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Abstract. In this paper we study Bénard-Marangoni convection in confined contain-
ers where a thin fluid layer is heated from below. We consider containers with circu-
lar, square and hexagonal cross-sections. For Marangoni numbers close to the critical
Marangoni number, the flow patterns are dominated by the appearance of the well-
known hexagonal convection cells. The main purpose of this computational study is
to explore the possible patterns the system may end up in for a given set of parameters.
In a series of numerical experiments, the coupled fluid-thermal system is started with
a zero initial condition for the velocity and a random initial condition for the temper-
ature. For a given set of parameters we demonstrate that the system can end up in
more than one state. For example, the final state of the system may be dominated by a
steady convection pattern with a fixed number of cells, however, the same system may
occasionally end up in a steady pattern involving a slightly different number of cells,
or it may end up in a state where most of the cells are stationary, while one or more
cells end up in an oscillatory state. For larger aspect ratio containers, we are also able
to reproduce dislocations in the convection pattern, which have also been observed ex-
perimentally. It has been conjectured that such imperfections (e.g., a localized star-like
pattern) are due to small irregularities in the experimental setup (e.g., the geometry
of the container). However, we show, through controlled numerical experiments, that
such phenomena may appear under otherwise ideal conditions. By repeating the nu-
merical experiments for the same non-dimensional numbers, using a different random
initial condition for the temperature in each case, we are able to get an indication of
how rare such events are. Next, we study the effect of symmetrizing the initial condi-
tions. Finally, we study the effect of selected geometry deformations on the resulting
convection patterns.
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1 Introduction

We consider Bénard-Marangoni convection in confined containers where a thin fluid
layer is heated from below. This problem has previously been studied extensively, both
experimentally as well as computationally. An intriguing feature of this problem is the
formation of hexagonal convection cells from random initial conditions; see [2, 17, 22].

It has been found that the onset of convection can originate from two different effects;
it can be caused by buoyancy effects due to the fact that the density is a function of the
temperature, or it can be due to variations in the surface tension, i.e., thermocapillary
forces. Both effects can also be present at the same time. In fact, the concurrent presence
of the two effects was a source of confusion for years. Bénard himself had an incorrect
interpretation of which effect was the dominant one in his original experiments [2], which
lead to Rayleigh’s subsequent stability analysis also being done under the assumption of
buoyancy-driven convection [34]. It took several decades before this misunderstanding
was cleared up; see [8, 32]. It has also later been shown [3] that buoyancy forces induce
rolls in a shallow layer with a free upper surface when the Marangoni number is zero.

The benchmark experiments in later years have been those of Koschmieder and Prahl
[24]. In his monograph [22], Koschmieder gives a comprehensive overview of the prob-
lem, both from a theoretical and experimental point of view.

Ramon et al. [33] investigated the pattern formation predicted for small aspect ratio
containers. They obtained results that confirmed the predictions made by Rosenblat et
al. [35] based on linear stability theory.

Yu et al. [43] studied the pattern formation computationally using a least-squares
finite-element-based method. Their focus was on reproducing the experimental results
of Koschmieder [22]. They obtained results which were in good agreement, both at the
qualitative level, reproducing the patterns from the experiments, as well as predicting
the critical Marangoni numbers. Their simulations were started with an initial condition
consisting of a superposition of all Fourier modes that were resolved on their grids.

Dauby et al. [14] used a spectral Tau method to determine the critical Marangoni num-
ber, as well as the convective pattern at the threshold. The simulations were performed
for rectangular containers with rigid walls, with the aspect ratio as the main parameter.
The influence of a non-vanishing gravity and a non-zero Biot number at the free sur-
face was examined. The authors showed that the convective pattern above the threshold
may differ substantially from the pattern predicted from linear stability theory due to the
presence of the rigid walls. In a follow-up study [15] the linear instability in circular con-
tainers were investigated. The authors numerically confirmed the principle of “exchange
of stabilities”.

In a more recent study [30], Medale and Cerisier investigated numerically the con-
vection patterns in containers of various shapes and sizes using a finite volume method.
They also found results which were in very good agreement with the experimental results
from [24].

Bjøntegaard and Rønquist [7] studied numerically the effects of a deformable free
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surface using a high order spectral element method. The deformations were found to
be small with an amplitude varying linearly with the capillary number. This is in good
agreement with the analysis done in [37]. The flow pattern was found to be mostly un-
affected by the deformation, which means that the errors incurred by modelling the free
surface as flat can be ignored for applications considering pattern formations. This con-
firms the theoretical results from several analyses, such as those found in [16, 25, 38].

As previously mentioned, the flow tends to organize in hexagonal cells for Marangoni
numbers close to the critical number. Since a linear analysis cannot predict the shape of
the cells, Cloot and Lebon performed a nonlinear analysis in an attempt to explain why
the hexagonal shape seems to be preferred [13]. They investigated how different cell
structures (triangular, square, pentagonal, hexagonal) behave with respect to perturba-
tions. They found that indeed only a hexagonal flow pattern is stable with respect to
perturbations of other shapes. If the triangular, square or pentagonal cells were per-
turbed with a hexagonal pattern, the original pattern eventually broke down and the
system evolved into a new configuration which was dominated by hexagonal cells. This
seems to confirm that in the supercritical regime, where instabilities have been triggered,
we would expect a flow dominated by hexagonal cells, possibly with a few exceptions
near the boundaries where wall effects play a significant role, and this is exactly what
is observed in most experiments and computations. It turns out that this is only part of
the overall picture. Nitschke and Thess showed experimentally [31] the existence of a
secondary instability for large temperature differences. This instability seems to break
the stability of the hexagonal cells and instead drives the flow towards a pattern domi-
nated by square cells. Their findings were numerically confirmed in a DNS performed
by Bestehorn [4]. He was able to show that this instability is only present for a finite
Prandtl number, and that the strength of the secondary instability increases for decreas-
ing Prandtl numbers.

Other deviations from a hexagonal pattern are dislocations observed experimentally
even in the weakly supercritical regime; in this case cells which are pentagonal, square or
even triangular in shape appear; see Fig. 1. Koschmieder et al. briefly comment on this
in [23] where they speculate that the defects are caused by impurities in the experimental
setup, although they were never able to locate any impurities. Cerisier et al. attempted to
get some quantitative data on this through statistical analysis of experimental data in [10]
and from a topological analysis in [11]. They found that the pattern defects follow many
well established topological laws from other physical systems. However, they could not
find any statistically significant influence of the initial conditions on the pattern dynamics
when the initial conditions were seeded with either triangular patterns, square patterns
or pentagonal patterns, reassuring the predictions from [13].

The governing equations for this problem are the incompressible Navier-Stokes equa-
tions coupled with a convection-diffusion equation for the temperature. The solution
(velocity, temperature and pressure) is expected to be of high regularity and thus high
order spatial discretizations [28] should be very attractive to use for this class of ap-
plication. Combined with the solution algorithms recently developed for “extruded”
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Figure 1: Convection cells (top view) formed due to Bénard-Marangoni convection. We observe cells which are
not hexagonal in nature and which locally form a star-like pattern (a dislocation). The experimental result is
taken from [21] and is reprinted here with permission from Wiley.

three-dimensional domains [5], our computational approach helps us to more easily con-
sider larger systems and make it more feasible to perform repeated computations with
different initial conditions. We consider both relatively small as well as medium-sized
containers (aspect ratios up to about 20) with no-slip velocity boundary conditions along
the vertical side walls; several earlier numerical studies have been limited to periodic
boundary conditions in the horizontal direction [3,39]. We intend to see if it is possible to
reproduce defects (or dislocations) in the hexagonal pattern in our computations. To this
end, we excite the system using different random initial conditions for the temperature.
We also examine the effect of imposing selected geometry deformations. The statistical
studies we perform provide us with complementary information compared to a linear
stability analysis. In particular, we get an indication of how likely it is to observe any of
the possible final states of the system.

The outline of the paper is as follows. In Section 2, we present the governing equa-
tions in strong form for the coupled fluid-thermal problem; the corresponding weak form
is given in Section 3. The discretization is briefly outlined in Section 4. In Section 5, we
present numerical results verifying the correctness of the fully discrete model by con-
sidering a number of complimentary test problems. In Section 6, we study the pattern
formation resulting from random initial conditions imposed on the temperature. Several
statistical series of tests are performed in order to demonstrate the possible states the
system may end up in, and also to reproduce dislocations in the patterns which are also
observed experimentally. In Section 7, we consider the effect of using slightly deformed
containers. Finally, in Section 8, we summarize our findings and present our conclusions.



A. M. Kvarving et al. / Commun. Comput. Phys., 11 (2012), pp. 893-924 897

2 Governing equations: strong form

This problem represents a coupled thermal/fluid problem. The governing equations fol-
low from conservation of mass, linear momentum and energy. For an introduction to the
mathematical theory of thermally driven instabilities in fluid layers heated from below,
we refer the reader to Chandrasekhar’s monograph [12].

As mentioned earlier, there are two effects which may be driving the flow. Buoancy-
driven flow is a consequence of the fact that the density, ρ, is a function of the tem-
perature, T. This gives rise to a volumetric body force in the presence of temperature
gradients. Surface-tension-driven flow is due to the fact that surface tension strength,
measured through the coefficient γ, is a function of the temperature, which gives rise to
tangential forces along the free surface in the presence of temperature gradients. In our
linearized model, the surface tension and the density both vary linearly with the temper-
ature

ρ(T)=ρ0 (1−β(T−T0)), (2.1)

γ(T)=γ0(1−τ(T−T0)), (2.2)

where ρ0 and γ0 are the reference values for the density and surface tension at the tem-
perature T0, while β and τ are positive constants. The reference temperature T = T0 is
imposed on the bottom surface. At the top surface we assume that, in the absence of con-
vection, the temperature is held at a constant value T=T1. Furthermore, we introduce Θ,
the deviation of the temperature from a linear profile between T=T0 at the bottom and
T=T1 at the top, i.e.,

T(x,t)=T0−
∆T

d
x3+Θ(x,t) , (2.3)

where d is the height of the container and ∆T=T1−T0; see Fig. 2.

Introducing the velocity u=(u1,u2,u3) and the pressure p, the governing equations
can be expressed as

∇·u=0, in Ω, (2.4)

ρ0
Du

Dt
−µ∇2u+∇p= gρ(T)e3 , in Ω, (2.5)

ρ0c
DT

Dt
−k∇2T=0, in Ω, (2.6)

where g is the gravity, µ the dynamic viscosity, c the heat capacity, k the thermal conduc-
tivity, e3 the unit vector in the third direction and D/Dt is the total derivative.

Hence, the fluid is modelled as an incompressible fluid, with a buoyancy term arising
from small density variations; see (2.1). This is the well known Boussinesq approximation
[12]. The fluid flow is also coupled to the temperature via the surface tension; see (2.2).
The temperature is coupled to the fluid through the convection term in (2.6).
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(a) cross-section, 192 elements
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(b) 3D geometry

(c) cross-section, 48 elements (d) 3D geometry

(e) cross-section, 192 elements (f) 3D geometry

Figure 2: Some examples of the grids we consider. The cross-sections with their elemental decomposition are
given in the left column. As can be seen in the right column, we here only consider a single layer of spectral
elements in the vertical direction.
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The domain Ω represents the fluid layer. The bottom and top surfaces of the domain
are denoted by ∂Ωb and ∂Ωt, respectively. The top surface is modelled as a flat free
surface. The vertical side walls are denoted as ∂Ωs. Some sample geometries are given in
Fig. 2.

2.1 Boundary conditions

We assume that the bottom surface, as well as the vertical side walls, are all rigid. Hence,
along ∂Ωb and ∂Ωs we impose homogenous Dirichlet boundary conditions for the veloc-
ity,

ui=0, on ∂Ωb∪∂Ωs, i=1,2,3.

Along the top surface ∂Ωt we impose the Marangoni boundary conditions

µ
∂u1

∂x3
=−γ(T)

∂T

∂x1
,

µ
∂u2

∂x3
=−γ(T)

∂T

∂x2
,

u3=0.

The first two equations express continuity of the tangential stress across the free surface
[39], while the last equation is consistent with the fact that the free surface is treated as
flat and stationary.

The temperature is subject to the boundary conditions

∂T

∂n
=−∆T

d
+

∂Θ

∂n
, on ∂Ωt,

∂T

∂n
=0, on ∂Ωs,

T=T0, on ∂Ωb,

where ∂
∂n denotes the derivative in the outward normal direction.

2.2 Treatment of the pressure

Before we proceed with non-dimensionalizing the governing equations, we comment a
bit more on the treatment of the pressure. In the momentum equations the buoyancy
term on the right hand side can be expressed as

ρ0gδi3(1−β(T−T0))=ρ0gδi3+ρ0gδi3β
∆T

d
x3−ρ0gδi3βΘ.

The first two terms can alternatively be expressed as

ρ0gδi3+ρ0gδi3β
∆T

d
x3=

∂

∂x3

(
ρ0gx3+

1

2
ρ0gβ

∆T

d
x2

3

)
δi3.
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We can thus absorb the two terms by defining a modified pressure

p∗ (x,t)= p(x,t)+ρgx3+
1

2
ρ0gβ

∆T

d
x2

3.

This modified pressure has a readily available physical interpretation; it simply includes
the hydrostatic pressure (the term ρgx3) and the contribution from the buoyancy associ-
ated with the linear temperature profile, 1

2 ρ0gβ ∆T
d x2

3. In summary, we have that

− ∂p

∂xi
+ρ0gδi3(1−β(T−T0))=−∂p∗

∂xi
+ρ0gδi3βΘ.

In the following, we drop the superscript ∗ and this modified pressure is assumed.

2.3 Non-dimensionalization

We now proceed with non-dimensionalizing the governing equations; see [41]. For the
spatial coordinates a natural length scale is the height of the container

x′i = xi/d, i=1,2,3.

For time we use the thermal diffusivity time constant,

t′= t/(d2/αT),

where the thermal diffusivity is αT = k/(ρ0c). These two together naturally give us the
velocity scale as the ratio d/(d2/αT)=αT/d, and we non-dimensionalize the velocity as

u′
i =ui/(αT/d), i=1,2,3.

The pressure is non-dimensionalized as

p′= p/
(

µαT/d2
)

,

while the temperature is scaled using the temperature difference ∆T,

T′=T/∆T.

Together with (2.1)-(2.3), the chosen scales give us the governing equations on non-
dimensional form:

∇·u=0, in Ω, (2.7)

1

Pr

Du

Dt
−∇2u+∇p=RaΘe3, in Ω, (2.8)

DΘ

Dt
−∇2Θ=u3, in Ω, (2.9)
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where we have dropped the primes for clarity of presentation. We have introduced the
Prandtl number,

Pr=
ν

αT
,

where ν=µ/ρ0 is the kinematic viscosity, as well as the Rayleigh number,

Ra=
gβ∆Td3

αTν
.

The corresponding velocity conditions on the boundary ∂Ωt can be expressed as

∂u1

∂x3
=−Ma

∂Θ

∂x1
, (2.10)

∂u2

∂x3
=−Ma

∂Θ

∂x2
, (2.11)

u3=0, (2.12)

where Ma is the Marangoni number

Ma=
γ0τ∆Td

µαT
,

and the boundary conditions for the temperature are given as

∂Θ

∂n
=0, on ∂Ωt, (2.13)

∂Θ

∂n
=0, on ∂Ωs, (2.14)

Θ=0, on ∂Ωb. (2.15)

The boundary condition (2.13) corresponds to a zero Biot number; see also [3, 39].
The system is thus parameterized through four non-dimensional numbers: Pr, Ra,

Ma, and Γ, the aspect ratio of the container. Here,

Γ=

√
A

d
,

where A is the cross-sectional area and d is the height of the container.
Finally, we need to specify initial conditions for the temperature and the velocity. We

will return to this shortly.

3 Governing equations: the weak form

We now present the weak formulation of the non-dimensionalized problem (2.7)-(2.9)
subject to the boundary conditions (2.10)-(2.15). We introduce the function spaces Xi,Y
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and Z defined as

X1=X2=
{

v(t)∈H1 (Ω),v(t)=0 on ∂Ωb∪∂Ωs

}
,

X3=
{

v(t)∈H1 (Ω),v(t)=0 on ∂Ωb∪∂Ωs∪∂Ωt

}
,

Y=
{

q∈L2(Ω)
}

,

Z=
{

v(t)∈H1 (Ω),v(t)=0 on ∂Ωb

}
.

The governing equations for the fluid flow can then be expressed as: Find ui(t) ∈ Xi,
i=1,2,3, and p(t)∈Y such that

1

Pr

∫

Ω
vi

(
∂ui

∂t
+u·∇ui

)
dΩ=

∫

Ω

(
−∇ui ·∇vi+p

∂vi

∂xi

)
dΩ+ Iγ,i(vi), ∀vi ∈Xi,

∫

Ω
q∇·u dΩ=0, ∀ q∈Y,

where no summation over repeated indices is assumed. Here Iγ,i, i=1,2,3, represent the
terms due to the Marangoni boundary conditions on ∂Ωt, as well as the buoyancy term
for the third component, i.e.,

Iγ,1(v1)=−Ma
∫

∂Ωt

∂Θ

∂x1
v1dA, (3.1)

Iγ,2(v2)=−Ma
∫

∂Ωt

∂Θ

∂x2
v2dA, (3.2)

Iγ,3(v3)=Ra
∫

Ω
Θv3 dΩ. (3.3)

The temperature problem reads: Find Θ∈Z such that

∫

Ω
v

(
∂Θ

∂t
+u·∇Θ

)
dΩ=

∫

Ω
(−∇v·∇Θ+vu3)dΩ, ∀v∈Z.

4 Discretization

We now discretize the weak form of the governing equations using spectral elements [28].
The geometry is represented using isoparametric elements, i.e., within each element Ωk,
k=1,··· ,K, we represent the physical coordinates using a nodal, tensor-product basis,

xk
i (r1,r2,r3)=

N

∑
l=0

N

∑
m=0

N

∑
n=0

(
xk

i

)
lmn

ℓl (r1)ℓm (r2)ℓn (r3) , i=1,2,3,

where (xi)
k
lmn are the basis coefficients, and ℓp(r) ∈ PN (−1,1) is the one-dimensional

Lagrangian interpolant through the Gauss-Lobatto Legendre points ξq,q= 0,··· ,N, with
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ℓp

(
ξq

)
= δpq. The nodes are first distributed along the edges of the elements, before we

use the Gordon-Hall algorithm to generate the nodal values from the given surface values
[19]. Some examples of the resulting grids used are depicted in Fig. 2. The semi-discrete
equations (discrete in space, continuous in time) can be stated on the form

1

Pr

(
B

du

dt
+Cu

)
+Au=DT p+Iγ, (4.1)

Du=0, (4.2)

B
dΘ

dt
+CΘ=−AΘ+Bu3, (4.3)

where A denotes the discrete Laplacian and B the velocity mass matrix. Note that these
operators are vector operators; in particular they impose different boundary conditions
on the different velocity components. Furthermore, C denotes the discrete (nonlinear)
convection operator, D the discrete divergence operator and DT the discrete gradient
operator. Finally, Iγ is the discrete realization of the integrals given in (3.1)-(3.3).

The semi-discrete equations are now discretized in time using the backward differ-
ence method [18]. A pressure-correction projection scheme is used to split the velocity
and pressure in the momentum equations [20,40,42]. The convection is handled through
an operator-integrating-factor (OIF) scheme [29]. In the simulations presented later we
have used a second order temporal scheme, however, for clarity of presentation we here
present the discrete equations for a first order temporal realization [6]. At each time level
we start by solving three convection problems, one for each velocity component. This
consists of integrating the semi-discrete convection equations

dũi

dτ
=−B−1C(u∗)ũi,

ũi(0)=un
i , i=1,2,3,

from τ=0 to τ=∆t using the classical 4th order explicit Runge-Kutta (RK4) scheme [18].
The convecting velocity field u∗ represents an extrapolant for the velocity in (tn,tn+1); for
a first order realization we simply use

u∗=un.

We need this extrapolant when integrating the three convection problems as we need
values for the velocity between τ = 0 and τ = ∆t which are not available to us at this
point in time. For a first or a second order realization, a zeroth, respectively first, order
extrapolant retain the full temporal order of the overall scheme. This is an application of
the OIF-scheme and the calculation allows us to approximate the total derivative at time
level tn+1. We denote the output from this calculation by ũn+1.

With the convection problems solved, we can move on to solving the momentum
equations. As mentioned earlier we use a velocity-pressure splitting scheme; in particu-
lar, the equations for the velocity is decoupled from the pressure by using an extrapolant
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for the pressure which we denote by p∗. Again, the order of this extrapolant is taken
as one less than the temporal order of the overall scheme. This gives us the following
equations for the velocity,

Hûn+1=
1

Pr∆t
Bũn+1+DT p∗+Iγ,

where p∗ is the pressure extrapolant as discussed earlier, and H=A+ 1
∆t B is the discrete

Helmholtz operator.
The third step in the solution of the momentum equations is correcting the velocity

by projecting it onto the space of divergence-free fields. In practice, this is done through
solving an elliptic problem for the pressure,

E∆p=− 1

Pr∆t
Dûn+1,

where E=DB−1DT is the consistent pressure Poisson operator. We then update the pres-
sure and the velocity through

pn+1= p∗+∆p,

un+1= ûn+1+Pr∆tB−1DT∆p.

The final problem to be solved is the energy equation. Again, we start by solving a
convection problem,

dΘ̃

dτ
=−B−1C(u∗)Θ̃,

Θ̃(0)=Θn,

from τ=0 to τ=∆t using RK4. The output of this calculation is denoted as Θ̃n+1.
With the convection step completed, we can solve the elliptic temperature problem

resulting from the convection-diffusion equation expressed in a Lagrangian framework,

HΘn+1=B

(
un+1

3 +
1

∆t
Θ̃n+1

)
.

Note that the operators H and B are not identical to those considered for the fluid prob-
lem; they are here associated with the scalar temperature field, and temperature bound-
ary conditions are imposed.

At this point we have arrived at new values for the velocity, the pressure and the
temperature at time level tn+1; the solution is advanced forward in time by repeating this
overall procedure.

Initial conditions. As previously mentioned, we need to supply the system with initial
conditions for the velocity and temperature. For the velocity we simply start with all
components exactly equal to zero, i.e.,

u0
1=u0

2=u0
3=0.
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For the temperature we usually start by calculating a random field in the x1x2-plane, and
denote this by Rand(x1,x2). To this end, we use a uniform random number generator to
produce a random number Rand(x1,x2) in the range [0,1], and we associate this number
with the point (x1,x2). We then multiply this random field by a suitable function in the
third direction. This procedure gives the initial condition

Θ0(x1,x2,x3)=0.1·Rand(x1,x2)x3(2−x3).

The function x3(2−x3) is chosen since it is compatible with the boundary conditions in
the third direction, namely

Θ(x1,x2,0)=0,

∂Θ

∂x3
(x1,x2,1)=0.

This initial condition was also used in [30].

Equation solvers. The geometries we consider are of a particular kind; see Fig. 2. Specif-
ically, all cross-sections are invariant in the third direction. This allows us to use the
algorithms developed in [5, 26, 27]. These are specialized algorithms which exploit the
tensor-product structure available in these geometries and these grids, saving us close to
an order of magnitude in computational time compared to not exploiting this feature. In
addition, all our numerical results have been obtained through parallel processing using
a combined MPI/OpenMP implementation [26].

5 Verification

We now perform several tests to confirm that our simulation tools behave as expected.

5.1 Analytic solution and data

First, we solve the three-dimensional Navier-Stokes equations in a cylindrical domain
0 ≤ r ≤ R, 0 ≤ z ≤ d. We use a forcing function compatible with the known analytical
solution (here expressed in cylindrical coordinates)

ur (r,θ,z,t)=
1

5
sin2(πr)sin(θ)sin(2πz)sint,

uθ (r,θ,z,t)=−1

5
sin2(πr)cos(θ)sin(2πz)sint,

uz(r,θ,z,t)=
1

10π
sin(πr)

(
2πcos(πr)+

2

r
sin(πr)

)
sin(θ)(cos(2πz)−1)sint,

p(r,θ,z,t)=sin2(πr)sin(πz)sint.

The difference between the exact and numerical solution is measured in the discrete H1-
norm. The convergence results in Fig. 3 show the expected behavior: first and second
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Figure 3: The left plot depicts the discretization error of the velocity measured in the discrete H1-norm at time
t= 1 as a function of the time step, ∆t, for a first and second order temporal splitting scheme; here, K= 48
spectral elements are used, each of order N=16. We observe the expected first and second order convergence.
The right plot depicts the same error as a function of the polynomial degree, N, for a fixed time step and
a fixed number of elements. We observe the expected exponential convergence. The temporal error is here
subdominant for N<12.

order convergence in time, as well as exponential convergence in space for problems
with analytic solutions and data.

5.2 Verification in a periodic geometry

Here, we follow the example from [39]. We assume an infinite Prandtl number and a
zero Rayleigh number. At steady state this corresponds to the limit of solving the steady
Stokes equations under zero gravity conditions. Hence, we do not have an evolution
equation for the momentum, and we resort to a Uzawa decoupling approach [1] to handle
the momentum equations at each time level. Note that, even though the velocity do
not follow an evolution equation directly, the velocity field will not be constant in time
until we reach a steady state for the temperature field. This is because the two fields
are coupled through the Marangoni boundary conditions on the top of the domain. The
computational domain is given by Ω=(0,lx)×

(
0,ly

)
×(0,d) where

lx

d
=

4π√
3k

,
ly

d
=

4π

k
,

with k=1.9929. Periodic boundary conditions are specified along ∂Ωs. The specified peri-
odicity lengths are compatible with the formation of a single hexagonal cell as predicted
by linear stability theory; see [12, 22, 32].

As our indicator we use the kinetic energy,

Eu =
1

V

∫

Ω

(
u2

1+u2
2+u2

3

)
dΩ,
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(a) Computational domain and ele-
ment decomposition.
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Figure 4: A plot of the energy measure E1/2
u at steady state for different values of the Marangoni number. Our

estimate of the critical Marangoni number is 79.6, while the subcritical regime extends down to Ma=79.1. The
obtained values are in good agreement with previously reported results [9,36,39].

where V is the volume of Ω. The main purpose of this test is to determine the critical
Marangoni number. We first do a calculation for Ma=100, which is well above the pub-
lished critical value. Next, we take the fields we obtain at steady state for this calculation
as initial conditions for new simulations where the Marangoni number is lowered. We
then observe for which Marangoni number the flow vanishes. Linear stability theory
predicts that the critical Marangoni number should be Mac=79.61, but that in the a sub-
critical regime Ma∈ (79.15,79.61), the hexagonal cells should prevail [9, 36]. The results
given in Fig. 4 show that our obtained values are in good agreement with those obtained
in earlier numerical experiments [39], as well as those predicted by linear stability the-
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ory [9,36]. Our estimate of the critical Maragoni number is Ma=79.6, while the subcritical
regime extends down to Ma=79.1. Both of these values are within 1% of the theoretical
values.

5.3 Establishing grid independence

For the fully coupled fluid/temperature problem with rigid walls, we do not have any
quantitative data to compare against, i.e., we cannot do convergence tests to establish
correctness of the code. However, a necessary requirement is that we obtain a grid-
independent solution once all the spatial and temporal features of the solution are re-
solved.

As a test case we consider a circular container with an aspect ratio Γ=8.38. The value
of Γ is chosen slightly above the value which yields a seven cell solution according to [30].
We use a Marangoni number Ma = 105 in order to be sure that we are well above the
critical value. The Rayleigh number used is Ra=48 and the Prandtl number is Pr=890.

Inspired by [30], we consider four metrics for our results. The first is simply the
maximum pointwise temperature in the cylinder

Θmax =max
jkl

Θjkl .

The second is the kinetic energy, Eu, defined earlier, while the third is the “thermal en-
ergy”

EΘ=
1

V

∫

Ω
Θ2dΩ,

where V is the volume of Ω. The final measure is the scaled Nussel number

N u=
1

A

∫

∂Ωt

Θt dA,

where Θt denotes the temperature on the top of the domain.
We integrate the governing equations until a fixed time t f =30. This should be suffi-

cient as the steady state pattern is formed around t f =10. The numerical results are given
in Table 1.

This seems to confirm grid independence of the solution, as well as a tolerance of
10−6 being sufficient. However, an interesting observation is that this is only one of the
final states we have obtained for the same problem. For two of the calculations we also
obtained an eight cell solution (see Fig. 7(b)) instead of a seven cell solution (see Fig. 7(a)).
The results for these two cases are given in Table 2.

Again, it seems that the measures are sufficiently grid independent. In addition, these
tests seem to indicate that, for this geometry and for the chosen non-dimensional num-
bers, there exist more than one final state. We will return to this issue later.

To check that the temporal component of the error also behaves as expected, we per-
form the same integration using a time step half the size used in Table 1. The results are
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Table 1: Different measures of the seven cell final state (Fig. 7(a)). We consider three different grids and three
different tolerances; the same tolerance is used in both the Helmholtz solver and the consistent pressure Poisson
solver. Each simulation is started with a different random initial condition for the temperature. The time step
is ∆t=1/200.

tolerance grid Θmax (Eu)
1
2 (EΘ)

1
2 N u

10−6
N=8, K=48 0.3128 1.9357 0.1093 0.0881

N=12, K=48 0.3128 1.9357 0.1093 0.0881
N=8, K=192 0.3128 1.9358 0.1093 0.0881

10−8
N=8, K=48 0.3128 1.9358 0.1093 0.0881

N=12, K=48 0.3127 1.9358 0.1093 0.0881
N=8, K=192 0.3128 1.9358 0.1093 0.0881

10−10
N=8, K=48 0.3128 1.9357 0.1093 0.0881

N=12, K=48 0.3127 1.9358 0.1093 0.0881
N=8, K=192 0.3128 1.9358 0.1093 0.0881

Table 2: Measures for the two simulations that yielded an eight cell solution (Fig. 7(b)).

tolerance grid Θmax (Eu)
1
2 (EΘ)

1
2 N u

10−8 N=8, K=48 0.3060 1.9557 0.1096 0.0901
10−10 N=8, K=192 0.3061 1.9558 0.1096 0.0901

Table 3: Measures using two different time steps. We have here used K=48, N=12, and a tolerance tol=10−10.

∆t Θmax (Eu)
1
2 (EΘ)

1
2 N u

1
200 0.3128 1.9357 0.1093 0.0881

1
400 0.3128 1.9358 0.1094 0.0882

given in Table 3. We seem to have about four digits of accuracy in the first calculations,
something which fits nicely with the experience from convergence tests for the Navier-
Stokes case. We conclude that the numerical solution also seems to behave as expected
with respect to the temporal integration.

5.4 Secondary instability

As mentioned in the Introduction, a secondary instability in the system has been found,
both experimentally [31] as well as in a DNS [4]. As another indication of the validity of
our computational tool, we want to see if we can recreate this effect.

The secondary instability is known to kick in for

ǫ=
∆T−∆Tc

∆Tc
=

∆T

∆Tc
−1∼3,

where ∆Tc is the critical temperature difference for convection to occur and ∆T the actual
temperature difference in the system. Since the Marangoni number is linear in the tem-
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perature difference, we have to increase the Marangoni number with approximately a fac-
tor of 4. We do not know the critical Marangoni number / critical temperature difference
precisely. However linear stability theory for a system without walls predicts that the
critical Marangoni number lies somewhere around 79.6. The existence of walls increases
this somewhat. Taking these facts into consideration, we have chosen a Marangoni num-
ber Ma1=105 for the calculations within the primary instability regime, and a Marangoni
number Ma2 = 400 for the calculations within the secondary instability regime. We also
change the Rayleigh number correspondingly since we keep the aspect ratio fixed. Note
that our computational model is strictly valid near the critical Marangoni number since
we assume a zero Biot number (see (2.13)). Hence, this test also represents a test of our
model significantly away from the critical Marangoni number.

As the cells should be square in shape [31], we have focused our attention on square
containers since they should give the most uniform patterns. The results obtained for two
different geometries are given in Fig. 5 and Fig. 6. We clearly observe that the increased
Marangoni number has driven the cells toward a square shape, as predicted.

6 Pattern selection from random initial conditions

Since the parameter space for this problem is quite large, we have focused our attention
mainly on the parameter Γ, the global aspect ratio of the computational domain, and the
effect of the shape of the vessel. In these tests we start each simulation with a random
initial condition for the temperature as described earlier. The majority of the simulations
have been performed with Ra=48 and Ma=105. These values were chosen since they are
well above the critical numbers for our problems, yet well below the supercritical regime
where the secondary instability (which shifts the pattern selection toward square cells) is
expected to dominate. In addition, the availability of experimental data for these values
is quite extensive. All simulations have been performed with Pr=890 which corresponds
to silicon oil. This is also the fluid used in many experiments.

We start by considering a container with a circular cross-section and Γ = 8.38. Our
earlier grid independence study revealed the presence of more than one final state, and
we will now investigate this effect in more detail. To this end, we perform a statistical
study comprising 500 simulations, each starting from a different random initial condition
for the temperature. The results are reported in Table 4 and indicate that we are able to
excite several steady states for the given set of parameters. While the seven cell pattern
seems to be the preferred one (in the sense that the system selects it in the vast majority
of simulations), there are also other possible final states. In 500 simulations, we observe
three possible patterns for a fairly small container.

Our next series of tests involves a hexagonal container with Γ=22. The large aspect
ratio yields convection patterns with more cells, and each simulation is much more time
consuming to integrate until a steady state. Again, we perform many simulations of the
same system, each starting with a different random initial condition for the temperature.
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(a) Primary instability (b) Secondary instability

Figure 5: Two different resulting flow patterns in a square container with Γ=9.3, and Pr=890. The left plot
shows a calculation with Ma= 105 and Ra= 48 which is within the primary instability regime. The right plot
shows a calculation with Ma= 400 and Ra= 182, where a secondary instability, which tends to drive the flow
towards square cells, is dominating.

(a) Primary instability (b) Secondary instability

Figure 6: Two different resulting flow patterns in a square container with Γ=12.0, and Pr=890. The left plot
shows a calculation with Ma= 105 and Ra= 48 which is within the primary instability regime. The right plot
shows a calculation with Ma= 400 and Ra= 182, where a secondary instability, which tends to drive the flow
towards square cells, is dominating.

(a) 7 cell pattern. (b) 8 cell pattern.

Figure 7: Two possible cell patterns obtained at steady state for Ma=105, Ra=48, Pr=890, and Γ=8.38.
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Table 4: Numerical results for a circular container with Γ = 8.38. The non-dimensional numbers are kept at
Ra=48 and Ma=105. We report the number of cells observed at steady state for 500 independent calculations.

No. of cells No. of cases
6 1
7 480
8 19

Most of the simulations ended up in a stationary and very regular pattern with 48 cells.
However, we also found several exceptions.

The first exception is a simulation which ended up in a 52-cell pattern; see Fig. 8. The
second exception is a simulation which ended up in a final state with one of the cells
maintained in a steady periodic (oscillatory) state which was maintained for close to a
thousand units of dimensionless time; see Fig. 9.

Of particular interest, however, are two patterns which ended up with a star defect re-
sembling those observed in experiments; see Fig. 1 for an experimental result and Fig. 10
for our numerical results. Note that the experimental result in Fig. 1 was obtained in a
larger container with a circular cross-section, while our results have been obtained in a
container with a hexagonal cross-section. After each defect appeared, we integrated the
system for a long time and the pattern did not change, indicating that this pattern indeed
represents a possible configuration of the system. It is interesting to note that we are
able to obtain such a dislocation simply through a change of the initial condition. It has
earlier been speculated that such defects are due to impurities in the experimental setup.
However, our numerical result show that such defects may appear even if the geometry
is perfect. Since we are only able to check a limited number of cases, it is difficult to give
a precise estimate for the probability of such defects to occur. In our experiments we ob-
served patterns with defects in 2 out of 250 simulations. Note that while the orientation
of the two patterns are different, we believe they describe the same solution. By rotating
and flipping around the y-axis, we can orientate the rightmost flow pattern the same way
as the leftmost. The flow patterns then look similar to the naked eye; in fact, we found
a maximum pointwise error of less than 1%, measured relative to the maximum temper-
ature. This strongly suggests that the two solutions with dislocations represent a single
possible state the system can settle in (save for rotation and mirroring).

We also mention that we have performed similar tests with other containers, in which
case we did not observe any defects. Overall, this seems to indicate that the appearance
of such defects is rather rare. This also fits well with the experiences from experiments
where the appearance of such defects tend to be an exception rather than the norm.

The Bénard-Marangoni problem we have studied has a rich set of solutions. For the
chosen Marangoni number, Rayleigh number, and Prandtl number, the key sources be-
hind the different patterns we observe are the initial condition for the temperature and
the domain aspect ratio. The number of possible states seems to grow with the aspect
ratio which is only to be expected — the more cells in the pattern the larger the set of
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(a) 48 cells (b) 52 cells

Figure 8: Two different resulting flow patterns in a hexagonal container with Ma=105, Ra=48, Pr=890, and
Γ= 22. The only difference between the two simulations is the random initial condition for the temperature.
The 48-cell configuration appears to be the most common, while the 52-cell configuration is a more exceptional
case.

(a) (b) (c)

(d) (e) (f)

Figure 9: Final oscillatory pattern after long time integration for a hexagonal container with Ma=105, Ra=48,
Pr= 890, and Γ= 22. The overall pattern is shown in (a), while the remaining plots show a close-up of the
pattern near the oscillatory cell at different times during one period.

possible orientations of those cells. We have also investigated the effect of the shape of
the container on the resulting patterns. In Fig. 11 we give the number of cells in the final
patterns for the three container shapes we have considered. We remark that some of the
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(a) Dislocation 1 (b) Dislocation 2 (c) Difference

Figure 10: Two simulations which exhibit a ’star’ defect resembling those which have been occasionally observed
in experiments; see Fig. 1. We have used Ma=95, Ra=48, Pr=890, and Γ=22.0. The simulations were started
from random initial conditions for the temperature. The first two plots show the final patterns after long time
integration, while the last plot shows the difference between the two solutions after a 90 degree rotation and
then mirroring. The maximum pointwise difference between the two independent cases, measured relative to the
maximum pointwise temperature, is less than 1%, indicating a fixed dislocation pattern whenever a dislocation
occurs. Only two out of 250 simulations resulted in dislocations in the otherwise regular hexagonal pattern.
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Figure 11: In the left figure we give the number of cells in the final pattern as a function of Γ, the global aspect
ratio of the domain, for circular, hexagonal and square containers. As expected, the number of cells seems to
scale approximately quadratically with Γ. In the right figure we give the average area of the cells, relative to the
area of a single cell in a periodic, idealized configuration [39], as a function of Γ. The cells seem to be mostly
smaller in a container with walls compared to a periodic, idealized configuration.

simulations yield a steady periodic (oscillatory) state for one or more cells after long time
integration. In these cases we have taken the number of cells to be the largest number
achieved during the oscillations. Our results indicate that the number of cells is fairly
invariant with respect to the shape of the container.

Symmetrizing the initial conditions. In all the tests we have considered so far we have
started with random initial conditions for the temperature; this should allow the system
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to select the most likely final pattern. It is also of interest to see if we are able to force
the system into selecting different patterns. To this end, we perform selected tests where
we impose initial conditions with inherent symmetries. We limit our attention to square
and circular geometries. We choose the initial condition for the temperature with either
quadrant or octant symmetry, while still being random within each quadrant/octant. In
the vast majority of these tests, the enforced symmetries eventually broke down, and
the system reconfigured itself into a pattern which did not exhibit the initially enforced
symmetries. However, even though the initially enforced symmetry breaks down, the
steady state pattern still appears to be influenced by the initial condition. In our compu-
tations the system often ended up in a pattern that differed from what we obtained if we
started the system from random initial conditions without any symmetries enforced. An
example of such a situation can be found in Fig. 12. This might seem to contradict the

(a) No symmetries. (b) Quadrant symme-
tries.

(c) Octant symmetries.

Figure 12: Resulting patterns from simulations where we enforce (a) none, (b) quadrant, or (c) octant symme-
tries on the initial conditions for the temperature. The final patterns are quite different, an indication that we
are able to influence the pattern selection process through our choice of initial condition.

(a) 7 cell pattern. (b) 9 cell pattern.

Figure 13: Steady state patterns for two simulations with Ma= 105, Ra= 48, Pr= 890, and Γ= 8.5. The left
figure shows the pattern when we start from completely random initial conditions, while the right figure shows
the pattern when we start from random initial conditions with octant symmetries. This symmetry is never
broken during the simulation; the system evolves into a pattern consisting of a single cell in the middle enclosed
by 8 cells around, a consequence of the original octant symmetry.
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findings in [10], where they found no statistically significant influence of seeding the ini-
tial condition with various patterns (triangular, square, hexagonal). However, we believe
this is not the case. In experiments there will inevitably be asymmetries introduced due
to imperfections, and these asymmetries are what makes the system reconfigure itself.
However, under the more “ideal” conditions offered by our numerical simulations, we
also see breakdown of the initial symmetries imposed, but are able to influence the pat-
tern selection statistics. Whether or not this is only valid in a finite time frame is an issue
we have not been able to fully resolve through our computations. In the literature, exper-
iments have been reported to have been running for days before the system eventually
reconfigured itself [10]. Running such long simulations is outside the scope of our cur-
rent implementation. While the breakdown of the initially imposed symmetries seems to
be a general trend, we have observed exceptions.

Fig. 13 shows a rare case where a pattern compatible with the enforced octagonal
symmetry seems to exist. If we use a slightly larger or slightly smaller container, the
octagonal symmetry does break down, another indication that such configurations are
highly unstable and that they are only maintainable for very specific container sizes (i.e.,
specific values of Γ).

In Table 5 we report the results from 500 simulations for the specific case Γ = 8.38
discussed earlier, with and without enforced symmetries in the initial condition for the
temperature. We observe that the statistics appear to be the same in either case, i.e., the
number of cases ending up in a 7-cell pattern or in an 8-cell pattern are almost identical.
In Table 6 we have performed the same test, but now using a global aspect-ratio Γ=8.5.
For this slightly larger container, we obtain the additional 9 cell solution as shown earlier.
However, it also seems that the occurrence of the 8 cell solution has increased somewhat.
These are strong indications that symmetries in the initial condition may, in fact, influence
the pattern formation for very specific container sizes.

Table 5: Numerical results for a circular container with Γ = 8.38. The non-dimensional numbers are kept at
Ma = 105, Ra = 48, Pr = 890. We report the number of cells observed at steady state for 500 independent
simulations where we start with completely random initial conditions for the temperature (second column) and
with random initial conditions with enforced octagonal symmetries (third column).

No. of cells Completely random Symmetrized
7 481 480
8 19 20

Table 6: Numerical results for a circular container with Γ = 8.50. The non-dimensional numbers are kept at
Ma = 105, Ra = 48, Pr = 890. We report the number of cells observed at steady state for 500 independent
simulations where we start with completely random initial conditions for the temperature (second column) and
with random initial conditions with enforced octagonal symmetries (third column).

No. of cells Completely random Symmetrized
7 468 424
8 32 73
9 0 3
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7 Results in selected deformed containers

We now turn our attention to pattern selection in slightly deformed containers. As men-
tioned earlier, it has been theorized [21, 23] that small geometric irregularities may have
caused the (rare) dislocations observed in otherwise regular convection patterns. We will
here not consider very small geometric irregularities for two reasons: (i) because of the
significant computational challenges associated with resolving small geometric details;
and (ii) because our numerical results have shown that such dislocations can occur in
”ideal” containers. Instead, we assume that the deformations are nontrivial and fairly
regular. In the following, the deformations along the bottom surface are taken to be lo-
calized Gaussians,

z0 (x,y)= ae
(x−x0)

2
+(y−y0)

2

σ2

where (x0,y0) is the center, σ the standard deviation and a the amplitude. See Fig. 14 for
an illustration identifying the parameters involved.

σ
(xc, yc)
a

(a) Side view

σ
(xc, yc)

(b) Top view

Figure 14: A cylindrical container with a Gaussian bump at the bottom. (a) Side view of the bump centered
at (xc,yc) with standard deviation σ. We have here zoomed in on the bump to highlight the definition of the
parameters. b) Top view showing a sample placement of the bump.

In the first series of tests, we choose a deformed version of the circular container
considered earlier; see Table 4 and Fig. 7. We now put a small local bump with a=0.05, σ=
0.2 centered at (−2,−2) at the bottom. This seems to have fairly large consequences for
the stability of the resulting system. While all the 100 simulations performed without the
bump rapidly converged to a final stable flow pattern, most of the simulations now end
up in a steady-periodic (oscillatory) state; see Table 7. With oscillatory we mean that one
or more cells appear and disappear in a steady-periodic fashion; see Fig. 15. However, in
the cases that did settle in a steady state, we obtained the familiar (and dominant) 7 cell
pattern, now slightly skewed due to the deformation on the bottom; see Fig. 16. In all the
cases where we obtained a steady state solution, the pattern appeared quite fast, within
a few tens of non-dimensional time units and was then essentially unchanged during the
rest of the simulations. In the cases where the system evolved into an oscillatory state,



918 A. M. Kvarving et al. / Commun. Comput. Phys., 11 (2012), pp. 893-924

Table 7: Numerical results for a circular container with Γ = 8.38 and a Gaussian deformation (a bump) at
the bottom with a= 0.05 and σ= 0.02 and centered at (−2,−2). The non-dimensional numbers were kept at
Ma=105, Ra=48, and Pr=890. In each of the 100 independent simulations a different random initial condition
is imposed on the temperature.

Pattern No. of cases
7 cell, stable 23
oscillatory 77

(a) (b) (c)

(d) (e) (f)

Figure 15: Final oscillatory pattern after long time integration in a circular container with Ma=105, Ra=48,
Pr=890 and Γ=8.38. The plots show 6 evenly spaced snapshots over a single period. There is a small bump
with a=0.05, σ=0.2 centered at (−2,−2). This results in a steady periodic flow pattern.

(a) Without the bump. (b) With the bump.

Figure 16: The resulting pattern from two computations. The left figure shows the resulting pattern in the
container without the bump. The right figure shows the stationary pattern obtained when there is a bump at
the bottom. The right pattern resembles the left one, except locally where the bump is placed, the system
behaves as if the fluid layer is thinner.
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it stayed in this state for the rest of the simulation. It appears that the oscillatory state is
a fundamental state, in the sense that, if the system evolves into such a state, it will stay
oscillatory for all times.

We also performed limited tests in a larger container (the same hexagonal container
discussed earlier) except this time with bumps of different sizes and amplitudes. Since
these calculations take substantially longer time, we have not been able to repeat these
simulations enough times to extract reliable statistical data. However, we still think some
information can be extracted from the few cases we have been able to complete.

In the first case we want to discuss, we put a bump with a = 0.05 and σ = 2.0 cen-
tered at (−5,0). The calculation was initialized using the 48-cell solution seen in Fig. 8.
The size of the bump was chosen so as to approximately cover one convection cell. The
resulting pattern can be seen in Fig. 17. We observe that the effect of the bump seems
to be localized to the area where the bump is centered, with little or no influence on the
global pattern. To see if this is a result of the particular initial condition we used, we also
performed a calculation where we started from a random initial condition compatible
with the deformed container. The pattern we obtained can be seen in Fig. 19(a). In this
case, the deformation seems to have a much larger influence on the global pattern. The
pattern comes through as somewhat irregular. In addition, one of the cells (the one at
the bottom of the figure) is in a steady-periodic (oscillatory) state. Whether or not the
pattern eventually will settle into something resembling Fig. 17 is hard to conclude. The
pattern seems quite stable; we integrated the system for about 200 units of dimensionless
time before the pattern settled. We then integrated the system for another 500 units of
dimensionless time without any qualitative change occurring.

Next, we performed the same test using a “bump” with negative amplitude, i.e., in-
stead of having a bump at the bottom of the container, we now have a dip. The results
when starting from the ideal 48-cell convection pattern can be seen in Fig. 18. These re-
sults are in line with those obtained for the bump: the only noticeable effect on the flow
pattern seems to be localized to the cell strictly above the dip, with no apparent influence
on the global flow pattern. The results when starting from a random initial condition for
the temperature can be found in Fig. 19(b). As in the case of a “bump”, we observe a
somewhat irregular flow pattern.

We have also performed a few additional simulations starting from different random
initial conditions for the temperature. All the patterns found after long time integration
seem to deviate from the very regular hexagonal patterns observed in containers with
no deformations. The pattern may also include oscillatory cell(s), thus indicating that a
geometry deformation can also have a destabilizing effect.

We have not been able to trigger defects in the regular convection patterns through the
selected geometry deformations, in the sense of arriving at diamond shape cells/stars.
This was not expected either since our deformations are non-trivial. What we have been
able to demonstrate is that the system is more likely to be unstable, in the sense of set-
tling into a steady periodic (oscillatory) state, in particular for smaller containers. If the
amplitude of the deformations becomes sufficiently large, we have even been able to
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(a) Initial pattern. (b) Final pattern.

Figure 17: The resulting pattern from a simulation in a hexagonal container with Ma=105, Ra=48, Pr=890,
and Γ= 22.0. We have placed a small bump with a= 0.05 and σ= 2.0 centered at (−5,0). The simulation is
started from a steady state pattern in a container without the bump, shown in the left plot. The system quickly
evolves into the pattern shown in the right plot. The bump has no apparent effect on the global pattern; we
can only notice it on the convection cell straight above the bump, which is slightly smaller than the rest of the
cells in the pattern.

(a) Initial pattern. (b) Final pattern.

Figure 18: The resulting pattern from a calculation in a hexagonal container with Ma=105, Ra=48, Pr=890,
and Γ= 22.0. We have placed a small dip with a=−0.05 and σ= 2.0 centered at (−5,0). The calculation is
started from a developed pattern in a container without the dip, shown in the left figure. The system quickly
evolves into the pattern shown in the right plot. The dip has no apparent effect on the global pattern, we can
only notice it on the convection cell straight above the dip, which is slightly larger than the rest of the cells in
the pattern.

(a) With a bump. (b) With a dip.

Figure 19: The resulting pattern from a simulation in a hexagonal container with Ma=105, Ra=48, Pr=890,
and Γ= 22.0. In the left picture we have placed a small bump with a= 0.05 and σ= 2.0 centered at (−5,0).
In the right picture we have placed a small dip with a=0.05 and σ=2.0 centered at (−5,0). The simulations
were started from random initial conditions. The systems evolved into the patterns shown, and remained in this
state for about 800 units of dimensionless time.
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destabilize larger containers when starting from a regular hexagonal pattern associated
with an undeformed container.

8 Summary and conclusions

We have investigated the pattern formation in Bénard-Marangoni flows by numerically
solving the incompressible Navier-Stokes equations coupled with a convection-diffusion
equation for the temperature. The key parameters governing this problem are the Maran-
goni number, the Rayleigh number, the Prandtl number, and the global aspect ratio, Γ, of
the three-dimensional container. We have considered Marangoni numbers higher than
the critical number for the onset of convection, but still in the vicinity of the critical num-
ber. Containers with circular, square and hexagonal cross-sections have been investi-
gated. The main parameter we have varied has been the global aspect ratio. In addition,
we have explored the effect of using different initial conditions as a means to find possi-
ble states the system can end in up at large times. This approach represents a different
and complementary approach compared to a linear stability analysis. Our approach of
solving the complete three-dimensional model in a finite wall-bounded (non-periodic)
domain many times using different initial conditions has been feasible due to the avail-
ability of fast solution algorithms and through parallel computing.

Most of our simulations have been started with a zero initial velocity field and a ran-
dom initial temperature field. For a given set of non-dimensional numbers, and for a
given container, the system may evolve into more than one final state. For different ran-
dom initial temperature fields, the final pattern may have a preferred state which is also
consistent with experimental observations. However, the computational results also in-
dicate several other final states for the system. For example, the system may reach steady
state patterns which include different numbers of convection cells (and where one state is
a preferred state). The system may also end up in a steady-periodic state in which one or
more of the convection cells appear and disappear in an oscillatory fashion. We have also
observed that the system may end up in a steady state where the pattern is quite regular
over much of the domain, but with local dislocations or irregularities, e.g., the formation
of a star-like pattern in the middle of an otherwise hexagonal pattern. Such dislocations
have also been observed experimentally, although they appear to be somewhat rare. It
has been speculated in the literature that the reason for such irregularities in the pattern
is imperfections in the geometry or the experimental setup. However, our simulations
have shown that such dislocations may appear under otherwise ideal conditions. For a
given set of non-dimensional numbers, and for a given container, we have shown that
most of the simulations end up in a preferred state with a regular (hexagonal) pattern.
Only on rare occasions will the system end up in a state with such dislocations.

We have also investigated the case of symmetrizing the initial conditions for the tem-
perature, e.g., imposing a square or octant symmetry, while otherwise using a random
field within each quadrant or octant. Our results indicate that the initial symmetry will
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be broken as the system evolves to a final state. Still, this final state may be different com-
pared to the state reached when starting with a completely random temperature field. In
rare cases (for a container with a particular global aspect ratio), we have observed that
the initial symmetry imposed at the start of the simulation is maintained until a final state
has been reached.

Our final investigation relates to imposing a local Gaussian deformation at the bottom
of the container. For a small circular container, we have observed that this causes the
convection pattern to become more unstable, i.e., fewer cases end up in a steady state,
and more cases end up in a steady-periodic (oscillatory) state. For a larger hexagonal
container, we have performed tests indicating the sensitivity of the initial condition. If
we use the steady state solution without a deformation as a (mapped) initial condition
for a case with a deformation, the steady state pattern is only slightly changed (the cell
above the deformation changes size). However, if we start from a completely random
initial condition for the temperature, the system seems to evolve into a state without
the very regular hexagonal pattern, but instead exhibit a much more irregular pattern,
possibly including oscillatory cells.
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