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Abstract. The study of interactions between a high-power laser and atoms has been
one of the fundamental and interesting topics in strong field physics for decades. Based
on a nonperturbative model, ten years ago, we developed a set of programs to facilitate
the study of interactions between a circularly polarized laser and atomic hydrogen.
These programs included only contribution from the bound states of the hydrogen
atom. However, as the laser intensity increases, contribution from continuum states to
the excitation and ionization processes becomes larger and can no longer be neglected.
Furthermore, because the original code is not able to add this contribution directly
due to its many disadvantages, a major upgrade of the code is required before includ-
ing the contribution from continuum states in future. In this paper, first we deduce
some important formulas for contribution of continuum states and present modifica-
tions and tests for the upgraded code in detail. Second we show some comparisons
among new results, old results from the original codes and the available experimental
data. Overall the new result agrees with experimental data well. Last we present our
calculation of above-threshold ionization (ATI) rate and compare it with a pertuba-
tive calculation. The comparison shows that our nonperturbative calculation can also
produce ATI peak suppression.

PACS: 32.80.Fb, 42.50.Hz, 32.80Rm

Key words: Hydrogen atoms, high-power laser, nonperturbative, photoionization.

∗Corresponding author. Email address: xuwang@sinap.ac.cn (W. Xu)

http://www.global-sci.com/ 756 c©2012 Global-Science Press



L. Yang et al. / Commun. Comput. Phys., 11 (2012), pp. 756-774 757

1 Introduction

The study of interaction between a strong laser field and atoms originated from the per-
turbation theoretical study for two-photon transition by Göeppert-Mayer [1] in 1931.
However, the first experimental observation of atomic multiphoton ionization (MPI) [2,3]
only took place in late 1960 after the laser was invented [4]. In early experiments, laser
intensity (I < 1012W/cm2) was much lower than atomic coulomb field (1016W/cm2).
Therefore, the MPI could be accurately described by Low Order Perturbation Theory
(LOPT) [5–7]. However, LOPT has difficulties in explaining some nonperturbative phe-
nomena such as near-resonant MPI [8], and AC Stark shift of atomic energy levels [9],
which occurs when the laser intensity was sufficiently high. Although the perturbation
theory included higher order perturbation extensions to explain these phenomena, it has
already become necessary to study these phenomena under nonperturbative framework.
In fact, the nonperturbative era for the study of interaction between a strong laser field
and atoms did not truly begin until Above Threshold Ionization (ATI), a nonperturba-
tive phenomenon, was discovered by P. Agostini from studying the interaction between
a laser field and atomic silver [10] in 1979. Since then, many other new nonperturbative
phenomena such as High Harmonic Generation (HHG) [11–14] and Stabilization [15–18]
were discovered. In the past two years, due to the breakthrough of high-power and long-
wave laser techniques [19], Low-Energy Structures (LES) [20, 21], another novel nonper-
turbative phenomenon, was discovered. In addition, the study of atomic behavior in a
field of the ultra-short super intense laser [22–24] recently became possible because of the
development of ultra-short free electron lasers (FELs) in the extreme ultraviolet (XUV) to
hard-x-ray wavelength regime [25,26]. More new nonperturbative phenomena are there-
fore expected to be observed in the near future. Because of all these, we foresee the study
the interactions between high-power lasers and atoms to continue for decades.

Due to the simplicity of the hydrogen atom, there have been some experimental stud-
ies on the interaction of an intense laser with hydrogen atoms [27–31]. Although linearly
polarized lasers, rather than circularly polarized lasers, are typically used in these exper-
iments, the theoretical study of the interactions between circularly polarized lasers and
hydrogen atoms is a basic topic and an important component in strong field physics. The
earliest of such studies using nonperturbative theory is from the Keldysh-Faisal-Reiss
(KFR) type theories based on strong field approximation in 1980s [32]. In the late 1980s,
the Floquet theory was used in those studies [33–35]. In recent years, some theoretical
physicists have directly solved two-dimension (2D) and three-dimension (3D) cases of
the time-dependent Schrodinger equation (TDSE) of hydrogen atoms in an intense circu-
larly polarized laser field [36–39]. We have focused on this study for more than a decade
as well. Based on non-relativistic and dipole approximation, we built a nonperturbative
model for solving the TDSE of hydrogen atom in a circularly polarized laser field [40,41].
Using this model and the Jacobi algorithm, we developed a FORTRAN program (Q1)
with quadruple precision to facilitate this study. Later on, we upgraded Q1 to another
FORTRAN program (Q2) by replacing the Jacobi algorithm with the Givens algorithm
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to reduce calculation time. With code Q1 and code Q2, we performed many studies of
interaction between a circularly polarized laser field and atomic hydrogen, which can be
summarized as follows: with Q1, we studied atomic hydrogen behaviors in a circularly
polarized laser field [42], the ionization process of hydrogen atoms in a circularly po-
larized standing wave [43], and made preliminary interpretations for the Kapitza-Dirac
effect observed in experiment [44]; with Q2, we studied the behaviors of hydrogen atom,
such as excitation and ionization, with respect to intensity of circularly polarized laser
and predicted the nonperturbative phenomenon of non-integral quantum transition [45].

However, there are five main limitations in programs Q1 and Q2 [42–45]. Firstly,
there is an overflow/underflow issue. When it occurs, eigenvalues will be calculated in-
correctly. Secondly, some degenerate eigenvectors may appear under certain conditions.
Due to these degenerate eigenvectors, if transitions between degenerate states occur, it is
impossible to use Q1 and Q2 correctly study the interaction between a laser and atoms.
Thirdly, both algorithms utilized to calculate eigenvalues and eigenvectors in Q1 and Q2
consume too much time. Both Q1 and Q2 are not able to calculate a matrix with an order
of nb×nb, where nb > 2109 (nb = nmax(nmax+1)(2nmax+1)/6), where nmax is the max-
imum principal quantum number of a set of basis vectors. Fourthly, as laser intensity
increases, due to Tunneling Ionization (TI) or even Over Barrier Ionization (OBI) contri-
butions of continuum states in the excitation and ionization processes can no longer be
ignored [46, 47]. However, the effect of continuum states is not taken into account in Q1
and Q2, as only the bound states of hydrogen are considered in the theoretical models
on which the two programs were build. Therefore, our original study for MPI (and ATI)
based on Q1 and Q2 will not be conclusive if laser intensity is too high. Finally, although
these two programs (Q1 and Q2) support high (quadruple) precision and can run on a
supercomputer, they are difficult to troubleshoot and maintain. Also, the code is not
portable because it was written for a supercomputer.

In order to resolve these disadvantages in the second program (Q2), we have tried
a few solutions. First, in the new upgraded code (D), we incorporated an updated im-
plementation of the Bisection algorithm [48]. The number of agreements in the signs of
consecutive members of the leading principal minor Sturm sequence can be counted cor-
rectly in the new implementation of the Bisection algorithm. The overflow/underflow
issue, therefore, disappears. Second, a small constant is employed in the Bisection algo-
rithm of Q2 (see in subsection 3.2). From this perturbative Bisection algorithm, degen-
erate eigenvalues are split slightly among each other so that eigenvectors of these de-
generate energies are different, perpendicular, and therefore eigenvectors are calculated
correctly. Third, we modified the structure of code Q2 and optimized the implemen-
tation of the Bisection algorithm [48] (see subsection 3.1). Our tests show that the per-
formance improved and eigenvalues are able to be calculated from a higher order matrix
(>2109×2109, where nmax=18) of effective Hamilton He. Fourth, we have deduced some
formulas for adding the contribution of hydrogen atomic continuum states in our model
(see subsection 3.2). In the near future, we will incorporate these formulas into our code
so that we can study the contributions from the continuum states. Lastly, we have mod-
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ified Q2 to support double precision (D), which can run on a personal computer (PC)
and possesses good compatibility and portability (see subsection 3.3). Our tests show
that compared with Q2, the precision of results generated with D has not reduced, while
execution speed improved significantly.

The remainder of this paper is organized as follows. Section II briefly introduces
our theoretical model for both the bound states and continuum states of hydrogen atom.
Section III discusses the upgrade and the improvements of the new program D and its
advantages. Section IV reviews the results from this upgraded program and compares
them with those from the original programs (Q1 and Q2) and the experimental result.
Section V provides a summary an outlook.

2 Theoretical model

Contributions from both bound and continuum states need to be considered for the wave
function of a hydrogen atom in a very intense circularly polarized laser field. We leverage
our past research to deduce the required formulas.

Firstly, let us briefly review the past work. In [41] and [42], we provided proof that in
the Coulomb gauge and dipole approximation, the time dependent Schrödinger equation
(TDSE) of a hydrogen atom under effects of both an intense circularly polarized laser field
and Coulomb field can be transformed and written as:

Heψi(r)=Eiψi(r), (2.1)

where

He =
p2

2me
+V(r)− k

me
pzlz+

k

2me
l2
z+

e2 A2

2me
+

eA

me
px+kclz, (2.2)

and ψi(r) is the eigenfunction of He. V(r)=−αh̄c/r is the Coulomb potential of hydrogen
atom, α is the fine structure constant. −e and me are electron charge and mass, k and A are
wave number and the amplitude of vector potential for a circularly polarized laser. p is
the momentum operator of electron, px and pz are the momentum projection operator in
x and z direction. lz is the z component of the orbital angular momentum L for electron.
The eigenfunction ψi(r) can also be expanded in a complete set of basis vectors as:

ψi(r)≈∑
i

Cnlm(i)φnlm(r),ψb
i (r), (2.3)

where bound states φnlm(r) of hydrogen atom are only considered in our previous work
and therefore these basis vectors are not complete. n, l and m are principal, angular,
and magnetic quantum number respectively. In a weak laser field, this approximation
is sufficient, but it is inadequate in an intense laser field. Cnlm(i) is the coefficient of the
expanded basis vectors φnlm(r) and can be obtained through a linear variation method.
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, sign represents a definition operator. φnlm(r) is well known and can be written as:
φnlm(r)=Rnl(r)Ylm(θ,ϕ). Here,

Rnl(r)=
il

(2l+1)!

√

(n+l)!

2n(n−l−1)!

( 2

n

)l+ 3
2 ×rle−

r
n 1F1

(

l+1−n,2l+2,
2

n
r
)

, (2.4)

where 1F1 is confluent hypergeometric function. It is worth mentioning two special cases
for Eq. (2.2):

Case 1) As the laser parameters A = 0 and k = 0, Eq. (2.2) can be simplified as: He =
p2/2me+V(r). The eigenfunction ψi(r) becomes one of the bound states φnlm(r).

Case 2) As the laser parameters A=0 and k 6=0, Eq. (2.2) can be simplified as He=p2/2me+
V(r)−kpzlz/me+kl2

z /2me+kclz. The eigenfunction ψi(r) becomes one of the bound states
φnl0.

These two cases have been utilized-in testing our new upgraded code. Because ψi(r)
is obtained from the wave function of hydrogen atom in an intense laser field by two
unitary transformations (exp(iωlzt/h̄) and exp(−ikzlz/h̄)), the hydrogen atomic wave
function in a laser field can be expanded as:

Ψ(r,t)=e
iω l̂zt

h̄ e−
ikzl̂t

h̄ ∑
i

Cnlm(i)ψ
b
i (r)e

− iEit

h̄

= ∑
E′l′m′

∑
i

Cnlm(i)CE′l′m′(i)φnlm(r)e
− i(Ei−m′h̄ω)t

h̄ e−im′kz. (2.5)

Therefore, the transition probability from the initial state φn′l′m′(r) to the final state φnlm(r)
can be derived by:

Wnlm,n′l′m′ =∑
i

C2
nlm(i)C

2
E′l′m′(i). (2.6)

In addition, under a certain laser intensity (where A and k are fixed), the photoion-
ization rate per unit solid angle and unit time is (details see [42]).

dRµ

dΩ
=

2π

h̄

∣

∣

∣

∣

〈

f 0µ| eA

me

[

px cos(kz)+py sin(kz)
]

+
e2 A2

2me
|i
〉

∣

∣

∣

∣

ρ. (2.7)

Here, |i〉 represents the wave function of in-state

Φ(r)=∑
i

Φb
i (r)=∑

i

exp
(

− ikzlz

h̄

)

ψb
i (r).

When the laser intensity is not sufficient high, the in-state |i〉 can be approximated to
Φ(r) = Φb

i (r) = ψb
i (r) under the long wavelength condition: k ≫ α0, where α0 is Bohr

radius. The number N of absorbed photons is roughly equal to the change of magnetic
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quantum number-µ between the initial ground state and final state of hydrogen atom. µ

is the magnetic quantum number of the final state | f 0µ〉. However, the approximation
of N=−µ is not true, when the laser intensity enough high. ρ= ke/8π3h̄3 is the density
of final state at E f (E f = Ei). Here ke = me

√

2meE f 0 is the electron wave vector, where
E f 0(= Ei−µh̄ω) is the energy of | f 0µ〉. According to the photoionization rate dRµ/dΩ,
the differential cross section dσµ/dΩ can be formulized as:

dσµ

dΩ
=

1

J

dRµ

dΩ
=

A2k

h̄µ0

dRµ

dΩ
. (2.8)

Here, J is the incident photon number per unit time (laser intensity I = ε0 A2k2c3/2). ε0

and µ0 are vacuum conductivity and permeability. The photoionization differential cross
section dσµ(Θ)/dΘ derived from Eqs. (2.7) and (2.8) can be given as:

dσµ(Θ)

dΘ
=

16παυe

h̄2ω

∫ 2π

0

∣

∣

∣

∞

∑
i

αl′Yl′µ(Θ,Φ)
∣

∣

∣

2
×sinΘdΦ. (2.9)

Here, υe =
√

E f 0/h̄ is the velocity of the photoelectron, both (ke,Θ,Φ) and (r,θ,ϕ) are
the spherical coordinates of momentum space and position space, α is the fine structure
constant, and

αl′ =(−i)l′
∫

jl′(ker)Yl′µ(θ,ϕ)×
[

px cos(kz)+py sin(kz)+
1

2
eA

]

Φb
i (r)d~r. (2.10)

The total photoionization cross section σµ (the unit is πα2
0) for photoelectron with mag-

netic quantum number µ can be obtained from Eq. (2.9) as:

σµ =
16α2ke

k ∑
l′=|µ|

∣

∣βl′(i)
∣

∣

2
, (2.11)

where βl′ =αl′/(h̄
√

α0). Moreover, according to integral of Eqs. (2.8) and (2.11), the total
photoionization rate Rµ can be derived by:

Rµ=
8αε2

0 A2kec

πh̄2α2
0

∑
l′=|µ|

∣

∣βl′(i)
∣

∣

2
. (2.12)

The corresponding photoelectron ionization yield for a time period t is

Ne =Rµ×t×NH =
8αε2

0 A2kectNH

πh̄2α2
0

∑
l′=|µ|

∣

∣βl′(i)
∣

∣

2
. (2.13)

Here, NH =π×W2×Tp×c×ρH is the total number of interacting hydrogen atoms, where
Tp is the laser pulse length if a pulsed laser is used, W is the laser beam waist, and ρH is
the effective density of atomic hydrogen.
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Secondly, the above formulas are however not fully valid in a very intense laser field.
In order to obtain the correct the wave function of hydrogen atom in a very intense circu-
larly polarized laser field, we can simply add the continuum states into a set of the basis
vectors {φnlµ(i)} from Eq. (2.3). Thus, we can rewrite the Eq. (2.3) as:

ψi(r)= ∑
nlm

Cnlm(i)φnlm(r)+
∫

∑
E′l′m′

CE′l′m′(i)ϕE′l′m′(r)dE,ψb
i (r)+ψc

i (r). (2.14)

Here ϕE′l′m′ is the continuum state of hydrogen atom. If energy E is discrete, ψc
i (r) =

∑Elm ∆E·CElm(i)ϕElm(r). CE′l′m′(i) and Cnlm(i) are the coefficient of the basis vectors,
ϕE′l′m′(r) and ϕn(E)lm(r), respectively. ϕElm(r)=REl(r)Ylm(θ,ϕ), where

REl(r)=
1

(2l+1)!

l

∏
q=1

(q2+w2)
1
2

[ 1

1−e2πw

w

k

]
1
2 ×(2kr)l+1eikrF(l+1−iw,2l+2,−2ikr). (2.15)

Here, k=
√

2mE and w=1/(α0

√
2mE). Similar to Eq. (2.5) which is based on bound states,

we can derive the wave function of hydrogen atom as:

Ψ(r,t)=∑
i

Cnlm(i)ψi(r)e
−iEit

h̄ eimlωte−
imkz

h̄ +
∫ ∞

0
∑
Elm

CElm(i)ψi(r)e
− iEt

h̄ eimωte−
imkz

h̄ dE. (2.16)

The transition rate from the initial state ϕn′(E′)l′m′(r) to the final state φnlm(r) can therefore
be written as (if energy E is discrete):

Wnlm,n′(E′)l′m′ =∑
i

C2
nlµ(i)C

2
n′(E′)l′m′(i)(∆E)2. (2.17)

Accordingly, the other photoionization formulas can retain the same format if we simply
replace Φb

i (r) with Φb
i (r)+Φc

i (r), where Φc
i (r)=exp(−ikzlz/h̄)ψc

i (r).
Finally, we should also consider the energy cut off and the energy gap (i.e., how to

choose ∆E) to write a computational program practically. In order to correctly incorpo-
rate the contribution of continuum states into Q2 in future, additional formulas need to
be deduced.

The next three sub-sections (subsections 3.1, 3.2 and 3.3) will describe how we im-
proved the calculation for eigenvalues, eigenvectors and the calculation time, respec-
tively. The detailed verifications and advantages of the new program D will be intro-
duced in the following subsections. In the next section, we will discuss the implementa-
tion and testing of the upgrades.

3 The upgrade program and its advantages

Before going into the detailed works for the upgraded program D, we will first briefly in-
troduce the structure of the original code Q2 and the upgraded code D. The left panel of
Fig. 1 shows the flow chart of the code Q2. Its overall process can be described as follows:
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Figure 1.Flowcharts of the codes: Q2 (left) and D (right). 
Figure 1: Flowcharts of the codes: Q2 (left) and D (right).

1) calculating the effective Hamiltonian matrix He of the hydrogen atom in a circularly
polarized laser field, 2) tridiagonalizing the He with the Givens method, 3) calculating
an eigenvalue of the tridiagonal matrix using the Bisection algorithm [49,50], 4) calculat-
ing the corresponding eigenvector using the Thomas algorithm [51] and Givens inverse
transformation, 5) checking whether this eigenvector is needed, and if not going back to
3), otherwise advance to 6), and 6) calculating and outputting some physical results, such
as the photoionization cross section and transition probability. The right panel of Fig. 1
shows the flow chart of the upgraded code D. In Q2, once an eigenvalue is obtained, the
corresponding eigenvector will be calculated immediately. In D, we modified the proce-
dure to first calculate all eigenvalues at once, then all the eigenvectors in order to help
us examine both eigenvalues and eigenvectors. The adjusted flow chart is shown in the
dotted frame of the right panel of Fig. 1.

3.1 Improvements to eigenvalue calculation

The accuracies of eigenvalues directly affect the accuracies of eigenvectors. However,
sometimes eigenvalues cannot be correctly calculated by Q2, leading to inaccurate eigen-
vectors. After we modified code Q2 to use double precision and verified the calculation
of eigenvalues. We performed three validations.

First, we consider the case where both parameters of A and k are 0. In this case, the
effective Hamiltonian He becomes just the standard Hamiltonian of the hydrogen atom.
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Thus, the corresponding eigenvalue is expected as E= α2mec
2/2n2, where n is the prin-

cipal quantum number. However, the value of the quadratic polynomial is sometimes
over the limit of the precision of the parameter in a certain calculation cycle. Therefore,
the number of agreements in sign of consecutive members of polynomial Sturm sequence
cannot be counted correctly in the procedure of the Bisection algorithm [49,50]. The issue
of overflow or underflow will occur and the eigenvalues will be calculated incorrectly.
The relative difference between calculated eigenvalue from Q2 and the expected value
can be in the hundreds. In order to resolve this issue, in the new code D, we replace
the implementation of the Bisection algorithm with an updated one [48]. The calculated
eigenvalues from program D are very close to the expected values. Their relative differ-
ences are as small as 0.04%. We conclude that D behaves properly when parameters A
and k are 0 due to the new implementation of the Bisection algorithm.

Second, we consider the case where the laser parameters are A = 0 and k > 0. For
example, the eigenvalues of He listed in Table 1 are calculated from the code D for k=
1.0×107m−1. The calculated eigenvalues are consistent with our expectations. When
the magnetic quantum number m is 0 and the principal quantum number n is fixed, the
degeneracies of eigenvalues occur for different angular quantum number l. The corre-
sponding eigenvalue is very close to E= α2mec

2/2n2. We conclude that program D can
work well with parameters A= 0 and k> 0. Last, we consider the case where the laser
parameters A> 0 and k> 0. As an example, we computed the eigenvalues of He listed
in Table 2 from programs D and Q2 for the laser wavelength of 10.64µm and nmax = 12.
Table 2 shows that the eigenvalues of He from D and from Q2 are same. We conclude that
program D can also work as expected with parameters A>0 and k>0.

Table 1: The calculated eigenvalues with nmax = 5 and nlm are principal, orbital angular momentum, and
magnetic quantum numbers, respectively.

A=0 A=0, k=0 A=0 A=0, k=0

k=1.0×107m−1 α2mec2/2n2 n l m k=1.0×107m−1 α2mec2/2n2 n l m
-13.61eV -13.60eV 1 0 0 -0.8504eV -0.8500eV 4 2 0
-3.401eV -3.400eV 2 0 0 -0.8504eV -0.8500eV 4 3 0
-3.401eV -3.400eV 2 1 0 -0.5442eV -0.5440eV 5 0 0
-1.512eV -1.511eV 3 0 0 -0.5442eV -0.5440eV 5 1 0
-1.512eV -1.511eV 3 1 0 -0.5442eV -0.5440eV 5 2 0
-1.512eV -1.511eV 3 2 0 -0.5442eV -0.5440eV 5 3 0
-0.8504eV -0.8500eV 4 0 0 -0.5442eV -0.5440eV 5 4 0
-0.8504eV -0.8500eV 4 1 0

Table 2: The calculated eigenvalues of He from the code D and code Q2.

I(1012W·cm−2) D Q2 I(1012W·cm−2) D Q2
1.0 0.3618eV 0.3618eV 3.5 40.75eV 40.75eV
2.3 21.79eV 21.79eV 4.2 54.18eV 54.18eV
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In conclusion, the overflow/underflow issue is successfully resolved in the upgraded
program D. The eigenvalues calculated from D are demonstrated to be correct in three
different cases of laser parameters.

3.2 Improvements to eigenvector calculation

The accuracy of eigenvectors is a key verification because it directly affects physical out-
puts such as photoionization cross section and transition probability. Eigenvector calcu-
lation in Q2 is performed with the Thomas algorithm [51]. As the eigenvalues are well-
separated, the corresponding eigenvectors can be calculated correctly with the Thomas
algorithm. All eigenvectors are should be perpendicular with each other. However, as
some eigenvalues are identical, their corresponding degenerate eigenvectors are almost
the same or parallel. These eigenvectors are therefore incorrect. In order to avoid the
above issue, a small arbitrary constant, ε is employed in the Bisection algorithm of D. Af-
ter this pertubative Bisection algorithm is used, the degenerate eigenvalues are slightly
spread out. If becomes large, the splits among degenerate eigenvalues become large.
As the splits become sufficiently large, degenerate eigenvectors begin to become per-
pendicular to each other while the eigenvalues become worse. In order to balance this,
we study the relationship between and orthogonality of all eigenvectors Omax. Here,
Omax=max{〈p|q〉} represents the maximum value of inner product of any two different
eigenvectors p, and q among all possible eigenvectors. From the left panel of Fig. 2, one
can see that the optimized value of ε is around 10−6, which can only affects the accura-
cies of eigenvalues in the order of 10−6, the orthogonality of all eigenvectors Omax will be
better than 10−6. In order to finalize this conclusion, having chosen ε of 10−6, we have
carefully checked orthogonality of all eigenvectors Omax under different situations. In
Fig. 3, a wide range of nmax is employed, and different laser parameters (A and k) are
used. This figure shows that over all the orthogonalities of all the eigenvectors Omax are
better than 10−6. As a result, we conclude that if ε is set as 10−6, both eigenvalues and

Figure 2: The orthogonality of all eigenvectors (Omax) in terms of a small arbitrary constant ε for nmax=18.
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Figure 3: The orthogonality of all eigenvectors (Omax) as a function of with different laser parameters nmax (A
and k).

Figure 4: The contour plots of |φ100|2 (left) and |ψE=4.65eV| (right) with different z.
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eigenvectors can be obtained with a precision of about 10−6 by employing the pertubative
Bisection algorithm when the eigenvectors are degenerate.

After eigenvectors are calculated correctly by D, the eigenfunction ψi(r) of He (see
Eq. (2.3)) is calculated. As the laser parameters A= 1.8×10−5V·s·m−1 and λ= 1.64µm
and nmax=15, the eigenfunction ψE=4.65eV, which has a largest component of ground state
of hydrogen atom, is calculated with corresponding eigenenergy E=4.65eV. In the pres-
ence of a circularly polarized laser field along Z direction, the ground state (φ100) of a
hydrogen atom will most likely evolve into ψE=4.65eV. From Fig. 4 we can see that the
ground state of hydrogen atom φ11 has a spherical symmetry, but not the eigenfunction
ψE=4.65eV. This means that in the presence of a circularly polarized a field along Z direc-
tion, a hydrogen atom at the ground state will lose its spherical symmetry. The higher the
laser intensity, the more ψE=4.65eV deforms. From this, we conclude that the eigenvectors
calculated by program D are not only correct, but also reasonable in the physical context.

3.3 Improvements to calculation time

The calculation time is another key issue for the upgraded program, and is crucial for us
as we consider adding the contribution from continuum states directly into D. Up to now;
we have presented our work in modifying the original program Q2. The calculation time
has been improved because we have adjusted the structure, algorithms and precision
of the code. For example, using Q2, the calculation for 20 data points with nmax = 18
consumes about one week if without the overflow (or underflow) issue. On the contrary,
using program D, the total run time for 20 data points is only about ten hours, taking
about half an hour per data point nmax = 18 (see Fig. 5). Because the calculation speed
is improved more than one order of magnitude and the overflow/underflow issue is
resolved (the detailed is shown in subsection 3.1), the eigenvalues for the code D can be
calculated from a higher order matrix (>2109×2109) of effective Hamiltonian He.

As an example, using the code D, we calculate photoionization cross section in terms

Figure 5: Calculation time of code D Vs. nmax.
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.The photoionization cross section vs. laser intensity with wavelength of 523nm
Figure 6: The photoionization cross section vs. laser intensity with wavelength of 523nm.

of laser intensity based on Eq. (2.11) (see Fig. 6). Here nmax is set as 20 and is larger than
18 [45]. In Fig. 6, one can see that under high laser intensity the ground state of hydrogen
atom can be ionized and the generated photoelectron is possibly with different magnetic
quantum number µ. There are three ionization mechanisms: Multiphoton ionization
(MPI), tunneling ionization (TI) and over the barrier ionization (OTBI) [52]. The laser
intensity shown in Fig. 6 is ranges from 0.25 to 1.5PW/cm2 (IOTBI=0.14PW/cm2). So the
over-barrier ionization (OTBI) dominated this photoionization process.

Now program D is ready to provide some outputs. In the next section, we will gener-
ate more results from D and analyze them in a physical context.

4 Result and discussion

From the above section, one can see that the upgraded code D not only has higher preci-
sion and reliability for eigenvalues and eigenvectors, but also largely reduces calculation
time. In this section, we will give some physical calculations and compare the calcula-
tions with those from the original codes (Q1 and Q2) and available experimental results.

Firstly, with D, we calculate the differential photoionization cross sections and pho-
toionization rates with different emission angles of photoelectron. If laser intensity is
low enough and the perturbative approximation is valid, the change of magnetic quan-
tum number −µ between initial and final states is approximated to the number N of
absorbed photons. When a hydrogen atom absorbs one photon on average, the total one
photon photoionization differential cross section from Eq. (2.9) can be obtained as:

dσ(Θ)

dΘ
=∑

N

1

N

dσµ=−N(Θ)

dΘ
. (4.1)

Since the corresponding results from Q1 [42] are available but not Q2, using the same
parameters in [42] we calculate dσ(Θ)/dΘ (see Fig. 7) and photoionization rate (see Table
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5n

Figure 7: dσ(Θ)/dΘ as a function of scattering angle Θ for nmax=5.

3) with D, and compare them with those in [42]. From Fig. 7 and Table 3, we can see
that there is same trend for the results from both code D and code Q1. On the other
hand, there are some discrepancies between them. We cannot find good explanations for
this. Possible explanations might be: 1) the code Q1 is our early developed code and its
reliability might not be good; 2) the formulas for the average one photon photoionization
differential cross section are not same in these two codes (we cannot find the formula
in [42]).

Table 3: Photoionization rates (R45◦ ,R90◦ ,R135◦ ) calculated with code D and code Q1 for the ground state
of He at emission angles of 45, 90 and 135 degree, E f 0 is the kinetic energy of photoelectron with magnetic

quantum number µ. Parameters k= 3.32×107m−1, A= 8.89×10−6V·s·m−1 and nmax = 5 are used for the
calculation.

E f 0(eV) R45◦(s
−1) R90◦(s

−1) R135◦(s
−1)

µ D Q1 D Q1 D Q1 D Q1

-2 2.19 2.06 6.9×1013 2.0×1014 4.8×1014 1.0×1015 6.9×1013 1.6×1014

-3 8.75 8.48 2.5×1013 5.7×1012 2.8×1014 4.2×1013 2.5×1013 4.9×1012

-4 15.3 14.9 3.5×1010 7.6×109 8.0×1011 1.1×1011 3.5×1010 6.3×109

-5 21.8 21.3 2.8×105 8.3×104 1.3×107 2.6×106 2.8×105 8.3×104

Secondly, we calculate photoionization cross section from Eq. (2.11) and transition
probability from Eq. (2.6), and compare them with those from length of λ=10.64µm and
nmax = 12 are employed in calculating the photoionization cross section with respect to
laser intensity in both code D and code Q2 (see in Fig. 8). Also, the same laser wavelength
of λ=10.64µm and nmax=18 are employed in calculating the transition probability from
the ground state (100) of hydrogen atom to state (200) and state (21-1) with both D and
Q2 [45] (see in Fig. 9). From the results shown in both Fig. 8 an Fig. 9, one can see that the
calculated results from the two programs agree, differing only by less than 1% code Q2
in [45]. The comparisons show the good reliability of new code D.

Lastly, we try to compare the calculated photoelectron ionization yields of atomic
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Figure 8: Ionization cross sections of µ=0, −1, −2 and −3 as a function of laser intensity calculated by code
Q2 and code D. The laser wavelength of λ=10.64µm and nmax=12 are used for the calculation.

Figure 9: The transition probability Wnlm,100 from the ground state (100) of hydrogen atom to state (200) and
state (21-1) as a function of the laser intensity. The laser wavelength of 10.64µm and nmax=18 is used for the
calculation.

hydrogen from code D with the most recent experimental data. Existing theories show
that there are some little difference ionization rate difference of hydrogen atom in an in-
tense linear polarization laser and circular polarization laser [53]. Especially due to the
lack of circular polarization data, we use the available experimental data of linear polar-
ization [30] to compare with our model and other theories. Using the same parameters
as those in [30] and setting t = Tp and taking the waist radius of the laser beam to be
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Figure 10: Comparison of electron production rates among theoretical and experimental results: solid square
for experimental results (see [30]), dashed curve for the perturbative calculation (see [54]), dash-dot-dotted
curve for the Floquet calculation (see [55]), dash-dotted curve for the Coulomb-corrected Keldysh calculation
(see [56]) and dotted curve for the Keldysh calculation (see [56]) and Reiss (see [32]). Solid curve is for our
work: solid curve for total ionization, solid curve with open circles for the µ =−4 ionization and black solid
curve with open squares for the µ=−3 ionization. In our calculation the laser wavelength 248nm and nmax=20
are used.

W =45µm, we calculate the yield of the photoelectron ionization (see Fig. 10) caused by
the interaction of a circularly polarized laser with hydrogen atoms based on Eq. (2.13)
with the upgraded code. The yield of the photoelectron ionization for all theoretical
calculations and experimental data increases exponentially with the laser intensity in
Fig. 10. The growth of experiment data slows down when the laser intensity is higher
than 30TW/cm2. Overall, our nonperturbative calculation agrees with the experiment
results best. As the laser intensity is greater than 30TW/cm2 and become larger, the
agreement becomes worse due to the overestimation of our calculation. There may be
two reasons. One is the contribution from continuum states for in-state and it cannot be
neglected any more as laser intensity is high enough. The other is the contributions of
laser field effect and coulomb effect for photoelectron [52] and they are also not negli-
gible with high laser intensity. When the laser intensity is higher than 30TW/cm2, it is
necessary to take into account the contributions mentioned above.

In addition, photoionization peak suppression is one of the interesting features of the
Above-threshold ionization (ATI) in the domain of multiphoton ionization of atoms. The
perturbative calculation for atomic hydrogen [58,59] is used as an analogy to explain the
ATI peak suppression effect of Xenon in circularly polarized laser field [57, 59].

Table 4 shows relative ATI rate of atomic hydrogen in an intense circularly polar-
ized laser field with a wavelength of 532nm from the calculation by perturbation theory
model and our nonperturbative theory model. 6+S means the atomic hydrogen absorbs
6+S photons in the multiphoton ionization process (MPI). Here, 6 represents the mini-
mal number of photons for hydrogen atom ionization. In the perturbative calculation [59]
(see column two and three in Table 4), the rate of (6+0) ATI-0 becomes smaller than that
of (6+1) ATI-1 when the laser intensity is around 15TW/cm2. This means the ATI peak
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Table 4: (6+S)-photon ionization of hydrogen atom in a circularly polarized laser field with a wavelength of
532nm, normalized to that of the S=0 peak.

In [59] R6+S/R6 Our model R6+S/R6

6+S 10TW/cm2 15TW/cm2 5TW/cm2 9TW/cm2

6+0 1 1 1 1
6+1 0.892 1.31 0.1234 1.68
6+2 0.113 0.254 2.7E-7 7.0E-6
6+3 0.00723 0.0243 1.4E-13 6.58E-11
6+4 0.000319 0.00161 2.5E-20 2.02E-18

suppression effect occurs at the laser intensity of around 15TW/cm2. According to our
calculation for hydrogen atom (see column four and five in Table 4), the ATI peak sup-
pression effect in domain of multiphoton ionization can also be explained. However
the peak suppression effect occurs at the laser intensity of around 9TW/cm2 other than
15TW/cm2.

5 Conclusions and outlook

During the last decade, we developed a nonperturbative theoretical model and a set of
FORTRAN programs to solve the TDSE of hydrogen atom in a circularly polarized laser
field. We have carried out some calculations with these programs, such as atomic hydro-
gen photoionization in a circularly polarized laser field.

However, these programs have some limitations and therefore need to be upgraded.
In this paper, we present the upgrade process in detail and test for its precision and
reliability. These tests show that the upgraded code not only has high reliability and pre-
cision, but also largely reduces the calculation time. Using this code, we have also done
some comparisons with the original codes and experimental data. All these comparisons
show that the upgraded code is reasonable and our nonperturbative calculation can also
produce the ATI peak suppression effect in domain of multiphoton ionization.

We have been stimulated by many new phenomena in strong field physics for decades.
In the near future, we plan on incorporating contribution of continuum states into the
updated code and extending our study more carefully to some physical processes in a
high-power laser field, such as MPI and ATI. If possible, we would like to explore some
new phenomena such as Stabilization and LES.
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[34] M. Dörr, R. M. Potvliege, D. Proulx and R. Shakeshaft, Phys. Rev. A, 43 (1991), 3729–3740.
[35] R. M. Potvliege, in: Atoms in Intense Laser Fields, ed. M. Gavrila, Academic, New York,

1992, pp. 373.
[36] M. Pont and M. Gavrila, Phys. Rev. Lett., 65 (1990), 2362–2365.
[37] W. Chism, D. I. Choi and L. E. Reich, Phys. Rev. A, 61 (2000), 054702.
[38] D. I. Choi and W. Chism, Phys. Rev. A, 66 (2002), 025401.
[39] M. Boca, H. G. Muller and M. Gavrila, J. Phys. B, 37 (2004), 147.
[40] Q. R. Zhang, Commun. Theor. Phys., 28 (1997), 335.
[41] Q. R. Zhang, Phys. Lett. A, 216 (1996), 125–128.



774 L. Yang et al. / Commun. Comput. Phys., 11 (2012), pp. 756-774

[42] D. Zhang and Q. R. Zhang, Commun. Theor. Phys., 36 (2001), 685.
[43] X. T. Liu and Q. R. Zhang, Commun. Theor. Phys., 41 (2004), 461–464.
[44] C. L. Xiong and Q. R. Zhang, Commun. Theor. Phys., 42 (2004), 891–894.
[45] Q. R. Zhang, Commun. Theor. Phys., 47 (2007), 1017–1023.
[46] J. Grochmalicki, J. R. Kuklinski and M. Lewenstein, J. Phys. B, 19 (1986), 3649–3668.
[47] N. B. Delone, S. P. Goreslavsky and V. P. Krainov, J. Phys. B, 22 (1989), 2941–2945.
[48] W. Barth, R. S. Martin and H. J. Wilkinson, Numer. Math., 9 (1967), 386–393.
[49] J. H. Wilkinson, Numer. Math., 4 (1962), 368–376.
[50] J. H.Wilkinson, in: The Algebraic Eigenvalue Problem, Clarendon University, Oxford, 1965,

pp. 345.
[51] S. D. Conte and C. deBoor, Elementary Numerical Analysis, McGraw-Hill, New York, 1972.
[52] M. Protopapas, C. H. Keitel and P. L. Knight, Rep. Prog. Phys., 60 (1997), 389–486.
[53] J. T. Zhang and Takashi Nakajima, Phys. Rev. A, 75 (2007), 043403.
[54] S. V. Khristenko and S. I. Vetchinkin, Opt. Specktrosk., 40 (1976), 417–432.
[55] S. I. Chu and J. Cooper, Phys. Rev. A, 32 (1985), 2769–2775.
[56] L. V. Keldysh, ZhEksp. Teor. Fiz., 47 (1964), 1945–1957 [Sov. Phys. JETP, 20 (1965), 1307–1314].
[57] P. H. Bucksbaum et al., Phys. Rev. Lett., 56 (1986), 2590–2593.
[58] Y. Gontier and M. Trahin, J. Phys. B, 13 (1980), 4383.
[59] F. Yergeau, G. Petite and P. Agostini, J. Phys. B, 19 (1986), L663.


