=0 outside the perturbed area DR and that Cu vanishes everywhere
for a parallel shear flow.

For the coupled problems (2.5), (2.7), (2.8) to be equivalent with the initial problems
(2.4, 2.5), the following additional boundary condition must be imposed:

curlu−ψ=0 (Γ∞). (2.11)

Moreover let us point out that the equivalence (with u∈H1(Ω∞)2) requires the regularity
of ∂Ω∞ (see for instance the Remark 3.5 in [5]), and the treatment of reentrant corners still
raises open questions of modelling.

2.3 The perfectly matched layers

Our objective is the computation of the ”outgoing” solution (u,ψ) of the coupled problem
(2.7), (2.5), (2.8), (2.11). Following [2], for this outgoing solution, ψ must vanish upstream
of the perturbation area: indeed, the vortices are produced by the source and by the
coupling between acoustics and hydrodynamics in the case of a non uniform flow, and
are then convected downstream by the flow. In practice, we use PMLs to select this
outgoing solution. The computational domain is defined by ΩL = BL∩Ω∞, where BL is
the following square

BL=
{

(x1,x2); |x1|<R+L and 0< x2<R+L
}

and L denotes the width of the absorbing layers. The model in the PMLs involves a
complex parameter α such that ℜe(α)> 0 and ℑm(α)< 0. In the following the index α
means that the corresponding operator has been modified according to the substitution:

∂

∂xi
→αi(x)

∂

∂xi

with αi defined by αi(x)=1 if |xi|<R and αi(x)=α if |xi|>R.

G
L

-

2R LL

Figure 2: The computational domain with the perfectly matched layers.



560 A. S. Bonnet-Ben Dhia et al. / Commun. Comput. Phys., 11 (2012), pp. 555-572

For example,

divα u=α1(x)
∂u1

∂x1
+α2(x)

∂u2

∂x2
.

Finally, the problem that we solve is the following:

ρ0
D2

αu

Dt2
−∇α(ρ0c2

0divα u)+curlα(ρ0c2
0(curlα u−ψ))

+divα u∇p0−t∇αu ·∇p0= f, in ΩL, (2.12a)

D2
αψ

Dt2
=−2

Dα

Dt
(Bu)−Cu+

1

ρ0
curlf, in ΩL, (2.12b)

u ·n=curlα u−ψ=0, on ∂ΩL, (2.12c)

ψ=
Dαψ

Dt
=0, on Γ−

L , (2.12d)

where Γ−
L is the inflow boundary of the computational domain:

Γ−
L =

{

(x1,x2); x1=−R−L and 0< x2<R+L
}

.

The boundary condition on Γ−
L will allow to ensure the causality of ψ, as described below.

Notice that it is useless to introduce the notations Bα or Cα since B and C vanish in the
absorbing layers. For the same reason, we wrote ∇p0 instead of ∇α p0 in the first equation
of (2.12).

It has been already proved (see for instance [3]) that for a given ψ, the problem in u

is of Fredholm type in H1(ΩL)
2. In the next section, we consider the problem in ψ for a

given u. Results for the coupled problem (2.12) are finally discussed in Section 4.

3 The time-harmonic convective equation

3.1 A model problem

Let us first consider the following model problem :

−iωψ+v·∇ψ= g, in Ω, (3.1a)

ψ=0, on Γ−, (3.1b)

where Ω is a bounded domain of R
2, v is a vector field defined on Ω such that

v∈C1(Ω)2 and divv=0

and Γ− (resp. Γ+) is the inflow (resp. outflow) boundary (n is the exterior normal vector
to Ω):

Γ±={x∈∂Ω; ±v·n>0}.
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Contrary to the standard advection equation with ω = ia with a≥ 0 (see [7]), this time-
harmonic equation does not seem to have been studied before. Following [7], we notice
that div(ψv)=v·∇ψ and we consider the Hilbert space

H(Ω,v)=
{

ψ∈L2(Ω); div(ψv)∈L2(Ω)
}

(3.2)

equipped with the following norm:

‖ψ‖H(Ω,v)=

√

∫

Ω
ω2|ψ|2+|v·∇ψ|2, (3.3)

where ω is introduced for homogeneity reasons. Then, we deduce from classical proper-
ties of the space H(Ω,div) the existence of a continuous trace application:

ψ∈H(Ω,v) 7→ψv·n∈H− 1
2 (∂Ω).

As a consequence, the space

H(Ω,v,Γ−)=
{

ψ∈L2(Ω); v·∇ψ∈L2(Ω) and ψ=0 on Γ−} (3.4)

is a closed subspace of H(Ω,v). Naturally, the space H(Ω,v,Γ+) can be defined in the
same manner. Finally, we have the:

Lemma 3.1. For all ψ∈H(Ω,v,Γ−), |ψ|2v·n∈L1(Γ+) and the following identities hold:

∀ψ∈H(Ω,v,Γ−), ∀ϕ∈H(Ω,v),
∫

Ω
(v·∇ψ)ϕ=−

∫

Ω
ψ(v·∇ϕ)+

∫

Γ+
v·nψϕdγ, (3.5a)

∀ψ∈H(Ω,v,Γ−),
∫

Γ+
v·n|ψ|2dγ≤ 1

ω
‖ψ‖2

H(Ω,v). (3.5b)

We can now specify the functional framework well-suited for problem (3.1): for a data
g in L2(Ω), the solution ψ is sought in H(Ω,v,Γ−).

3.2 Explicit solution in the case of a uniform flow

Let us first consider the case of a uniform vector field v = ve1 (v > 0) in a rectangular
domain Ω=[0,d]×[0,ℓ], so that Γ−=

{

(0,x2); 0< x2 <ℓ
}

. Then problem (3.1) consists in
finding ψ∈H(Ω,v) such that

v
∂ψ

∂x1
(x1,x2)−iωψ(x1,x2)= g(x1,x2), in Ω, (3.6a)

ψ(0,x2)=0, for 0< x2<ℓ, (3.6b)

where g ∈ L2(Ω). This is a family of first order differential equations in x1 (with con-
stant coefficients) parametrized by x2, whose solution ψ=ψg is given by the following
convolution formula

ψg(x1,x2)=
1

v

∫ x1

0
g(s,x2)e

i ω
v (x1−s)ds. (3.7)
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Notice the oscillating behavior (the smaller v, the smaller the wavelength). From formula
(3.7) results the following stability estimate:

‖ψg‖H(Ω,v)≤
√

1+
√

2
ωd

v
+

ω2d2

v2
‖g‖L2(Ω). (3.8)

Indeed, we have

‖ψg‖2
H(Ω,v)=‖ωψg‖2

L2(Ω)+
∥

∥

∥v
∂ψg

∂x1

∥

∥

∥

2

L2(Ω)

=‖ωψg‖2
L2(Ω)+‖g+iωψg‖2

L2(Ω)

≤2‖ωψg‖2
L2(Ω)+‖g‖2

L2(Ω)+2‖g‖L2(Ω)‖ωψg‖L2(Ω) (3.9)

and we directly obtain (3.8) by using the estimate

‖ωψg‖2
L2(Ω)≤

∫ d

0

∫

ℓ

0

ω2

v2

(

∫ x1

0
|g(s,x2)|ds

)2
dx2dx1

≤ω2

v2

∫ d

0

∫

ℓ

0

(

∫ x1

0
|g(s,x2)|2ds

)(

∫ x1

0
12ds

)

dx2dx1

≤ω2d2

2v2
‖g‖2

L2(Ω). (3.10)

Let us point out that the estimate (3.8) deteriorates when the length d of the domain
increases (with a linear dependence in d) or when the velocity v decreases.

3.3 Well-posedness in the general case

In the case of an arbitrary vector field v, the previous approach is not generalizable and
an explicit solution of problem (3.1) is not available. We will use instead a variational
approach for problem (3.1) written in the following weak form:

ψ∈H(Ω,v,Γ−), a(ψ,φ)=
∫

Ω
gφ̄, ∀φ∈L2(Ω), (3.11)

where a(ψ,φ) =
∫

Ω
(−iωψ+v·∇ψ)φ̄. Following [1], we suppose that the vector field v

satisfies the following additional hypothesis:

v−= inf
x∈Ω

v(x)·e1 >0. (3.12)

This condition implies that v is Ω-filling (see [1]) in the sense that every point in Ω can
be reached by the flow associated to v in a finite time. In particular, recirculation zones
are forbidden.
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It is proved in [1] that, under condition (3.12), problem (3.1) with ω=0 is well-posed.
The same result holds if Γ− is replaced by Γ+. In particular, there exists a unique real-
valued function τ such that

τ∈H(Ω,v,Γ+) and v·∇τ=−2, in Ω. (3.13)

Moreover τ ∈ L∞(Ω) and ‖τ‖L∞(Ω) is twice the maximum time necessary for a particle
convected by the flow v to go across the domain Ω, so that:

‖τ‖L∞(Ω)≤2
d(Ω)

v−
, (3.14)

where d(Ω) =maxx∈Ω{x1}−minx∈Ω{x1}. The function τ will be used to establish the
following result:

Proposition 3.1. Under condition (3.12), the following inf-sup condition holds:

inf
ψ∈H(Ω,v,Γ−)

sup
φ∈L2(Ω)

ℜe
(

a(ψ,φ)
)

≥ 1

β
‖ψ‖H(Ω,v)‖φ‖L2(Ω),

where

β=2

√

2+4
(ωd(Ω)

v−

)2
.

Proof. Let ψ∈H(Ω,v,Γ−). Taking φ=ω2τψ+v·∇ψ, we get

ℜe(a(ψ,φ))=ℜe
(

∫

Ω
−iω3τ|ψ|2+|v·∇ψ|2+ω2(v·∇ψ)τψ̄−iωψ(v·∇ψ̄)

)

≥
∫

Ω
|v·∇ψ|2+ω2ℜe

(

∫

Ω
(v·∇ψ)τψ̄

)

−ω‖ψ‖L2(Ω)‖v·∇ψ‖L2(Ω). (3.15)

Then applying (3.5), we get:

∫

Ω
(v·∇ψ)τψ̄=−

∫

Ω
τψ

(

v·∇ψ̄
)

−
∫

Ω
|ψ|2v·∇τ,

which gives, using the properties of τ:

ℜe
(

∫

Ω
(v·∇ψ)τψ̄

)

=‖ψ‖2
L2(Ω). (3.16)

Combining (3.15) and (3.16), we obtain finally the following inequality:

ℜe
(

a(ψ,φ)
)

≥ 1

2
‖ψ‖2

H(Ω,v). (3.17)

On the other hand:

‖φ‖2
L2(Ω)=‖v·∇ψ‖2

L2(Ω)+ω4‖τψ‖2
L2(Ω)+2ω2ℜe

(

∫

Ω
(v·∇ψ)τψ̄

)

,
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which leads, using (3.16) to the following estimate:

‖φ‖2
L2(Ω)≤

(

2+ω2‖τ‖2
L∞(Ω)

)

‖ψ‖2
H(Ω,v). (3.18)

The theorem results from (3.17) and (3.18).

Well-posedness of problem (3.1) is then a simple consequence of the previous propo-
sition:

Theorem 3.1. Under condition (3.12), (3.1) is well-posed and its solution ψ satisfies the following
estimate:

‖ψ‖H(Ω,v)≤β‖g‖L2(Ω), (3.19)

where β has been defined in Proposition 3.1.

Proof. Let us consider the operator A from H(Ω,v,Γ−) to L2(Ω) defined by Aψ=−iωψ+
v·∇ψ. From Proposition 3.1, it results that A is injective and has a closed range. To prove
the surjectivity, notice that the adjoint A∗ of A which is defined from H(Ω,v,Γ+) into
L2(Ω) by A∗ψ= iωψ+v·∇ψ is also injective (by a similar argument), so that the range of
A is dense.

Remark 3.1. In the particular case studied in Subsection 3.2, estimate (3.19) becomes:

‖ψ‖H(Ω,v)≤2

√

2+4
ω2d2

v2
‖g‖L2(Ω),

which is in accordance with (3.8).

3.4 Some straightforward generalizations

Some simple extensions are required in order to apply the previous results to the acoustic
problem (2.12).

3.4.1 The case of a compressible flow

The flow which is considered in the acoustic problem is a solution of Euler’s equations
(2.1). In particular, the velocity field v0 satisfies div(ρ0v0) = 0 but not divv0 = 0. As a
consequence, the above results cannot be directly applied to the following problem

−iωψ+v0 ·∇ψ= g, in Ω, (3.20a)

ψ=0, on Γ−. (3.20b)

The idea is to write the first equation of (3.20) in the following equivalent form:

−iωρ0ψ+ρ0v0 ·∇ψ=ρ0g, in Ω, (3.21)
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in order to use the equation div(ρ0v0)=0, and then to introduce a modified definition of
function τ:

τ∈H(Ω,ρ0v0,Γ+) and ρ0v0 ·∇(ρ0τ)=−2ρ2
0, in Ω (3.22)

and a modified definition of the norm in the space H(Ω,ρ0v0):

‖ψ‖H(Ω,ρ0v0)=

√

∫

Ω
ω2ρ2

0|ψ|2+|ρ0v0 ·∇ψ|2.

If we assume that the density ρ0 belongs to L∞(Ω) and is bounded from below by a
strictly positive constant ρinf

0 > 0, then we obtain with a very similar approach as above
the following result:

Theorem 3.2. If v0 satisfies condition (3.12), (3.20) is well-posed and its solution ψ satisfies the
following estimate:

‖ψ‖H(Ω,ρ0v0)≤β0‖ρ0g‖L2(Ω), (3.23)

where

β0=2

√

2+4
(ωd(Ω)

v−0

ρ
sup
0

ρinf
0

)2

and ρ
sup
0 =‖ρ0‖∞.

3.4.2 The case of a second order time-harmonic convective equation

As the hydrodynamic equation (2.8) is a second order one, it will be useful to notice that
the following problem

D2ψ

Dt2
=(−iω+v0 ·∇)2ψ= g, in Ω, (3.24a)

ψ=
Dψ

Dt
=0, on Γ−, (3.24b)

can be very simply solved by introducing the intermediary unknown ψ̃ = Dψ/Dt. By
Theorem 3.2, there exists a unique ψ̃∈H(Ω,ρ0v0,Γ−) solution of Dψ̃/Dt=g and a unique
ψ∈H(Ω,ρ0v0,Γ−) solution of Dψ/Dt= ψ̃ (therefore solution of (3.24)) which satisfy the
following estimates:

‖ψ̃‖H(Ω,ρ0v0)≤β0‖ρ0g‖L2(Ω) and ‖ψ‖H(Ω,ρ0v0)≤β0‖ρ0ψ̃‖L2(Ω).

Summing up, we obtain the following estimate:

‖ψ‖H(Ω,ρ0v0)≤
β0

2

ω
‖ρ0g‖L2(Ω). (3.25)

Indeed, by using the definition of the norm ‖·‖H(Ω,ρ0v0), we immediately obtain:

‖ρ0ψ̃‖L2(Ω)≤
1

ω
‖ψ̃‖H(Ω,ρ0v0). (3.26)
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4 Well-posedness of the coupled problem

We will now use the previous results on the time harmonic convective equation to prove,
under some conditions on the mean flow, the well-posedness of the coupled problem
(2.12). We suppose that v0 satisfies condition (3.12).

4.1 Estimates on ψ

Suppose first that u∈H1
0(ΩL)

2 and let us consider the following problem for ψ, which is
part of problem (2.12):

D2
αψ

Dt2
=−2

Dα

Dt
(Bu)−Cu+

1

ρ0
curlf, in ΩL, (4.1a)

ψ=
Dαψ

Dt
=0, on Γ−

L . (4.1b)

Simple considerations show that ψ vanishes in ΩL\(ΩR∪Q+
L ) where we have set

ΩR=
{

(x1,x2); |x1|<R and 0< x2<R
}

∩Ω∞,

Q+
L =

{

(x1,x2); R< x1<R+L and 0< x2<R
}

.

Problem (4.1) can be solved by solving first the problem in ΩR:

D2ψ

Dt2
=−2

D

Dt
(Bu)−Cu+

1

ρ0
curlf, in ΩR, (4.2a)

ψ=
Dψ

Dt
=0, on Γ−

R , (4.2b)

where Γ±
R ={(x1,x2)/±x1 =R and 0< x2 <R}. The solution of (4.2) then provides initial

conditions on Γ+
R (which is the inflow boundary of Q+

L ) to compute ψ in Q+
L , which is a

solution of the following homogeneous equation (since B, C, and f are supported in ΩR)
with constant coefficients:

D2
αψ

Dt2
=
(

−iω+αv∞

∂

∂x1

)2
ψ=0, in Q+

L . (4.3)

By linearity, the solution ψ of (4.2) is given by ψ=ψB+ψC+ψf, where ψB is a solution of

DψB
Dt

=−2Bu, in ΩR, (4.4a)

ψB=0, on Γ−
R , (4.4b)
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and ψC and ψf satisfy the same homogeneous initial conditions on Γ−
R as ψ and the fol-

lowing equations in ΩR:

D2ψC
Dt2

=−Cu and
D2ψf

Dt2
=

1

ρ0
curlf.

Results of subsection 3.4 prove the existence of ψB and ψC (ψf can be treated like ψC) and
the following estimates:

‖ψB‖H(ΩR,ρ0v0)≤2β0‖ρ0Bu‖L2(ΩR), (4.5a)

‖ψC‖H(ΩR,ρ0v0)≤
β0

2

ω
‖ρ0Cu‖L2(ΩR) and

∥

∥

∥

DψC
Dt

∥

∥

∥

H(ΩR,ρ0v0)
≤β0‖ρ0Cu‖L2(ΩR). (4.5b)

Then ψB and ψC can be extended in Q+
L by solving (4.3):

ψB(x1,x2)=ψB(R,x2)e
i ω

αv∞
(x1−R), R< x1<R+L, (4.6a)

ψC(x1,x2)=
(

ψC(R,x2)+
x1−R

αv∞

DψC
Dt

(R,x2)
)

ei ω
αv∞

(x1−R), R< x1<R+L. (4.6b)

Combining (3.5b), (4.5) and (4.6) and setting γL =ωL/v∞, we finally get (after some cal-

culations using the rough estimate |ei ω
αv∞

(x1−R)|≤1):

‖ρ0ψB‖L2(ΩL)≤
2β0

ω

√

1+
ρ∞

ρinf
0

γL‖ρ0Bu‖L2(ΩR), (4.7a)

‖ρ0ψC‖L2(ΩL)≤
β0

ω2

√

β2
0+2

ρ∞

ρinf
0

γL

(

β2
0+

γ2
L

3|α|2
)

‖ρ0Cu‖L2(ΩR). (4.7b)

4.2 Coercivity condition

The main result that will be proved now is the well-posedness of problem (2.12). We
denote by V the functional space for the fields u:

V=
{

u∈H1(ΩL)
2; u·n=0 on ∂ΩL

}

.

Let us introduce now the operator T , defined from V into L2(ΩL), such that T u=ψB+ψC .
Then the solution ψ of (4.2) is given by

ψ=T u+ψf. (4.8)

By (4.7), T is a bounded operator satisfying:

∥

∥ρ
1
2
0 c0T u

∥

∥

L2(ΩL)
≤ β0

ω

(

K1‖B‖+
K2β0+K3

ω
‖C‖

)

∥

∥ρ
1
2
0 c0∇u

∥

∥

L2(ΩR)
, (4.9)



568 A. S. Bonnet-Ben Dhia et al. / Commun. Comput. Phys., 11 (2012), pp. 555-572

where Ki are dimensionless constants depending only on γL and ρ0, and where the norms

of operators B and C are defined by (the weight ρ1/2
0 c0 will be well-suited in what fol-

lows):

‖B‖= sup
u∈V,u 6=0

∥

∥ρ
1
2
0 c0Bu

∥

∥

L2(ΩR)
∥

∥ρ
1
2
0 c0∇u

∥

∥

L2(ΩR)

and ‖C‖= sup
u∈V,u 6=0

∥

∥ρ
1
2
0 c0Cu

∥

∥

L2(ΩR)
∥

∥ρ
1
2
0 c0∇u

∥

∥

L2(ΩR)

.

Now using (4.8), we can eliminate ψ in problem (2.12) which is then rewritten as follows:
Find u∈V such that:

ρ0
D2

αu

Dt2
−∇α(ρ0c2

0divα u)+curlα

(

ρ0c2
0(curlα u−T u)

)

+divα u∇p0−t∇αu·∇p0 = f+curlα(ρ0c2
0ψf), in ΩL, (4.10a)

curlα u−T u=ψf, on ∂ΩL. (4.10b)

This leads to the following variational form: find u∈V, such that

∀v∈V, a(u,v)+b(u,v)= ℓ(v), (4.11)

where

a(u,v)=
∫

ΩL

ρ0

α1α2

(

c2
0divα udivα v̄+c2

0 curlα ucurlα v̄−(v0 ·∇α)u(v0 ·∇α)v̄
)

−
∫

ΩL

ρ0c2
0

α1
T ucurlα v̄,

b(u,v)=
∫

ΩL

−ρ0ω

α1α2

(

2i(v0 ·∇α)u+ωu
)

· v̄+
∫

ΩR

(

divu∇p0−t∇u ·∇p0

)

v̄,

ℓ(v)=
∫

ΩR

f· v̄+
∫

ΩL

ρ0c2
0

α1
ψf curlα v̄.

Here for the sake of simplicity we have omitted negligible terms (on the boundary at
x2 =R+L) in the definitions of b(u,v) and l(v) using the decreasing behavior of ψ in the
PMLs (see (4.6)).

Theorem 4.1. Suppose v0 satisfies condition (3.12). Problem (4.11) is of Fredholm type if

inf
x∈ΩR

(

1− |v0|2
c2

0

)

>

√
2

Kα

β0

ω

(

K1‖B‖+
K2β0+K3

ω
‖C‖

)

, (4.12)

where the constant Ki are given in (4.9) and Kα=min(1,|α|)min
(

ℜeα,ℜe 1
α

)

.

Proof. Following the proof of Theorem 1 of [3], we will prove that, under hypothesis
(4.12), the bilinear form a(u,v) has a coercive+compact decomposition on V. This proves
the theorem since b(u,v) is clearly compact (i.e., associated to a compact operator on V).

It is established in [3] that ∀u,v∈V:

∫

ΩL

ρ0c2
0

α1α2

(

divα udivα v̄+curlα ucurlα v̄
)

=
∫

ΩL

ρ0c2
0

α1α2
∇αu·∇αv̄+d(u,v)
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with

d(u,v)=
∫

ΩL

(∂(ρ0c2
0)

∂x1

∂u

∂x2
− ∂(ρ0c2

0)

∂x2

∂u

∂x1

)

×v̄−
∫

∂O
ρ0c2

0

[

(u·∇)n×n
]

(n×v̄),

so that d(u,v) is compact. The theorem then requires the existence of a constant δ>0 such
that ∀u∈V:

∣

∣

∣

∫

ΩL

ρ0c2
0

α1α2
∇αu·∇αū− ρ0

α1α2
(v0 ·∇α)u·(v0 ·∇α)ū−

ρ0c2
0

α1
T u curlα ū

∣

∣

∣≥δ
∫

ΩL

ρ0c2
0|∇u|2.

The existence of δ>0 is obtained under hypothesis (4.12) by using (4.9) and the following
inequality:

∣

∣

∣

∫

ΩL

ρ0

α1α2

(

c2
0∇αu ·∇αū−

(

v0 ·∇α

)

u ·
(

v0 ·∇α

)

ū
)

∣

∣

∣≥min
(

ℜeα,ℜe
1

α

)

∫

ΩL

ρ0(c
2
0−|v0|2)|∇u|2.

Thus, the theorem is proved.

Remark 4.1. 1. Coerciveness is obtained for small values of ‖B‖ and ‖C‖, that is for a
slowly varying flow.

2. The right member of (4.12) diverges as ω→0. This is due to the dependence versus
ω of the norm (3.3) which is not appropriate at low frequency. The divergence can be
easily removed by replacing ω in the definition (3.3) by some arbitrary value ω0>ω.

3. Estimates (4.7) can be improved by taking into account the decreasing behavior
in the PMLs, leading to constants Ki, i = 1,2,3, depending only on ρ0, α and v∞, and
therefore independent of ω. As β0/ω is a decreasing function of ω, we see then that
condition (4.12) is easier to satisfy when ω increases.

5 Numerical solution of the coupled problem

5.1 The numerical scheme

Numerical results for the coupled problem can be obtained by combining the Finite Ele-
ment solution of (2.7) and the Discontinuous Galerkin solution of (2.8).

Let Mh be a triangulation [6] of the computational domain ΩL. The construction of
the approximation is based on the following approximate spaces:

Vk
h :=

{

vh∈V; ∀T∈Mh, vh|T ∈ (P k(T))2
}

, (5.1a)

Wk
h :=

{

ϕh∈L2(ΩL); ∀T∈Mh, ϕh|T ∈P k(T)
}

, (5.1b)

where k∈N
∗ and P k(T) is the space of polynomial functions of total degree at most k.

Moreover, for each T∈Mh, we denote by nT the outward unit normal to ∂T and F−
T is

the subset of ∂T where v0 ·nT <0. Finally, F−,i
T is the subset of F−

T corresponding to the

interior faces i.e., ∀F∈F−,i
T , F∩Γ−

L =∅.
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The approximate formulation is then written as follows: find uh ∈Vk
h such that ∀vh ∈

Vk
h ,

ah(uh,vh)+b(uh,vh)= ℓh(vh), (5.2)

where ah and ℓh are defined as the bilinear and linear forms a and ℓ (see subsection 4.2)
by replacing T by an approximate operator Th and ψf by an approximation ψf,h.

The discrete operator Th and function ψf,h are then defined by the successive solution
of the following first order problem:







Dαψ

Dt
= g, in ΩL,

ψ=0, on Γ−
L ,

(5.3)

by using a classical discontinuous Galerkin method [7] well-adapted to take into account
transport phenomena: find ψh∈Wk

h such that ∀φh∈Wk
h and ∀T∈Mh,

aDG,T(ψh,φh)= ℓT,g(φh), (5.4)

where

aDG,T(ψh,φh)=−iω
∫

T

1

α1α2
ψhφ̄hdx+

∫

T

1

α1α2
v0 ·∇αψh φ̄hdx+ ∑

E=T∩Γ−
L

∫

E
|v0 ·nT,α|ψh|Tφ̄hdσ

− ∑
E=T∩T ′

1

2

∫

E∩F−,i
T

(

(v0|T ′ ·nT ′,α)ψh|T ′+(v0|T ·nT,α)ψh|T
)

φ̄hdσ,

with

nT,α=
1

α1|Tα2|T

(

α1|Tn1
T,α2|Tn2

T

)T
and ℓT,g(φh)=

∫

T

1

α1α2
gφ̄hdx.

Now, we define the operator Dh from L2(ΩL) into Wk
h by Dhg=ψh where ψh is the solution

of (5.4). The operator Th is then constructed in the following way:

Th =Dh(−2Buh)+Dh◦Dh(−Cuh). (5.5)

Finally, ψf,h is defined by Dh◦Dh(
curlf

ρ0
).

5.2 Numerical results

We present here a numerical result where the depth function h introduced in subsection
2.1 is defined by:

h(x1)
(

x2
1+(h(x1)+b)2−a2

)

= a2b

and the mean flow is a potential incompressible flow (with a constant density ρ0=ρ∞ and
a constant velocity c0= c∞) given by:

v0(x1,x2)=v∞











1+
a2

x2
1+(x2+b)2

− 2a2x2
1

(x2
1+(x2+b)2)2

−2a2x1(x2+b)

(x2
1+(x2+b)2)2











and ∇p0=−1

2
ρ∞∇(|v0|2),
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where a and b are strictly positive constants such that a < R. This is the potential flow
around a cylinder of center (0,−b) and radius a, and the definition of h is such that Γ∞ is
a stream line of the flow located strictly above the cylinder. As a consequence, v·e1 does
not vanish and condition (3.12) is fulfilled.

Notice that the hypotheses of uniformity of the geometry (h(x1)=0 for |x1|> r) and
of the flow (v0(x)= v∞ for x2

1+x2
2 >R2) are not satisfied for finite values of r and R, but

the variations of h and v0 will be supposed negligible far enough. Also this incompress-
ible flow does not satisfy the state law (2.3), except asymptotically for c0 →+∞, but we
take advantage of its analytical expression (similar expressions for compressible potential
flows do not exist). Here we take:

a=0.5, b=0.1, v∞ =0.4c0, R=3, L=1, α=0.65(1−i).

The frequency is such that ω/c0=4π/3 and we consider a source term f of the following
form:

f=µ∇ϕ+βcurl ϕ, where ϕ(x1,x2)=exp
{

− (x1−xs
1)

2+(x2−xs
2)

2

r2
s

}

.

Figure 3: Real part of u1 and u2.

Figure 4: Real part of ψ f and T u.

Figure 5: Real part of curlu and of curlu−ψ.
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Here we take:
µ=100, β=3, xs

1=−1.5, xs
2=1.05, rs =0.3.

Moreover, we have neglected the term ψC in first approximation to evaluate the proposed
method.

Fig. 3 shows the isovalues of the real part of both components of u in the domain
ΩR. One can observe two kinds of structures, corresponding to acoustic and hydrody-
namic phenomena. The acoustic wave is particularly visible upstream of the source and
partially hidden downstream by the vortices. These ones are mainly produced by the
source and convected along the stream lines of the flow, but we can also notice some
vortices generated by the perturbed part of the mean flow (where Bu takes significant
values) and convected along the rigid boundary. This interpretation is confirmed by the
representation of ψ f and T u in Fig. 4.

Let us recall that we have solved the augmented equation (2.7) instead of (2.4). Equiv-
alence is achieved if curlu=ψ, which can be checked a posteriori as illustrated by Fig. 5
(note the different scales).
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