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Abstract. Based on the study of two commonly used stochastic elliptic models: I:−∇·
(a(x,ω)·∇u(x,ω))= f (x) and II:−∇·(a(x,ω)⋄∇u(x,ω))= f (x), we constructed a new

stochastic elliptic model III: −∇·
(

(a−1)⋄(−1)⋄∇u(x,ω)
)

= f (x), in [20]. The difference
between models I and II is twofold: a scaling factor induced by the way of applying
the Wick product and the regularization induced by the Wick product itself. In [20], we
showed that model III has the same scaling factor as model I. In this paper we present
a detailed discussion about the difference between models I and III with respect to the
two characteristic parameters of the random coefficient, i.e., the standard deviation σ
and the correlation length lc. Numerical results are presented for both one- and two-
dimensional cases.
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1 Introduction

Stochastic elliptic models are of fundamental importance for the stochastic modeling of
physical and engineering applications [9, 15]. The two commonly studied stochastic el-
liptic models in literature include

Model I: −∇·
(

a(x,ω)∇uI(x,ω)
)

= f (x), (1.1a)

Model II: −∇·
(

a(x,ω)⋄∇uI I(x,ω)
)

= f (x), (1.1b)

where x∈R
d, d=1,2,3, ω indicates randomness, a(x,ω) a non-negative random process

and ⋄ the Wick product. Based on the properties of a(x,ω), models I and II can be adapted
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for different applications. For example, if the random coefficient a(x,ω) is ergodic and
has two wildly separated scales, model I becomes a typical stochastic multi-scale elliptic
model. In this work, we consider a general case, where we assume that a(x,ω) is log-
normal and the underlying Gaussian random process is homogeneous stationary and
ergodicity is not required. For such a set-up, we refer to [1, 2, 6–8, 14] and references
therein for theoretical and numerical studies for model I and [9–11,17–19] and references
therein for model II.

The difference between models I and II is twofold: a scaling factor induced by the way
of applying the Wick product and the regularization induced by the Wick product itself.
It was shown in [20] that the scaling factor is an exponential function of the variance of
the underlying Gaussian random process of a(x,ω). By applying the Wick product in a
different way, a new stochastic elliptic model

Model III: −∇·
(

(a−1)⋄(−1)⋄∇uI I I(x,ω)
)

= f (x) (1.2)

was proposed in [20], whose solution has the same scaling factor as model I. Numerical
experiments showed that for one-dimensional problems the solutions of models I and III
can be very close to each other, which implies that the regularization effect induced by
the Wick product is relatively small.

In this work, we continue the study on the two stochastic modeling strategies based
on the regular product and the Wick product. We will focus on the regularization effect
induced by the Wick product by examining the difference between models I and III with
respect to the standard deviation σ and the correlation length lc of the underlying Gaus-
sian process of a log-normal random coefficient a(x,ω). Asymptotic analysis shows that
the difference between the solutions of models I and III is of second order with respect to
σ, i.e.,

‖uI−uI I I‖∼C(lc)σ
2.

Such a fact is independent of the physical dimension d. Thus model III can provide most
of the information given by model I when σ is relatively small. In particular, when lc goes
to infinity, the constant C(lc) will decay to zero. It is shown that the solutions of models
I and III converge to each other as lc goes to zero, which is a fact that is only true for
one-dimensional problems. Analysis and numerical results also show that the solutions
of models I and III are almost linear with respect to each other in a statistical sense if σ is
relatively small.

This paper is organized as follows: in Section 2 we introduce the weighted Wiener
chaos space, which is a uniform theoretical framework for models I-III. A detailed de-
scription of the three stochastic elliptic models is given in Section 3. We present some
theoretical studies about the difference between models I and III in Section 4. Numeri-
cal results for two-dimensional problems are given in Section 5 followed by a summary
section.
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2 Wiener chaos space

We consider all stochastic elliptic models I-III in the weighted Wiener chaos space [10,13]
since we assume that the random coefficient is log-normal.

Definition 2.1. Let {uk(x)}∞
k=1 be a complete orthonormal basis of the space L2(D) and

Ẇ={Ẇ(h(x)), h∈L2(D)} a zero-mean Gaussian family such that

E
[

Ẇ(h1)Ẇ(h2)
]

=(h1,h2), ∀h1,h2∈L2(D), (2.1)

where D ⊂ R
d, d = 1,2,3, indicates the physical domain and (·,·) the inner product on

L2(D). The (Gaussian) white noise on L2(D) is then defined as the formal series

Ẇ= ∑
k≥1

Ẇ(uk)uk(x)= ∑
k≥1

ξkuk(x), (2.2)

where ξk are independent normal random variables according to Eq. (2.1).

We then define F:=(Ω,F ,P) as a complete probability space, where F is the σ-algebra
generated by the countably many independent identically distributed (i.i.d.) Gaussian
random variables {ξk}k≥1. We define a random vector ξ := (ξ1,ξ2,···). In practice, we
often need to deal with colored noise, where the correlation between two physical points
is taken into account. Such a correlation can be modeled though the smoothed white noise,
which takes the form

Wφ(x,ω)= ∑
k≥1

(uk,φx)ξk, (2.3)

where the function φx(y) introduces correlation through the inner product with uk. For
any two physical points x1,x2∈D, we then have their correlation function as

E
[

Wφ(x1,ω)Wφ(x2,ω)
]

= ∑
k≥1

(uk,φx1)(uk,φx2)=(φx1 ,φx2).

Example 2.1. Let IB(x) be the indicator function, i.e., IB(x)=1, if x∈B; IB(x)=0, other-
wise. Let φx(y)=IB(y−x). We then have a nonzero correlation for two points x1 and x2,
if {y|y−x1∈B}∩{y|y−x2∈B} 6=∅.

Let J be the collection of multi-indices α with α=(α1,α2,···) such that αk ∈N0 and
|α| :=∑k≥1 αk <∞. For α,β∈J , we define

α+β=(α1+β1,α2+β2,···), |α|= ∑
k≥1

αk, α!=∏
k≥1

αk!.

By definition, α>0 if |α|>0 and β≤α if

βk ≤αk for all k≥1.
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If β≤α, then we define
α−β=(α1−β1,α2−β2,···).

We use (0) to denote the multi-index with all zero entries: (0)k = 0 for all k; ǫ(i) is the
multi-index of length 1 and with the single non-zero entry at position i:

ǫ(i)k =

{

1, if k= i,
0, if k 6= i.

Let Hn =Hn(t), n=0,1,2,··· , t∈R, one-dimensional Hermite polynomial of order n:

Hn(t)=(−1)ne
t2

2
dn

dtn
e−

t2

2 . (2.4)

In particular,

H0(t)=1, H1(t)= t, H2(t)= t2−1, H3(t)= t3−3t,··· .

With respect to ξ, we define the collection of stochastic Hermite polynomials Ξ={hα,α∈
J } as follows:

hα(ξ)=∏
k≥1

1√
αk!

Hαk
(ξk).

For any fixed k, the following relation holds

E
[

Hαk
(ξk)Hβk

(ξk)
]

=δαkβk
αk!, E

[

hαhβ

]

=δαβ. (2.5)

Recall the following result.

Theorem 2.1 (Cameron-Martin [5]). The set Ξ is an orthonormal basis in L2(F): if η∈L2(F)
and ηα =E[ηhα], then

η= ∑
α∈J

ηαhα= ∑
α∈J

ηαHα(ξ)√
α!

and E[η2]= ∑
α∈J

η2
α.

Let L2(F;V) denote the collection of square-integrable V-valued random elements,
where V is a separable Hilbert space. By Theorem 2.1, every v∈ L2(F;V) has a unique
representation

v= ∑
α∈J

vαHα(ξ), (2.6)

where

vα =
E
[

vHα(ξ)
]

α!
(2.7)

and
E‖v‖2

V = ∑
α∈J

α!‖vα‖2
V . (2.8)
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Then, given a collection R={rα , α∈J } of uniformly bounded positive real numbers, we
define the space RL2(F;V) as the closure of L2(F;V) in the norm

‖v‖2
RL2(F;V)= ∑

α∈J
rαα!‖vα‖2

V . (2.9)

The space RL2(F;V) is called a weighted Wiener chaos space. In this work, V = H1
0(D)

for the elliptic problems.

Definition 2.2. With respect to the stochastic Hermite polynomials Hα(ξ), α∈J , the Wick
product can be defined as

Hα(ξ)⋄Hβ(ξ)=Hα+β(ξ). (2.10)

The mathematical correspondence between the Wick product and the Malliavin di-
vergence operator for the Skorokhod-Itô integral can be found in [9, 12].

3 Stochastic elliptic models

Let D be a bounded, connected, open subset of R
d, d=1,2,3, with a Lipschitz continuous

boundary ∂D. We consider the following three stochastic PDEs of elliptic type:

Model I: −∇·
(

a(x,ω)∇uI(x,ω)
)

= f (x), (3.1a)

Model II: −∇·
(

a(x,ω)⋄∇uI I(x,ω)
)

= f (x), (3.1b)

Model III: −∇·
(

(a−1)⋄(−1)(x,ω)⋄∇uI I I(x,ω)
)

= f (x), (3.1c)

in D, where homogeneous Dirichlet boundary conditions are satisfied on ∂D for all the
three Eqs. (3.1a)-(3.1c), a(x,ω) is a log-normal random process, f (x) is deterministic for
simplicity and (a−1)⋄(−1)⋄a−1 =1. All three models deal with the noise in the coefficient
a(x,ω). In addition, models II and III replace the regular product with the Wick product.
The difference between models II and III is clearer if the following linear systems are
considered [20]:

Model II:

{

a⋄∇uI I =F,

−∇·F= f (x),
Model III:

{

∇uI I I = a−1⋄F,

−∇·F= f (x).

Thinking of the Wick product as a regularization operation in the probability space,
model I smooths the flux while model III smooths the gradient of u(x,ω). The follow-
ing features of models I-III are observed in [20]:

• E[uI I ] and E[uI I I ] satisfy the following deterministic PDEs

−∇·
(

E[a]∇E[uI I ]
)

= f (x), (3.2a)

−∇·
(

E[a−1]−1∇E[uI I I ]
)

= f (x), (3.2b)

respectively while E[uI ] cannot be described by a deterministic PDE due to the
closure problem.
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• There exists a scaling factor eσ2
between uI and uI I , i.e., uI ∼ eσ2

uI I , where σ is the
standard deviation of the underling stationary Gaussian random process of a(x,ω).

Model III removes the scaling factor eσ2
, which makes uI and uI I I are comparable

for many cases.

In this work, we focus on the difference between uI and uI I I . More specifically, we dis-
cuss such a difference with respect to the two characteristic parameters of the underlying
stationary Gaussian random process of a(x,ω), i.e., the standard deviation σ and the cor-
relation length lc.

3.1 The log-normal field a(x,ω)

The log-normal random field a(x,ω)= e⋄Wφ(x) is defined with respect to the Wick prod-
uct [9]

e⋄Wφ(x)=
∞

∑
n=0

1

n!
W⋄n

φ (x), (3.3)

which also corresponds to the regular log-normal random field as [9]

e⋄Wφ(x)=exp
[

Wφ(x)− 1

2
‖φ‖2

2

]

, (3.4)

where φ∈L2(D) is the function chosen for the smoothed white noise Wφ(x), see Eq. (2.3).

Following are some useful properties of the log-normal random field e⋄Wφ(x):

Theorem 3.1 (see [9]). The following statements hold for the log-normal random field e⋄Wφ(x):

(a) E
[

e⋄Wφ
]

=1.

(b) Var(e⋄Wφ)= e‖φ‖2
2−1.

(c) e⋄Wφ⋄e⋄(−Wφ)=1.

Corollary 3.1. Let a(x,ω)= e⋄Wφ(x). Then

(a−1)⋄(−1)= e−‖φ‖2
2e⋄Wφ(x). (3.5)

Proof. As

a−1(x,ω)=
(

e⋄Wφ(x)
)−1

= e−Wφ(x)+ 1
2 ‖φ‖2

2 = e‖φ‖2
2e⋄(−Wφ(x)),

using property (c) in Theorem 3.1, we conclude the proof.

Thus, for the chosen log-normal random field, the difference between a(x,ω) and

(a−1)⋄(−1) is the scaling factor e−‖φ‖2
2 , which is mainly related to the degree of perturba-

tion as shown by property (b) in Theorem 3.1. More discussions about such a scaling
factor can be found in [20]. Mathematically speaking, the scaling factor comes from the
fact that the regular product and Wick product cannot commute.
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3.2 Karhunen-Loéve expansion

We now establish a connection between the smoothed white noise and the Karhunen-
Loève expansion, which is widely used in practice to approximate colored noise. Assume
that the underlying Gaussian field Wφ(x) has a normalized correlation function

R(x−y)=E
[

Wφ(x)Wφ(y)
]

,

e.g., R(x−y)=e−|x−y|/lc , which is non-negative definite. The eigen-pairs {λi,φi(x)}∞
i=1 of

R(x−y) are defined as

∫

D
R(x,y)φi(y)dy=λiφi(x),

∫

D
φi(x)φi(x)dx=δij. (3.6)

According to the Mercer’s theorem, uk=φk(x) form a complete basis of L2(D).

Let φx(y)=∑
∞
i=1

√
λiφi(x)φi(y). Using Eq. (2.3), it is easy to show that the correspond-

ing smoothed white noise takes the form of the Karhunen-Loève (K-L) expansion

Wφ(x)=
∞

∑
i=1

√

λiφi(x)ξi. (3.7)

Note that

‖φx‖2
2=

∞

∑
i=1

λiφ
2
i (x)=R(0)=1, (3.8)

which is the variance of the Gaussian random field Wφ(x). Using Eqs. (3.7) and (3.8) and
the generating function of Hermite polynomials

est− 1
2 s2

=
∞

∑
n=0

sn

n!
Hn(t), (3.9)

we obtain the explicit Wiener chaos expansion of a log-normal random field

e⋄[Wφ(x)] =exp
[

Wφ(x)− 1

2
‖φ‖2

2

]

=exp
[ ∞

∑
i=1

(ui,φx)ξi−
1

2
(ui,φx)

2
]

= ∑
α∈J

Φα(x)√
α!

hα(ξ), (3.10)

where

Φ(x)=
(

(u1,φx),(u2,φx),···
)

, (3.11)

and (ui,φx)=
√

λiφi(x). For a more general correlation function, e.g., R(x−y)=σ2e−|x−y|/lc ,
which satisfies R(0)=σ2, we only need a small modification (ui,φx)=σ

√
λiφi(x) to make

the above formulas valid. Note that the eigen-pairs {λi,φi(x)}∞
i=1 are subject to the corre-

lation function R(x−y) with σ=1.
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3.3 Uncertainty propagators

Based on Theorem 2.1, models I-III can be transformed into some high dimensional de-
terministic problems, i.e., uncertainty propagators, through a Galerkin procedure in the
probability space. Since we will focus on the discussion of models I and III, we here only
describe their uncertainty propagators. Assume that we have Wiener chaos expansions
of random coefficients

a(x,ω)= ∑
α∈J

aαHα, (a−1)⋄(−1)= ∑
α∈J

âαHα.

We then substitute the Wiener chaos expansions of solutions

uI = ∑
β∈J

uI,βHβ, uI I I = ∑
β∈J

uI I I,βHβ

into models I and III and take the Galerkin projection in the probability space, which
results in the following propagators:

− ∑
α,β∈J

∇·(aα∇uI,β)E
[

HαHβHγ

]

= f (x)δ(0),γ, (3.12a)

− ∑
|α|≤γ

∇·
(

âγ−α∇uI I I,α

)

= f (x)δ(0),γ, (3.12b)

where γ ∈J . To this end, the original stochastic PDEs are transformed to a system of
deterministic PDEs, where Eq. (3.12a) is a coupled PDE system of chaos coefficients uI,α

while Eq. (3.12b) is a decoupled one which is lower triangular, i.e., uI I I,γ only depends
on uI I I,α with α<γ.

Define an operator Aα=−∇·(âα∇). Eq. (3.12b) can be rewritten as






A(0)uI I I,(0)= f , |α|=0,

A(0)uI I I,α =− ∑
β∈J ,0<β≤α

AβuI I I,α−β, |α|>0. (3.13)

Then Eq. (3.13) can be solved in an abstract form










uI I I,(0)=A−1
(0)

f , |α|=0,

uI I I,α =− ∑
β∈J ,0<β≤α

A−1
(0)

AβuI I I,α−β, |α|>0. (3.14)

The uncertainty propagator of model I does not have such a nice property since it does
not have a lower-triangular structure.

4 Compare models I and III

There exist two characteristic parameters for the underlying Gaussian random process:
the standard deviation σ and the correlation length lc. In this section we consider the
difference between models I and III with respect to σ and lc.
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4.1 The difference between uI and uI I I with respect to σ

We first consider the difference between operations of the regular and Wick products for
two random elements in RL2(F;R).

Proposition 4.1. Let g1,g2,g1(∗−⋄)g2 ∈RL2(F;R). Assume that g1 =∑α∈J g1,αHα(ξ) and

g2=∑α∈J g2,αHα(ξ), where g1,α =O(ε|α|) and g2,α =O(ε|α|) and 0< ε<1. Then

‖(g1(∗−⋄)g2)‖RL2(F;R)=O(ε2). (4.1)

Here ∗ denotes the regular product and R is used as a general operator for weighted Wiener chaos
space.

Proof. We first look at the Wick product. According to the definition of Wick product, we
have the Wiener chaos expansion

(g1⋄g2)(0)= g1,(0)g2,(0),

(g1⋄g2)ǫ(i)= g1,(0)g2,ǫ(i)+g1,ǫ(i)g2,(0)

for Hα(ξ) of polynomial order |α|=0,1. For the regular product, we have

(g1∗g2)(0)= g1,(0)g2,(0)+O(εa),

(g1∗g2)ǫ(i)= g1,(0)g2,ǫ(i)+g1,ǫ(i)g2,(0)+O(εb),

where the terms O(εa) and O(εb) are contributions from the higher order terms. We now
identify a and b. It is not difficult to see that with respect to ε, the largest contribution to
the mean is from the terms

g1,ǫ(i)g2,ǫ(i)H
2
ǫ(i)= g1,ǫ(i)g2,ǫ(i)H(0,···,0,2,0,···)+g1,ǫ(i)g2,ǫ(i),

where (0,··· ,0,2,0,···) is a multi-index such that only the i-th component is nonzero.
Since g1,ǫ(i)g2,ǫ(i)=O(ε2), we have a=2. Similarly, we can identify b=3. Then each chaos

coefficient of g1(∗−⋄)g2 contains a factor ε2, which can be taken out. Since the weighted
norm forms a power series with respect to ε, the weights {rα} should depend on the co-
efficients of εα when ε<1. Then we obtain the conclusion. Note here that R is used as a
general operator for weighted Wiener chaos space, which implies that the weights for g1,
g2 and g1(∗−⋄)g2 are possibly different. We refer to [10] for more discussions about the
operator R.

Models I and III correspond to the following two linear systems, respectively

I :

{

∇uI = a−1∗F1,

−∇·F1= f ,
III:

{

∇uI I I = a−1⋄F3,

−∇·F3= f ,
(4.2)
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where ∗ denotes the operation of the regular product. Then the equation for uI−uI I I can
be obtained as

{

∇(uI−uI I I)= a−1∗(F1−F3)+a−1(∗−⋄)F3,

−∇·(F1−F3)=0,
(4.3)

which corresponds to a second order elliptic equation for uI−uI I I as

−∇·
(

a∇(uI−uI I I)
)

=−∇·
(

a∗(a−1(∗−⋄)F3)
)

. (4.4)

Note that we express explicitly the regular products on the right-hand side since the
regular and Wick products do not commute. It is seen that Eq. (4.4) corresponds to model
I while the force term is related to model III through F3.

Theorem 4.1. Assume that F =−∇·(a∗(a−1(∗−⋄)F3)) ∈ RL2(F;H−1(D)) subject to the
weights {rα}. Then there exists a set of weights R̃={r̃α,α∈J }, such that

‖uI−uI I I‖R̃L2(F;H1
0(D))=O(σ2). (4.5)

Proof. It is a technical issue to study the properties of F, since this term is related to both
model I and III. We will present an idea of how to study F and then just focus on the
order of the difference between uI and uI I I with respect to σ. Both models I and III can
be studied by white noise analysis, which is consistent with the weighted Wiener chaos
space approach [14, 17]. Once we identify a proper space RL2(F;H−1(D)) for F, we can
adapt the results in [14] to find the space R̃L2(F;H1

0(D)) in which uI−uI I I exists. Since
in this work we are only interested in the order of ‖uI−uI I I‖R̃L2(F;H1

0(D)) with respect to

σ, the explicit definition of R̃L2(F;H1
0(D)) is not critical for our goal.

From Eq. (4.2), we know that F3=(a−1)⋄(−1)⋄∇uI I I . We now discuss uI I I,α using the
abstract form (3.14). Using Corollary 3.1 and Eq. (3.10), we have

(a−1)⋄(−1)= e−σ2

∑
α∈J

Φα(x)

α!
Hα(ξ),

i.e.,

âα(x)= e−σ2 Φα(x)

α!
,

where
Φ(x)=

(

σ
√

λ1φ1(x),σ
√

λ2φ2(x),···
)

.

Thus
âα(x)=O(σ|α|).

Let âα(x)≤Cαe−σ2
σ|α|, α∈J . For v̂,v∈H1

0(D), let A(0)v̂=Aαv. We have

e−σ2‖v̂‖2
H1

0 (D)
=(A(0)v̂,v̂)=(Aαv,v̂)=(âα(x)∇v,∇v̂)≤Cασ|α|‖v‖H1

0 (D)‖v̂‖H1
0 (D),
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which results in
‖A−1

(0)
Aα‖≤Cασ|α|.

Thus

‖A−1
(0)Aα‖=O(σ|α|). (4.6)

From Eqs. (4.6) and (3.14), we have

‖uI I I,α‖H1
0 (D)≤ ∑

β∈J ,0<β≤α

‖A−1
(0)

Aβ‖‖uI I I,α−β‖H1
0 (D),

which implies that

‖uI I I,α‖H1
0 (D)=O(σ|α|).

Thus each component of ∇uI I I,α must have a factor σ|α|, i.e., ∂xi
uI I I,α=σ|α|Ci,α(x), 1≤i≤d.

Let F3,i,α be the chaos coefficient of the ith component of F3. Since F3=(a−1)⋄(−1)⋄∇uI I I ,
the definition of Wick product yields that F3,i,α(x)=σ|α| F̃3,i,α(x). From Proposition 4.1, we
know that each Wiener chaos coefficient of a−1(∗−⋄)F3 has a factor σ2 and so does F.
Based on our assumption of F, we have

‖uI−uI I I‖R̃L2(F;H1
0(D))≤C‖F‖RL2(F;H−1(D)),

where C is a general constant. It can be shown that C behaves like eθσ2
, where θ is a

constant independent of σ [14, 16]. We then complete the proof from Proposition 4.1.

From Proposition 4.1 and the proof of Theorem 4.1, we can see that the right-hand
side of Eq. (4.4) takes the form

−∇·
(

a∗(a−1(∗−⋄)F3)
)

=σ2 f̃2(x,ξ)+σ3 f̃3(x,ξ)+··· .

Substituting

a(x,ω)= a0+σa1(x,ω)+σ2a2(x,ω)+···
and the following ansatz of uI−uI I I

uI−uI I I = ũ0(x)+σũ1(x,ξ)+σ2ũ2(x,ξ)+···

into Eq. (4.4) and comparing the coefficients of σi, it is not difficult to obtain that

−∇·(a0∇ũ0)=0,

−∇·(a0∇ũ1)=∇·(a1∇ũ0),

−∇·(a0∇ũ2)=∇·(a2∇ũ0)+∇·(a1∇ũ1)+ f̃2(x,ξ),··· ,

which results in

ũ0(x)= ũ1(x,ξ)=0, ũi(x,ξ) 6=0, i=2,3,··· .
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Thus, uI−uI I I has the following power series expansion with respect to σ

uI−uI I I =σ2ũ2(x,ξ)+σ3ũ3(x,ξ)+··· . (4.7)

Then both the mean and standard deviation of uI−uI I I are of O(σ2) if they exist.
We now look at the autocorrelation function of uI and uI I I , defined as

R(uI ,uI I I)=
E
[

(uI−E[uI ])(uI I I−E[uI I I ])
]

σuI
σuI I I

, (4.8)

where σuI
and σuI I I

are standard deviations of uI and uI I I . We assume here that σuI
and

σuI I I
is positive for any x∈D. Let

uI = û0(x)+σû1(x,ξ)+σ2û
(1)
2 (x,ξ)+σ3û

(1)
3 (x,ξ)+··· ,

uI I I = û0(x)+σû1(x,ξ)+σ2û
(3)
2 (x,ξ)+σ3û

(3)
3 (x,ξ)+··· .

We then have the standard deviations of uI and uI I I as

σuI
=σ

(

σ2
û1
+O(σ)

)
1
2 , σuI I I

=σ
(

σ2
û1
+O(σ)

)
1
2 (4.9)

and
E
[

(uI−E[uI ])(uI I I−E[uI I I ])
]

=σ2σ2
û1
+O(σ3). (4.10)

Thus if σ is small enough, R(uI ,uI I I)≈1, which implies that uI and uI I I are almost linear.

Remark 4.1. The model difference between models I and III is of O(σ2). When σ is
relatively small, model III is able to give most of the information we need from model I.
However, it is much more easier to solve model III than to solve model I due to the fact
that the uncertainty propagator of model III has a lower-triangular structure.

4.2 The difference between uI and uI I I with respect to lc

It is not straightforward to discuss the difference between uI and uI I I with respect to the
correlation length lc, since we are not able to link it explicitly to the Wiener chaos expan-
sion as we did for the discussions of σ. We will mainly focus on the one-dimensional
problems which have an explicit solution, based on which we present some comments
for the high-dimensional problems.

For the one-dimensional problems, we have the following exact solutions for
Eqs. (3.1a)-(3.1c):

Theorem 4.2 (see [20]). Let D = (0,1), a(x,ω) = e⋄Wφ and f (x) ∈ L1(D) is a deterministic
function. Then the exact solutions of models I-III are:

uI = e‖φ‖2
2

{

Ã·
∫ x

0
e⋄(−Wφ(t))dt−

∫ x

0

∫ t

0
f (s)dse⋄(−Wφ(t))dt

}

, (4.11a)

uI I =A⋄
∫ x

0
e⋄(−Wφ(t))dt−

∫ x

0

∫ t

0
f (s)dse⋄(−Wφ(t))dt, (4.11b)

uI I I = e‖φ‖2
2uI I , (4.11c)
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where

Ã=
(

∫ 1

0
e⋄(−Wφ(t))dt

)−1
·
∫ 1

0

∫ t

0
f (s)dse⋄(−Wφ(t))dt,

A=
(

∫ 1

0
e⋄(−Wφ(t))dt

)⋄(−1)
⋄
∫ 1

0

∫ t

0
f (s)dse⋄(−Wφ(t))dt.

4.2.1 Infinite correlation length

This case is the simplest one, since Wφ(x) does not depend on x if the correlation length
is infinitely large. Then ui(x,ω), i= I, II, III take the following forms [20]

uI = eσ2
uI I =uI I I = eσ2

e⋄(−Wφ)∆−1 f (x), (4.12)

where Wφ(x) is independent of x, ∆−1 is the inverse of Laplace operator satisfying the ho-
mogeneous boundary conditions. In other words, uI and uI I I are exactly the same when
Wφ(x) is just a Gaussian random variable and uI I is obviously not a good approximation
of uI due to the exponential divergence.

Note that Eq. (4.12) is obtained directly from the fact that the underlying Gaussian
random process is spatially-independent, which is actually valid for physical dimension
d=1,2,3. If we combined such an observation with Theorem 4.1, we obtain the following
corollary.

Corollary 4.1. Let ‖uI−uI I I‖≤C(lc)σ2 with respect to a proper weighted L2 norm for d=1,2,3.
Then C(lc) goes to zero as lc goes to infinity.

4.2.2 Small correlation length

For a small correlation length, we have the following theorem:

Theorem 4.3. Let

φ(y)=
σ√
lc

I[− lc
2 , lc

2 ]

for the definition of the smoothed white noise Wφ(x), where lc is a constant and can be regarded
as the correlation length. Then for one-dimensional stochastic elliptic problems considered in
Theorem 4.2, we have

lim
lc→0

uI(x)=eσ2
lim
lc→0

uI I(x)= lim
lc→0

uI I I(x)

=eσ2
(

x
∫ 1

0

∫ t

0
f (s)dsdt−

∫ x

0

∫ t

0
f (s)dsdt

)

, a.s.. (4.13)

Proof. We will still use the smoothed white noise to discuss this case. However, instead of
using the Karhunen-Loève expansion which is global in the physical space, we consider
the step functions for the expansion of (smoothed) white noise.
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Let D=(0,1) and Γh be a uniform partition of D, i.e.,

Γh : 0= x0< x1< ···< xn =1,

where xi+1−xi=h=1/n, i=0,··· ,n−1. Define the following step functions:

uk=
1√
h

I[xk,xk+1), k=0,··· ,n−1. (4.14)

It is known that {uk} is a complete orthonormal basis of L2(D) when n→∞, which implies
that the Gaussian white noise on L2(D) can be approximated as

Ẇ=
n−1

∑
k=0

1√
h

I[xk,xk+1)ξk. (4.15)

For the smoothed white noise, we consider a simple smoothing function

φ(y)=
σ√
lc

I[− lc
2 , lc

2 ]
, where 0<σ∈R and ‖φ‖2=σ.

Then the smoothed white noise takes the form

Wφ(x)=
n−1

∑
k=0

1√
h

(

I[xk,xk+1),φx

)

ξk, (4.16)

where we assume that h≤ lc. For any x, we have

E
[

eWφ(x)
]

=E

[n−1

∏
k=0

exp
( 1√

h
(I[xk,xk+1),φx)ξk

)]

=exp
(n−1

∑
k=0

1

2h
(I[xk,xk+1),φx)

2
)

=exp
(n−1

∑
k=0

1

2
(uk,φx)

2
)

=exp
(1

2
‖φx‖2

2

)

=exp
(1

2
σ2

)

, (4.17)

where we use the fact that φx∈span{u0,··· ,un−1}, if n is large enough. It is not difficult to
verify that the properties listed in Theorem 3.1 hold for the smoothed white noise define
in Eq. (4.16).

Consider the finite difference approximation of the following integral

∫ x

0
g(t)e⋄(−Wφ(t))dt= lim

h→0

nx−1

∑
k=0

g
(

ti+ 1
2

)

e
⋄
(

−Wφ

(

t
i+ 1

2

))

δx,

where the function g(t) is bounded on [0,1], nx is an integer and x=nxδx. We take δx= lc,
which implies that e⋄(−Wφ(ti+1/2)) are independent random variables. According to the
strong law of large numbers, we have

1

nx

nx−1

∑
k=0

(

g
(

ti+ 1
2

)

e
⋄
(

−Wφ

(

t
i+ 1

2

))

−E

[

g
(

ti+ 1
2

)

e
−⋄

(

Wφ

(

t
i+ 1

2

))

]

)

→0, a.s.
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as nx→∞, i.e.,

∫ x

0
g(t)e⋄(−Wφ(t))dt→ lim

δx→0

nx−1

∑
k=0

g
(

ti+ 1
2

)

δx=
∫ x

0
g(t)dt, a.s.,

where we use the fact that

E

[

exp
(

−⋄
(

Wφ

(

ti+ 1
2

))

)]

=1.

Thus
∫ x

0
e⋄(−Wφ(t))dt→ x and

∫ x

0

∫ t

0
f (s)e⋄(−Wφ(t))dsdt→

∫ x

0

∫ t

0
f (s)dsdt,

a.s., as δx= lc→0. Using the equality

(

∫ 1

0
e⋄(−Wφ(t))dt

)⋄(−1)
⋄
(

∫ 1

0
e⋄(−Wφ(t))dt

)

=1,

we know that
(

∫ 1

0
e⋄(−Wφ(t))dt

)⋄(−1)
→1, a.s..

For a more general discussion, we consider a equidistant mesh with a step size lc

0= x0< x1< ···< x⌊ x
lc
⌋≤ x⌊ x

lc
⌋+1= x.

Then

∫ x

0
g(t)e⋄(−Wφ(t))dt=

⌊ x
lc
⌋

∑
i=0

∫ xi+1

xi

g(t)e⋄(−Wφ(t))dt

=
(

∑
i≤⌊ x

lc
⌋ and even

+ ∑
i≤⌊ x

lc
⌋ and odd

)

∫ xi+1

xi

g(t)e⋄(−Wφ(t))dt,

where we split the summation into two parts. Since both the correlation length and the
step size is lc,

∫ xi+1

xi
g(t)e⋄(−Wφ(t))dt and

∫ xj+1

xj
g(t)e⋄(−Wφ(t))dt are independent when both i

and j are odd or even. Using the strong law of large numbers, we have

∫ x

0
g(t)e⋄(−Wφ(t))dt→

(

∑
i≤⌊ x

lc
⌋ and even

+ ∑
i≤⌊ x

lc
⌋ and odd

)

∫ xi+1

xi

g(t)dt=
∫ x

0
g(t)dt,

as lc→0.

Remark 4.2. When the correlation length goes to zero, both uI and uI I I converge almost
surely to a deterministic solution, which satisfies the mean of Eq. (3.1c)

−∇·
( 1

E[a−1](x)
∇u

)

= f (x). (4.18)
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This is actually what stochastic homogenization theory tells us for a one-dimensional
problem when the random coefficient is ergodic. Although we do not have the ergodicity
condition here, we see that as the correlation length decreases to zero a small length scale
is introduced and the spatial integral corresponds to the strong law of large numbers,
which satisfies the ergodicity condition. Similarly, the stochastic elliptic equation (3.1a)
will also goes to the homogenized one as lc→0 when the physical dimension d>1. How-
ever E[uI ] and E[uI I I ] will be not the same any more, since the effective coefficient for the
homogenized equation of uI does not take the form of a harmonic mean for d≥ 2 while
E[uI I I ] satisfies Eq. (4.18) for d=1,2,3 [15]. Such a difference is due to the regularization
of the Wick product.

Remark 4.3. In Theorem 4.3 we introduce the correlation length in a particular way
through the indicator function φ(y). Such an assumption can be relaxed and it can be
shown that the random solution uI will converge to the solution of the homogenized
equation (4.18) in the limit of a vanishing correlation length. In [3, 4], some central-
limit-like results were given to quantify such a convergence in distribution for one-
dimensional problems. In this paper, we are more interested in the limits of uI , uI I and
uI I I when the correlation length goes to zero. The generalization of Theorem 4.3 is be-
yond the scope of this paper.

4.2.3 Moderate correlation length

We subsequently look at the cases when the correlation length is moderate. Since no scale
separation can be used, we resort to numerical simulations. For the numerical study, we
choose f (x)= sin(x) as the force term and R(x−y)=σ2e−|x−y|/lc as the correlation func-
tion of the underlying Gaussian random field. We will examine three typical correlation
lengths lc =0.01,0.1,1 in contrast to the computation domain D=[0,1]. For each correla-
tion length, we truncate the K-L expansion such that the smallest eigenvalue is about 1%
of the largest one. Let M be the number of Gaussian random variables in the truncated
K-L expansion. According to our truncation criterion, M = 300,30,6 for lc = 0.01,0.1,1,
respectively. For each lc, we will examine the cases σ = 0.1,0.5,1, which corresponds to
the degrees 10.03%,53.29%,131.08%, respectively, of perturbation of the log-normal coef-
ficients.

Different numerical strategies will be used for the cases M=300,30,6, which are cho-
sen according to several computational issues: the computation cost, the approximation
errors of the Wiener chaos expansions and the difference between uI and uI I I . The com-
putation cost is determined by the polynomial order and the number of random vari-
ables. The approximation errors of the Wiener chaos expansions are determined by the
polynomial order. Since our main interest is the difference between uI and uI I I , we choose
different polynomial orders for different numbers of random variables such that the com-
putation cost is affordable and the difference between uI and uI I I is dominant compared
to the approximation errors of the Wiener chaos expansions. If the number of random
variables is too large such that the computation cost of the Galerkin method for model I
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is prohibitive, we will employ the Monte Carlo approach for the numerical approxima-
tion of model I.
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Figure 1: Statistics of uI and uI I I. lc=1. Left: Mean; Right: Standard deviation.

Case (a): lc=1.

For this case, we use fifth-order Wiener chaos expansion for both model I and III.
In Fig. 1 we plot the statistics of models I and III for different σ. It is seen that for the
one-dimensional problem, the first- and second-order moments of model III agree very
well with those of model I when the degree of perturbation in the random coefficient is
relatively low. However, the statistics of model III can be computed much more efficiently
than those of model I due to the low-triangular structure of the uncertainty propagator
induced by the Wick product, see Eqs. (3.12a) and (3.12b). In Fig. 2, the autocorrelation
R(uI(x),uI I I(x)) is plotted, where we set R(uI(x),uI I I(x)) = 1 at x = 0 and x = 1. It is
seen that a perfect correlation R(uI(x),uI I I(x))≈ 1 is obtained for different degrees of
perturbations. In other words, the relation between uI(x) and uI I I(x) is almost linear. If
we are only interested in the relative change of statistics with respect to x, models I and
III give us almost the same information.
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Figure 2: Correlation coefficient between uI and uI I I. lc=1.
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Figure 3: Statistics of uI and uI I I. lc=0.1. Left: Mean; Right: Standard deviation.

Case (b): lc=0.1.

For this case, we use second-order Wiener chaos expansions for both models I and III.
We plot the statistics of uI and uI I I in Fig. 3 and the autocorrelation between uI and uI I I in
Fig. 4. Similar phenomena are observed as in case (a). For a certain degree perturbation,
the difference between statistics of uI and uI I I is a little bit larger than the corresponding
case in case (a). By noting that for the one-dimensional problem uI and uI I I will converge
to the same limit as lc goes to zero or infinity, it is not surprising that the maximum
difference will be reached when lc is moderate [20].
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Figure 4: Correlation coefficient between u1 and uI I I. lc=0.1.

Case (c): lc=0.01.

For this case, we use the Monte Carlo method to approximate model I and second-
order Wiener chaos to approximate model III. We plot the statistics of uI and uI I I in Fig. 5
and the autocorrelation between uI and uI I I in Fig. 6. Compared to case (b), the corre-
sponding difference between statistics of uI and uI I I decreases since lc becomes smaller.

It is observed that the largest absolute difference between uI and uI I I happens around
x=0.6 for cases (a)-(c). In Fig. 7, we plot, in the log-log scale, the evolution of the differ-
ence between statistics of uI and uI I I at x=0.6 with respect to the degree of perturbation
in the random coefficient. The slopes of all straight lines are 2, which confirms that the
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Figure 5: Statistics of uI and uI I I. lc=0.01. Left: Mean; Right: Standard deviation.

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

x

C
or

re
la

tio
n 

co
ef

fic
ie

nt

 

 

σ=0.1
σ=0.5
σ=1

Figure 6: Correlation coefficient between uI and uI I I. lc=0.01.

difference between the corresponding statistics of uI and uI I I is Cσ2 with C being a con-
stant, as predicted by Theorem 4.1. Apparently C depends on the correlation length lc.
Numerical experiments show that C is around 0.1. The small fluctuation in the right plot
of Fig. 7 for lc = 0.01 is because of the small statistics and the relatively low accuracy of
Monte Carlo simulations.
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Figure 7: Relative difference between the mean and standard deviation of uI and uI I I at x=0.6. Left: Mean;
Right: Standard deviation.
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5 Numerical experiments for two-dimensional problems

For the two-dimensional case, we consider the computation domain D= [0,1]2 and the
force term f (x)=sin(x)cos(y). We assume that the underlying Gaussian random process

is subject to a Gaussian correlation function R(x,y) = σ2e−|x−y|2/l2
c instead of an expo-

nential correlation function used for the one-dimensional case. The reason we choose
the Gaussian correlation function is that the Gaussian correlation function is smooth and
its eigenvalues and eigenfunctions can be computed accurately by a high-order numeri-
cal discretization while the exponential function has explicit formulas of eigenfunctions
for one-dimensional cases [7, 20]. Three correlation lengths lc = 51/2, 0.51/2, 0.051/2 are
examined, for which M = 5,20,100 Gaussian random variables are used, respectively,
in the Karhunen-Loève expansions. We use the Wiener chaos expansion to deal with
lc =51/2, 0.51/2 and the Monte Carlo method to deal with lc =0.051/2 for model I. Almost
all observations are qualitatively consistent with the one-dimensional case. For lc =51/2

and σ = 1, we plot in Fig. 8 the contours of the relative difference between the mean
and standard deviation of uI and uI I I , which are normalized by the maximum absolute
value of the mean or the standard deviation. The maximum relative difference occurs
around the point (0.615397,0.453080), which is 3.25% and 3.24% for the mean and the
standard deviation, respectively. As the correlation length lc decreases, such a relative
difference increases for a certain σ. This is consistent with the fact that for two- and
three-dimensional problems, models I and III have the same solution only when the cor-
relation length is infinite. In Fig. 9 we plot the relative difference between the mean and
standard deviation of uI and uI I I at point (0.615397,0.453080) with respect to σ. The fluc-
tuations that occurs when lc=0.051/2 and σ is relatively small are due to the low accuracy
of the results given by Monte Carlo simulations. It is seen that the slope 2 is obtained,
which verifies that the difference between uI and uI I I is of O(σ2)=C(lc)σ2. The constant
C(lc)≈0.03,0.23,0.55 for the relative difference of the mean and C(lc)≈0.03,0.21,0.53 for
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Figure 8: Contours of the relative difference between uI and uI I I for two-dimensional problems, which are
normalized by the maximum absolute value of the mean and the standard deviation, respectively. lc=51/2 and
σ=1. Left: Mean; Right: Standard deviation.
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Figure 9: Relative difference between uI and uI I I with respect to σ at point (0.615397,0.453080). Left: Mean;
Right: Standard deviation.

the relative difference of the standard deviation, corresponding to lc=51/2, 0.51/2, 0.051/2.
It appears that C(lc) has a limit as lc goes to zero. However, the discussion about such a
limit of C(lc) for two- and three-dimensional problems is beyond the scope of this paper.

6 Summary

In this work, we presented a discussion on the difference between models I and III with
respect to the standard deviation σ and the correlation length lc of the underlying Gaus-
sian random process of the log-normal random coefficient through asymptotic analysis
and numerical experiments. There are several facts which do not depend on the physical
dimension: (1) The difference between models I and III is of second order with respect to
σ, i.e., ‖uI−uI I I‖∼C(lc)σ2, where the constant C(lc) depends on the correlation length.
Note that such a difference is induced by the regularization of the Wick product. (2) When
the correlation length is infinite, models I and III have the same solution. (3) When σ is
relatively small, uI and uI I I are almost linear with respect to each other, i.e., their autocor-
relation function is close to 1. We also have the following fact depending on the physical
dimension: The homogenized equation of model I is the same as the mean equation of
model III only when d=1.

There are several open questions related to this work: (1) The constant C(lc) needs to
be quantified, especially for two- and three-dimensional problems. For one-dimensional
problems, C(lc) goes to zero as lc goes to zero or infinity. For two- and three-dimensional
problems, C(lc) goes to zero when lc goes to infinity and the limit of C(lc) as lc goes to zero
needs more clarification. (2) We have seen that uI and uI I I can be highly correlated. Such
a perfect correlation provides a sufficient condition for us to use uI I I as a control variate
for variance reduction when the Monte Carlo method is employed for uI . (3) Since uI I I

provides a second-order approximation of uI with a relatively small computation cost, its
stiffness matrix can be a good candidate to serve as a preconditioner when the stochastic
Galerkin projection method is employed for uI .
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