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Abstract. The coherent states approximation for one-dimensional multi-phased wave
functions is considered in this paper. The wave functions are assumed to oscillate
on a characteristic wave length O(ǫ) with ǫ ≪ 1. A parameter recovery algorithm is
first developed for single-phased wave function based on a moment asymptotic anal-
ysis. This algorithm is then extended to multi-phased wave functions. If cross points
or caustics exist, the coherent states approximation algorithm based on the parame-
ter recovery will fail in some local regions. In this case, we resort to the windowed
Fourier transform technique, and propose a composite coherent states approximation
method. Numerical experiments show that the number of coherent states derived by
the proposed method is much less than that by the direct windowed Fourier transform
technique.
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1 Introduction

This paper aims at an efficient coherent states approximation method for wave functions
oscillating at most on the O(ǫ) scale with ǫ≪1. By coherent state we mean a function of
the following form

Ãexp

(

i

ǫ

(

p(x−q)+
γ

2
(x−q)2

)

)

, (1.1)

where q∈R is termed spatial center, p∈R momentum, γ∈C spread, and Ã∈C amplitude.
The imaginary part of γ should be positive, which renders to the coherent state function
a Gaussian profile centered at point q. A coherent states approximation (CSA) is a set of
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coherent states parameterized by {qj,pj,γj, Ãj}, whose summation approximates a given
family of wave functions uǫ(x) by an asymptotic error O(E ) with limǫ→0E =0, i.e.,

uǫ(x)=∑
j

Ãjexp

(

i

ǫ

(

pj(x−qj)+
γj

2
(x−qj)

2

))

+O(E ). (1.2)

The CSA problem exists in various disciplines, such as quantum chemistry [6–8, 10],
geophysics [4, 5, 9, 14], and signal processing [2, 11, 13]. For example, in geophysics, if
one wants to perform seismic migration with the Gaussian beam approach, the first issue
faced by the practitioner is to decompose the acquired seismic signal into a set of coher-
ent state functions. The approximating accuracy is very important for an accurate and
reliable exploration. On the other hand, however, the number of derived coherent states
should not be too large so that the migration algorithm can be implemented within the
limited computing power. This dilemma situation also appears in quantum mechanics
whenever a semi-classical approximation for the propagator based on Gaussian coherent
states is employed to evolve the quantum wave field.

It is well known that the following set of coherent states

ϕpq(x)=
1

(πǫa)1/4(2πǫ)
1
2

exp

(

i

ǫ

(

p(x−q)+
i

2a
(x−q)2

))

,

parameterized in the phase space Rp×Rq, form a tight frame in L2(R) for any a>0 (see
Appendix C). This means that for any f (x)∈L2(R) the following holds

f (x)=
∫∫

Rp×Rq

( f ,ϕpq)ϕpq(x)dpdq. (1.3)

Here (·,·) indicates the standard L2(R) inner product. Since

( f , f )=
∫∫

Rp×Rq

|( f ,ϕpq)|2dpdq,

the “coordinates” ( f ,ϕpq) can be taken as the energy spectra of f in the phase space. A
discrete CSA is thus derived by applying a suitable numerical quadrature on (1.3). For
example, using the trapezoidal rule gives

f (x)≈∆p∆q ∑
j,k∈Z

( f ,ϕpjqk
)ϕpjqk

(x), (1.4)

where pj = j∆p and qk = k∆q, with ∆p and ∆q being the momentum and spatial stepsizes
respectively.

There exists an alternative way based on the dual frame technique to arrive at a CSA
as (1.4) [2, 16]. Let a and b be two positive constants on the scale of O(1). Set qj = j

√
ǫa/b

and

hj(x)=hj(a,b,x)=
1√

2πb2
exp

(

− (x−qj)
2

2ǫa

)

. (1.5)
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Under a mild condition on b (see Appendix A), {hj(x)}j∈Z forms an approximate parti-
tion of unity of R. Thus for any f (x)∈L2(R) we have

f (x)≈ ∑
j∈Z

f (x)hj(x)= ∑
j∈Z

f (x)h
1
2

j (x)h
1
2

j (x).

The windowed function f (x)h
1
2
j (x) is largely supported in an interval Ij of size L=O(

√
ǫ)

and centered at x=qj. One can expand it into the Fourier series form as

f (x)h
1
2

j (x)≈ 1

L ∑
k∈Z

Cjkexp

(

2iπk(x−qj)

L

)

,

where

Cjk=
∫

Ij

f (x)h
1
2
j (x)exp

(

−2iπk(x−qj)

L

)

dx.

Thus then, it holds that

f (x)≈ 1

L ∑
j,k∈Z

Cjkexp

(

2iπk(x−qj)

L

)

h
1
2

j (x). (1.6)

Considering exp
(

2iπk(x−qj)/L
)

h
1
2
j (x) expresses a coherent state with momentum

2πkǫ/L and centered at qj, a CSA is then derived by removing those terms with neg-
ligible amplitudes in the double summation of (1.6). In [15], Qian and Ying developed a
fast algorithm for computing the coefficients Cjk.

The approximating accuracy of (1.6) strongly relies on the characteristic wave length λ

of the wave function f (x). If f (x) oscillates on the O(ǫ) scale, the formula (1.6) presents
a CSA with arbitrary accuracy provided a, b and L are set appropriately. In case the
data is supported in an interval with an O(1) length, the number of coherent states is
on the scale of O(ǫ−1). In general this estimate cannot be improved. From the function
approximation point of view, this treatment is not superior to the standard grid-resolving
method.

As a matter of fact, the advantage of the CSA (1.6) only shows up when the energy
spectra of the oscillating function has an appropriate sparse structure. To make clear this
point, let us consider the wave function uǫ with an analytical expression of the WKB
form, i.e.,

uǫ(x)=Aǫ(x)exp

(

iSǫ(x)

ǫ

)

.

The energy bandwidth of the windowed function uǫ(x)h
1
2
j (x) is on the scale of O(

√
ǫ).

Thus for each point qj, there are at most O(
√

ǫ)/( 2πǫ
L )=O(1) important coefficients Cjk.

Remember that L=O(
√

ǫ). If uǫ(x) is supported in an interval of length O(1), the to-

tal number of coherent states is on the scale of O(ǫ−
1
2 ). The CSA thus presents a very

economical approximation to the highly oscillating function uǫ.
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Even though, the above CSA based on the windowed Fourier transform (WFT) is
not the most efficient, especially when the approximating accuracy is not too demanded.
Since each windowed function uǫ(x)hj(x) is largely supported in an interval of length
O(

√
ǫ), one could expand the amplitude and phase functions of uǫ(x) as

Aǫ(x)=Aǫ(qj)+O(
√

ǫ),

Sǫ(x)=Sǫ(qj)+S′
ǫ(qj)(x−qj)+

S′′
ǫ (qj)

2
(x−qj)

2+O(ǫ
3
2 ).

By setting

Ãj=
1√

2πb2
Aǫ(qj)exp

(

iSǫ(qj)

ǫ

)

, (1.7a)

pj =S′
ǫ(qj), γj=S′′

ǫ (qj)+
i

a
, (1.7b)

the coherent state function

Ãjexp

(

i

ǫ

(

pj(x−qj)+
γj

2
(x−qj)

2

))

is a half-order approximation of the windowed function uǫ(x)hj(x). Since this approx-
imation is purely local, the beam summation remains at least the same accuracy, which

implies E =ǫ
1
2 in (1.2).

The above analysis is essentially due to Tanushev [17]. However, as most numerical
evidences suggested, the half-order accuracy is not optimal. In [12], Motamed and Run-
borg made a more sophisticated estimate. It was shown that under some mild conditions,
the approximating error of (1.2) is on the O(ǫ) scale due to the remarkable error cancela-
tion effect between the neighboring coherent states. A brief analysis is also given in this
paper.

Compared with the CSA based on WFT, the advantage of the above CSA for single-
phased wave functions is such that only one coherent state is associated with a specific spatial
point qj. As a matter of fact, our numerical experiments demonstrate that the number
of coherent states differs significantly for these two methods. This benefit motivates us
greatly to find an efficient and reliable way to recover the phase information on the ap-
proximated wave function, provided an a priori information is known that the energy
spectra of the given wave function has a multi-phased structure in the phase space.

The rest of this paper is organized as follows. In Section 2, a CSA version based on
the WFT technique is proposed and the error analysis is performed. In Section 3, an
error analysis on the CSA determined by (1.7) is made for a single-phased wave func-
tion. In Section 4, we propose a phase parameter recovery algorithm for the corrupted
single-phased wave functions. Based on it, a composite coherent states approximation is
proposed in Section 5. Numerical experiments are reported in Section 6, and this paper
concludes in Section 7.
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2 CSA based on the windowed Fourier transform

Throughout this paper, we set I=[−L/2,L/2] and Ij=[qj−L/2,qj+L/2] with qj= j
√

ǫa/b.
Here a, b and L are three prescribed positive constants. We indicate χj(x) the indicator
function of Ij and set χ(x)=χ0(x). Besides, we put

S0(a,b,x)= ∑
j∈Z

hj(a,b,x).

See the definition of hj in (1.5). For any f (x)∈ L2(R), we define its energy as ‖ f‖2, where
‖·‖ denotes the L2 norm.

By Lemma A.2 it holds that

∑
j∈Z

h
1
2
j (x)= ∑

j∈Z

h
1
2
j (a,b,x)=(2πb2)−

1
4 ∑

j∈Z

exp

(

− (x− j
√

ǫa/b)2

4ǫa

)

=
√

2(2πb2)
1
4S0(2a,

√
2b,x).

If b is set appropriately, S0(2a,
√

2b,x) equals almost 1 by (A.2). The above expression

implies that {h
1
2
j }j∈Z forms an approximate partition of unity of R (up to a factor), just as

{hj}j∈Z does. Furthermore, we have

∑
j∈Z

h
1
2

j (x)≤
√

2(2πb2)
1
4 (1+4exp(−4π2b2))≡C4(b). (2.1)

Lemma 2.1. Let f (x)∈L2(R). Then

[1−C0(b)]|| f ||2 ≤ ∑
j∈Z

|| f h
1
2
j ||2 ≤ [1+C0(b)]|| f ||2 .

Proof. A direct computation shows

∑
j∈Z

|| f h
1
2
j ||2= ∑

j∈Z

( f h
1
2
j , f h

1
2
j )= ∑

j∈Z

( f hj , f )=( fS0, f ) .

By Lemma A.2 we have |S0−1|≤C0(b). This ends the proof.

Remark 2.1. Lemma 2.1 implies that the windowed functions { f h
1
2
j }j∈Z presents an ap-

proximate energy partition for the function f .
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Lemma 2.2. Suppose gj(x)∈L2
loc(R). It holds that

∥

∥

∥

∥

∑
j∈Z

gjh
1
2
j

∥

∥

∥

∥

2

≤ [1+C0(b)] ∑
j∈Z

||gj ||2, (2.2)

∥

∥

∥

∥

∑
j∈Z

gjh
1
2
j − ∑

j∈Z

gjχjh
1
2
j

∥

∥

∥

∥

2

≤C5(a,b,L) ∑
j∈Z

||gj ||2, (2.3)

where

C5(a,b,L)=h
1
2
0 (L/2)C4(b).

In case that gj(x) is L-periodic, then

∥

∥

∥

∥

∑
j∈Z

gjh
1
2
j −∑

j∈Z

gjχjh
1
2
j

∥

∥

∥

∥

2

≤C6(a,b,L) ∑
j∈Z

||gjχj||2, (2.4)

where

C6(a,b,L)=2C4(b)∑
k≥1

h
1
2
0 (kL−L/2) .

Proof. By Lemma A.2 we have

∣

∣

∣

∣

∑
j∈Z

gj(x)h
1
2
j (x)

∣

∣

∣

∣

2

≤ ∑
j∈Z

|gj(x)|2 ∑
j∈Z

hj(x)≤ [1+C0(b)] ∑
j∈Z

|gj(x)|2.

(2.2) thus follows. Since
∣

∣

∣

∣

∑
j∈Z

gj(x)h
1
2
j (x)− ∑

j∈Z

gj(x)χj(x)h
1
2
j (x)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∑
j∈Z

gj(x)(1−χj(x))h
1
2
j (x)

∣

∣

∣

∣

2

≤ ∑
j∈Z

|gj(x)|2(1−χj(x))h
1
2
j (x) ∑

j∈Z

h
1
2
j (x)≤ ∑

j∈Z

|gj(x)|2(1−χj(x))h
1
2
j (x)C4(b),

we have
∣

∣

∣

∣

∑
j∈Z

gj(x)h
1
2
j (x)− ∑

j∈Z

gj(x)χj(x)h
1
2
j (x)

∣

∣

∣

∣

2

≤h
1
2
0 (L/2)C4(b) ∑

j∈Z

|gj(x)|2.

This proves (2.3). In case that gj is L-periodic, a direct computation shows that
∫

R
|gj(x)|2(1−χj(x))h

1
2
j (x)dx

=
∫

R
|gj(x+qj)|2(1−χ0(x))h

1
2
0 (x)dx= ∑

k 6=0

∫ kL+ L
2

kL− L
2

|gj(x+qj)|2h
1
2
0 (x)dx

= ∑
k 6=0

∫ L
2

− L
2

|gj(x+qj)|2h
1
2
0 (x+kL)dx≤2 ∑

k≥1

h
1
2
0 (kL−L/2) ||gjχj||2.



D. Yin and C. Zheng / Commun. Comput. Phys., 11 (2012), pp. 951-984 957

Thus then,

∥

∥

∥

∥

∑
j∈Z

gjh
1
2
j − ∑

j∈Z

gjχjh
1
2
j

∥

∥

∥

∥

2

≤C4(b) ∑
j∈Z

∫

R
|gj(x)|2(1−χj(x))h

1
2
j (x)dx

≤2C4(b)∑
k≥1

h
1
2
0 (kL−L/2) ∑

j∈Z

||gjχj||2.

This ends the proof.

Remark 2.2. If the parameters a, b and L are set appropriately, the constants C5 and C6

can be made very small. Lemma 2.2 thus implies that when summing up a sequence of

windowed functions gjh
1
2
j together, the exponentially decaying tail of Gaussian functions

h
1
2
j has a negligible influence on the result.

Given a wave function f (x)∈ L2(R). If we expand each cut-off windowed function

f χjh
1
2
j into the Fourier series form, i.e.,

f (x)χj(x)h
1
2
j (x)=

1

L ∑
k∈Z

Cjkexp

(

2iπk(x−qj)

L

)

,

then

‖ f χjh
1
2
j ‖2 =

1

L ∑
k∈Z

|Cjk|2.

Since

∑
j∈Z

‖ f χjh
1
2
j ‖2

2= ∑
j∈Z

( f χjhj, f )=‖ f‖2
2+
(

∑
j∈Z

f (χj−1)hj , f
)

+( f (S0−1), f ),

by Cauchy-Schwartz inequality and Lemma A.2, Lemma 2.2 and Lemma 2.1, we have

∣

∣

∣

∣

1

L ∑
j,k

|Cjk|2−‖ f‖2

∣

∣

∣

∣

≤
[

C0(b)+
√

C5(a,b,L)
√

1+C0(b)

]

‖ f‖2.

This implies that if C0 and C5 are sufficiently small, then |Cjk|2/L depicts the energy
distribution of f in the discrete phase space {(j

√
ǫa/b,2πǫk/L) : j,k∈Z}.

Now it is ready to present the CSA method based on the WFT technique, which will
be referred to as WFT-CSA in the later.

WFT-CSA A. Given a wave function f (x)∈ L2(R) and an error tolerance E . Set the parameters a,
b and L appropriately, and set qj = j

√
ǫa/b.
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WFT-CSA B. For each spatial point qj, compute

mj= || f χjh
1
2
j ||2.

Sort {mj}j∈Z, and find a subset of {mj}j∈Z with least number from large to small, so

that the summation of these quantities is larger than (1−E )‖ f‖2. Denote by I the

set of associated indices.

WFT-CSA C. If |I|= 0, i.e., the number of elements in I equals 0, then the algorithm terminates.

Otherwise, for each j∈I, compute the Fourier coefficients

Cjk =
∫

R
f (x)χj(x)h

1
2
j (x)exp

(

−
2iπk(x−qj)

L

)

dx, k∈Z.

WFT-CSA D. Set mjk = |Cjk|2/L. Sort {mjk}j∈I,k∈Z, and find a subset of {mjk}j∈I,k∈Z with least

number from large to small, so that the summation of these quantities is larger than

(1−E )|| f ||2. Denote by J the set of associated double indices.

WFT-CSA E. Each (j,k) with j∈I corresponds to a coherent state of the form

CSjk(x)=
Cjk

L
exp

(

2iπk(x−qj)

L

)

h
1
2
j (x). (2.5)

A CSA is formed by setting

fCS(x)= ∑
(j,k)∈J

CSjk(x).

Remark 2.3. The basic idea of WFT-CSA is as follows:

• decompose the wave function f into a sequence of windowed functions f hj;

• approximate f h
1
2

j with a set of harmonics. Since f hj= f h
1
2

j h
1
2

j , the windowed function

f hj is then approximated by a set of coherent states as (2.5);

• the overall wave function is approximated by summing up these coherent states
together.

Theorem 2.1. Given an error tolerance E . Suppose a CSA is given by the above WFT-CSA
method. Set a, b and L such that

exp(−π2b2)≤E , (2πb2)−
1
4 exp

(

− L2

16ǫa

)

≤E . (2.6)

Then there exists a constant c, independent of E and ǫ, such that

|| f − fCS||≤ c
√

E ‖ f‖.
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Proof. Let us introduce the following functions

f1(x)= ∑
j∈Z

f (x)χj(x)hj(x), f2(x)=∑
j∈I

f (x)χj(x)hj(x),

f3(x)= ∑
(j,k)∈J

χj(x)CSjk(x).

Obviously, f1 is an approximation of f by the localized approximate partition of unity,
f2 removes those terms in f1 with small energies, and f3 is the approximation of fCS by
truncation. We intend to show the differences among all these terms are O(

√
E ) under

the assumptions on the parameters a, b and L.

By Lemma A.2, Lemma 2.1 and Lemma 2.2, it holds

|| f − f1||≤
∥

∥

∥

∥

f − ∑
j∈Z

f hj

∥

∥

∥

∥

+

∥

∥

∥

∥

∑
j∈Z

f (1−χj)hj

∥

∥

∥

∥

≤
∥

∥

∥

∥

f − ∑
j∈Z

f hj

∥

∥

∥

∥

+

∥

∥

∥

∥

∑
j∈Z

f h
1
2
j (1−χj)h

1
2
j

∥

∥

∥

∥

≤
(

C0(b)+
√

C5(a,b,L)(1+C0(b))

)

|| f ||. (2.7)

By Lemma A.2, Lemma 2.2 and WFT-CSA B, we have

|| f1− f2||=
∥

∥

∥

∥

∑
j 6∈I

f χjhj

∥

∥

∥

∥

=

∥

∥

∥

∥

∑
j 6∈I

f (x)χjh
1
2
j (x)h

1
2
j (x)

∥

∥

∥

∥

≤
√

1+C0(b)
√

∑
j 6∈I

mj =
√

1+C0(b)

√

∑
j∈Z

mj−∑
j∈I

mj

≤
√

1+C0(b)

√

∑
j∈Z

|| f h
1
2
j ||22−(1−E )|| f ||2

≤
√

1+C0(b)
√

C0+E || f ||. (2.8)

Since

f2(x)=
1

L ∑
j∈I

∑
k∈Z

Cjkexp

(

2iπk(x−qj)

L

)

χj(x)h
1
2
j (x),

we have

f2(x)− f3(x)=
1

L ∑
j∈I,(j,k) 6∈J

Cjk exp

(

2iπk(x−qj)

L

)

χj(x)h
1
2
j (x).
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By Lemma 2.2 and WFT-CSA D, we have

|| f2(x)− f3(x)||2 ≤ (1+C0(b)) ∑
j∈I,(j,k) 6∈J

|Cjk|2
L

=(1+C0(b)) ∑
j∈I,(j,k) 6∈J

mjk

=(1+C0(b))

(

∑
j∈I

∑
k∈Z

mjk− ∑
(j,k)∈J

mjk

)

≤ (1+C0(b))

(

∑
j∈Z

|| f (x)h
1
2
j (x)||2−(1−E )|| f ||2

)

≤ (1+C0(b))(C0(b)+E )|| f ||2. (2.9)

Finally, by Lemma 2.2 we have

|| f3(x)− fCS(x)||2 ≤C6(a,b,L) ∑
(j,k)∈J

mjk ≤C6(a,b,L)∑
j∈I

mj

≤C6(a,b,L)

(

∑
j∈Z

|| f (x)h
1
2
j (x)||2

)

≤C6(a,b,L)[1+C0(b)]|| f ||2 . (2.10)

Combining (2.7)-(2.10) together gives

|| f (x)− fCS(x)||≤C0(b)|| f ||+
[

√

C5(a,b,L)+
√

C6(a,b,L)

]

√

1+C0(b)|| f ||

+2
√

1+C0(b)
√

C0(b)+E || f ||.

This finishes the proof by applying the condition (2.6).

Remark 2.4. In our computations, we set

a=1, b=1.4, L=6
√

4ǫa.

In this case, we have

C0<6.31×10−17, C5<4.37×10−16, C6<8.74×10−16.

Thus at least for E ≥10−14, the relative L2 error is approximately bounded by 2
√

E . This
implies that in principle the WFT-CSA method can give a CSA with arbitrary accuracy for
any given wave function, if the parameters involved are set appropriately. This explains
the universality property of WFT-CSA. However, the number of coherent states can be
on the scale of O(ǫ−1), and in general this bound cannot be further reduced.
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3 Error analysis on a coherent states approximation

In this section, we make an error analysis on a specific CSA (see Theorem 3.1) for a single-
phased wave function. The basic idea is essentially the same as that in [12]. It will be
shown that this CSA has an O(ǫ) error. We also explain that a small deviation of the
phase parameters will not deteriorate the approximating accuracy. We need the following
lemmas.

Lemma 3.1. The following holds

|exp(iθ)−1|≤ |θ|, |exp(iθ)−1−iθ|≤ θ2

√
3

, ∀θ∈R.

Lemma 3.2. For any nonnegative integer m, there exists a universal constant cm >0 such that

∑
j∈Z

|x−qj|mhj(x)≤ cm(ǫa)
m
2 , ∀x∈R.

Proof. Since

|x−qj|mh
1
2
j (x)= |x−qj|m(2πb2)−

1
4 exp

(

− (x−qj)
2)

4ǫa

)

≤ (2πb2)−
1
4 max

x∈R

[

|x|m exp

(

− x2

4ǫa

)]

=(2πb2)−
1
4 (ǫa)

m
2 max

x∈R

[

|x|m exp
(

−x2/4
)

]

,

by (2.1) we have

∑
j∈Z

|x−qj|mhj(x)= ∑
j∈Z

|x−qj|mh
1
2
j (x)h

1
2
j (x)

≤ (2πb2)−
1
4 (ǫa)

m
2 max

x∈R

[

|x|m exp
(

−x2/4
)

]

∑
j∈Z

h
1
2
j (x)

≤
√

2(ǫa)
m
2 max

x∈R

[

|x|m exp
(

−x2/4
)

]

(

1+4exp(−4π2b2)
)

.

This ends the proof.

Theorem 3.1. Given a wave function of the form

uǫ(x)=Aǫ(x)exp

(

iSǫ(x)

ǫ

)

,
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where Aǫ(x)∈C2(R) is the amplitude, and Sǫ(x)∈C4(R) is the real phase function. Set

uǫ,CS(x)= ∑
j∈Z

Aǫ(qj)exp

(

i

ǫ

(

Sǫ(qj)+S′
ǫ(qj)(x−qj)+

S′′
ǫ (qj)

2
(x−qj)

2

))

hj(a,b,x).

Suppose Aǫ is uniformly bounded in C2
b(R) and S′′′

ǫ (x) is uniformly bounded in C1
b(R), i.e.,

there exists a constant M>0 independent of ǫ such that

||Aǫ||∞+||A′
ǫ||∞+||A′′

ǫ ||∞+||S′′′
ǫ ||∞+||S′′′′

ǫ ||∞ ≤M, ∀ǫ>0.

Then there exists a constant c depending only on a and M, such that for sufficiently small ǫ, by
setting b with exp

(

−2π2b2
)

≤ǫ, the following holds

|uǫ(x)−uǫ,CS(x)|≤ cǫ, ∀x∈R.

Remark 3.1. If we perform local Taylor expansion for the amplitude Aǫ and the phase
Sǫ(x), and set

ûǫ,j(x)=
[

Aǫ(qj)+A′
ǫ(qj)(x−qj)

]

×exp

(

i

ǫ

(

Sǫ(qj)+S′
ǫ(qj)(x−qj)+

S′′
ǫ (qj)

2
(x−qj)

2+
S′′′

ǫ (qj)

6
(x−qj)

3

))

,

it is easy to prove that ûǫ,jh
1
2
j is a first order approximation of uǫh

1
2
j . Thus by Lemma 2.2

and (A.2), we have

∑
j∈Z

ûǫ,j(x)hj(x)−uǫ(x)

= ∑
j∈Z

ûǫ,j(x)hj(x)− ∑
j∈Z

uǫ(x)hj(x)+ ∑
j∈Z

uǫ(x)hj(x)−uǫ(x)

= ∑
j∈Z

(ûǫ,j(x)h
1
2
j (x)−uǫ(x)h

1
2
j (x))h

1
2
j (x)+uǫ(x)

(

∑
j∈Z

hj(x)−1

)

=O(ǫ).

Thus the point for Theorem 3.1 is to prove that the effects of the linear term of Aǫ and the
cubic term of Sǫ are actually on the level of O(ǫ), though seemingly they are on the level
of O(

√
ǫ). This is exactly the spirit of error cancelation effect.

Proof. For brevity of notations, we introduce

S
(2)
j (x)=Sǫ(qj)+S′

ǫ(qj)(x−qj)+
S′′

ǫ (qj)

2
(x−qj)

2,

S
(3)
j (x)=Sǫ(qj)+S′

ǫ(qj)(x−qj)+
S′′

ǫ (qj)

2
(x−qj)

2+
S′′′

ǫ (x)

6
(x−qj)

3.



D. Yin and C. Zheng / Commun. Comput. Phys., 11 (2012), pp. 951-984 963

It is easy to verify that

|S(2)
j (x)−Sǫ(x)|≤ ||S′′′

ǫ ||∞
6

|x−qj|3, (3.1)

|S(3)
j (x)−Sǫ(x)|≤ 5||S′′′′

ǫ ||∞
24

|x−qj|4, (3.2)

|Aǫ(qj)+A′
ǫ(x)(x−qj)−Aǫ(x)|≤ 3||A′′

ǫ ||∞
2

|x−qj|2. (3.3)

Let us introduce the following functions

uǫ,1(x)= ∑
j∈Z

Aǫ(x)exp
(

iSǫ(x)/ǫ
)

hj(x), (3.4)

uǫ,2(x)= ∑
j∈Z

Aǫ(x)exp
(

iS
(3)
j (x)/ǫ

)

hj(x), (3.5)

uǫ,3(x)= ∑
j∈Z

Aǫ(x)exp
(

iS
(2)
j (x)/ǫ

)

(

1+
iS′′′

ǫ (x)

6ǫ
(x−qj)

3

)

hj(x), (3.6)

uǫ,31(x)= ∑
j∈Z

Aǫ(x)exp
(

iS
(2)
j (x)/ǫ

)

hj(x), (3.7)

uǫ,32(x)= ∑
j∈Z

Aǫ(x)exp
(

iS
(2)
j (x)/ǫ

) iS′′′
ǫ (x)

6ǫ
(x−qj)

3hj(x), (3.8)

uǫ,41(x)= ∑
j∈Z

(Aǫ(qj)+A′
ǫ(x)(x−qj))exp

(

iS
(2)
j (x)/ǫ

)

hj(x), (3.9)

uǫ,42(x)= ∑
j∈Z

Aǫ(x)exp
(

iSǫ(x)/ǫ
) iS′′′

ǫ (x)

6ǫ
(x−qj)

3hj(x), (3.10)

uǫ,51(x)= ∑
j∈Z

A′
ǫ(x)(x−qj)exp

(

iS
(2)
j (x)/ǫ

)

hj(x), (3.11)

uǫ,61(x)= ∑
j∈Z

A′
ǫ(x)(x−qj)exp

(

iSǫ(x)/ǫ
)

hj(x). (3.12)

Obviously, we have

uǫ,3(x)=uǫ,31(x)+uǫ,32(x), uǫ,41(x)=uǫ,CS(x)+uǫ,51(x).

In addition, we have the following estimates

|uǫ,1(x)−uǫ(x)|≤ ||Aǫ||∞C0(b), (3.13)

|uǫ,2(x)−uǫ,1(x)|≤ 5c4ǫa2||S′′′′
ǫ ||∞||Aǫ||∞
24

, (3.14)

|uǫ,3(x)−uǫ,2(x)|≤ c6ǫa3||S′′′
ǫ ||2∞||Aǫ||∞

36
√

3
, (3.15)
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|uǫ,31(x)−uǫ,41(x)|≤ 3c2ǫa||A′′
ǫ ||∞

2
, (3.16)

|uǫ,32(x)−uǫ,42(x)|≤ c6ǫa3||S′′′
ǫ ||2∞||Aǫ||∞
36

, (3.17)

|uǫ,51(x)−uǫ,61(x)|≤ c4ǫa2||S′′′
ǫ ||∞||A′

ǫ||∞
6

, (3.18)

|uǫ,42(x)|≤ ||S′′′
ǫ ||∞||Aǫ||∞

6ǫ
C3(b)(ǫa)

3
2 , (3.19)

|uǫ,61(x)|≤ ||A′
ǫ||∞C1(b)

√
ǫa, (3.20)

where C0, C1 and C3 are defined as in Lemma A.2. The estimates (3.13), (3.19) and (3.20)
are obvious. Let us prove (3.14). Since

|uǫ,2(x)−uǫ,1(x)|=
∣

∣

∣

∣

∣

∑
j∈Z

Aǫ(x)

[

exp

( iS
(3)
j (x)

ǫ

)

−exp

(

iSǫ(x)

ǫ

)]

hj(x)

∣

∣

∣

∣

∣

≤||Aǫ||∞ ∑
j∈Z

∣

∣

∣

∣

∣

exp

( i(S
(3)
j (x)−Sǫ(x))

ǫ

)

−1

∣

∣

∣

∣

∣

hj(x),

by Lemma 3.1 and formula (3.2), we have

|uǫ,2(x)−uǫ,1(x)|≤ 5||S′′′′
ǫ ||∞||Aǫ||∞

24ǫ ∑
j∈Z

∣

∣x−qj

∣

∣

4
hj(x).

Applying Lemma 3.2 then yields (3.14). The proof of (3.15)-(3.18) is analogous.

If exp
(

−2π2b2
)

≤ǫ, then by Lemma A.2 we have

C0(b)≤4ǫ, C1(b)≤ c
√

ǫ, C3(b)≤ c
√

ǫ. (3.21)

Since

|uǫ(x)−uǫ,CS(x)|≤ |uǫ(x)−uǫ,1(x)|+|uǫ,1(x)−uǫ,2(x)|+|uǫ,2(x)−uǫ,3(x)|
+|uǫ,31(x)−uǫ,41(x)|+|uǫ,51(x)−uǫ,61(x)|+|uǫ,61(x)|
+|uǫ,32(x)−uǫ,42(x)|+|uǫ,42(x)|,

using (3.13)-(3.20) and (3.21) finishes the proof.

Remark 3.2. The above proof also reveals that the coherent state width controlling param-
eter a has a first order influence on the approximating accuracy of the coherent states
summation. This is because the error is dominated by (3.14)-(3.18), considering C0(b),
C1(b) and C3(b) decays extremely fast with respect to the parameter b.
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Lemma 3.3. Suppose there exist two positive numbers M and c such that

|Ã1,j− Ã2,j|≤ cǫ, |p1,j−p2,j|≤ cǫ
3
2 , |γ1,j−γ2,j|≤ cǫ, |Ã1,j|+|Ã2,j|≤M, ∀j∈Z,

where pl,j and γl,j (l=1,2) are real. Set

Sl,j(x)= pl,j(x−qj)+
γl,j

2
(x−qj)

2,

fl(x)= ∑
j∈Z

Ãl,jexp

(

iSl,j(x)

ǫ

)

hj(a,b,x).

Then there exists a constant c∗ depending only on a and M, such that for sufficiently small ǫ, the
following holds

| f1(x)− f2(x)|≤ c∗ǫ, ∀x∈R.

Proof. To estimate the difference of f1 and f2, we separate f1− f2 into two parts, namely,

f1(x)− f2(x)= ∑
j∈Z

(Ã1,j− Ã2,j)exp

(

iS1,j(x)

ǫ

)

hj(x)

+∑
j∈Z

Ã2,j

(

exp

(

iS1,j(x)

ǫ

)

−exp

(

iS2,j(x)

ǫ

))

hj(x).

Denote these two parts by I1 and I2 respectively. Then using Lemma A.2 gives

|I1|≤ cǫ ∑
j∈Z

hj(x)≤ cǫ(1+C0)≤5cǫ. (3.22)

Since
∣

∣S1,j(x)−S2,j(x)
∣

∣≤ c

(

ǫ
3
2 |x−qj|+

ǫ|x−qj |2
2

)

,

by Lemma 3.1 and Lemma 3.2, we have

|I2|=
∣

∣

∣

∣

∣

∑
j∈Z

Ã2,j

(

exp

(

iS1,j(x)

ǫ

)

−exp

(

iS2,j(x)

ǫ

))

hj(x)

∣

∣

∣

∣

∣

≤M ∑
j∈Z

∣

∣

∣

∣

exp

(

i(S1,j(x)−S2,j(x))

ǫ

)

−1

∣

∣

∣

∣

hj(x)

≤ cM ∑
j∈Z

(

ǫ
1
2 |x−qj|+

1

2
|x−qj|2

)

hj(x)≤ cMǫ
(

c1

√
a+

c2a

2

)

.

Thus then,

| f1(x)− f2(x)|≤ |I1|+|I2|≤5cǫ+cMǫ
(

c1

√
a+

c2a

2

)

.

The proof thus finishes.
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Combining Theorem 3.1 and Lemma 3.3 we get the following result.

Theorem 3.2. Given the conditions as those in Theorem 3.1. Suppose there exist three sequences
{Ãj}j∈Z, {pj}j∈Z and {γj}j∈Z (pj and γj are real), and a constant c such that

∣

∣

∣

∣

Ãj−Aǫ(qj)exp

(

iSǫ(qj)

ǫ

)
∣

∣

∣

∣

≤ cǫ, |pj−S′
ǫ(qj)|≤ cǫ

3
2 , |γj−S′′

ǫ (qj)|≤ cǫ. (3.23)

Set

ũǫ,CS(x)= ∑
j∈Z

Ãjexp

(

i

ǫ

(

pj(x−qj)+
γj

2
(x−qj)

2

))

hj(x).

Then there exists a constant c∗ depending only on a and M, such that

|uǫ(x)−ũǫ,CS(x)|≤ c∗ǫ, ∀x∈R.

Remark 3.3. Theorem 3.2 reveals that given a single-phased WKB wave function uǫ(x)
WITHOUT knowing the analytical expressions of the amplitude Aǫ and the phase Sǫ, if

one manages to derive a first order approximation of Aǫ(q)exp
( iSǫ(q)

ǫ

)

and S′′
ǫ (q), and a

1.5th order approximation of S′
ǫ(q) at any q=qj, a CSA with the accuracy to O(ǫ) can still

be formed. In the sequel, we will term
{

Aǫ(q)exp

(

iSǫ(q)

ǫ

)

, S′
ǫ(q), S′′

ǫ (q)

}

the phase parameters of uǫ(x).

4 Parameter recovery for single-phased data

This section explains how to recover the phase parameters associated with a single-
phased corrupted wave function, which fulfills the accuracy requirements (3.23). The un-
derlying idea is the foundation of the composite coherent states approximation method
which will be proposed in the next section.

Suppose we have a corrupted single-phased wave function

u(x)=ue(x)+ǫRǫ(x), ue(x)=Aǫ(x)exp

(

iSǫ(x)

ǫ

)

,

where the noise function Rǫ(x) satisfies the following assumption.

Assumption 4.1. There exists a density function rǫ(ξ) ∈ L1(R) which is compactly sup-
ported in an interval [−M,M] independent of ǫ, such that

||rǫ(ξ)||L1(R)=O(1), Rǫ(x)=
∫

R
exp

(

iξx

ǫ

)

rǫ(ξ)dξ.

This implies that Rǫ∈C∞(R) and Rǫ(x)=O(1), but R′
ǫ(x)=O(ǫ−1).
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For any a>0, we set

φa(x)=exp

(

− x2

2ǫa

)

.

In particular, we indicate φ(x)=φ1(x). It is straightforward to verify that

Fǫ[φa]=
√

2πǫaφ 1
a
, F−1

ǫ [φa]=

√

a

2πǫ
φ 1

a
.

For any sufficiently smooth function f we have

1

2πǫ

∫

R
Fǫ[ f ](ξ)dξ= f (0),

1

2πǫ

∫

R
ξFǫ[ f ](ξ)dξ=−iǫ f ′ (0).

Applying these to the windowed wave function uφ2a gives

1

2πǫ

∫

R
Fǫ [uφ2a](ξ)dξ=Aǫ(0)exp

(

iSǫ(0)

ǫ

)

+ǫRǫ(0), (4.1)

1

2πǫ

∫

R
ξFǫ [uφ2a](ξ)dξ=[S′

ǫ(0)Aǫ(0)−iǫA′
ǫ(0)]exp

(

iSǫ(0)

ǫ

)

−iǫ2R′
ǫ(0). (4.2)

Set

g0=
1

2πǫ

∫

R
Fǫ [uφ2a](ξ)dξ, g1 =

1

2πǫ

∫

R
ξFǫ [uφ2a](ξ)dξ.

We then have

Ã
de f
= g0=Aǫ(0)exp

(

iSǫ(0)

ǫ

)

+O(ǫ), (4.3)

p∗
de f
= ℜ

(

g1

g0

)

=S′
ǫ(0)+O(ǫ). (4.4)

These formulae imply that Ã and p∗ are the first order approximations of the phase pa-

rameters Aǫ(0)exp
( iSǫ(0)

ǫ

)

and S′
ǫ(0).

Next, let us seek an approximation S′′
ǫ (0). For any smooth function f such that f φ2a

is of Schwartz type, it is straightforward to verify that

1

2πǫ
(Fǫ[ f φ2a],φ(ξ−p∗))=

1√
2πǫ

(

f φ2a,exp

(

ip∗x

ǫ

)

φ

)

=
1√
2πǫ

(

f φ2aφ,exp

(

ip∗x

ǫ

))

=
1√
2πǫ

(

f φc,exp

(

ip∗x

ǫ

))

=
1√
2πǫ

Fǫ [ f φc](p∗).

Here c= 2a
2a+1 . If f =O(ǫ), then

|Fǫ [ f φc](p∗)|≤ || f ||∞
∫

R
φc(x)dx=O(ǫ

3
2 ),
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which implies that
1

2πǫ
(Fǫ[ f φ2a],φ(ξ−p∗))=O(ǫ). (4.5)

If f is given as

f (x)=

(

Ã+Bx+
irx3

6ǫ

)

exp

(

i

ǫ

(

px+
γ

2
x2
)

)

,

where p and γ are real, a direct computation shows that

1

2πǫ
(Fǫ[ f φ2a],φ(ξ−p∗))

=

(

Ã+
Bci(p−p∗)

1−icγ
− c2r(p−p∗)

2(1−icγ)2
+

c3r(p−p∗)3

6ǫ(1−icγ)3

)√

c

1−icγ
exp

(

− c(p−p∗)2

2ǫ(1−icγ)

)

.

If p−p∗=O(ǫ), then

1

2πǫ
(Fǫ[ f φ2a],φ(ξ−p∗))= Ã

√

c

1−icγ
+O(ǫ). (4.6)

Now let us indicate

ûe(x)=

(

Aǫ(0)+A′
ǫ(0)x+

iAǫ(0)S′′′
ǫ (0)x3

6ǫ

)

exp

(

i

ǫ

(

S′
ǫ(0)+S′

ǫ(0)x+
S′′

ǫ (0)

2
x2

))

,

and
ũe(x)=ue(x)−ûe(x).

ûe is a local approximation of ue with the accuracy to O(ǫ) by performing Taylor expan-
sion for the amplitude function Aǫ(x) and the phase function Sǫ(x). Due to the modula-
tion of a fast decaying Gaussian function, it is not hard to prove that

ũe(x)φ4a(x)=O(ǫ). (4.7)

We omit the proof here. Thus then, by Assumption 4.1, (4.4) and (4.5)-(4.7) we have

1

2πǫ
(Fǫ[uφ2a],φ(ξ−p∗))

=
1

2πǫ
(Fǫ[ûφ2a],φ(ξ−p∗))+

1

2πǫ
(Fǫ[ũφ2a],φ(ξ−p∗))+

1

2πǫ
(Fǫ[ǫRǫφ2a],φ(ξ−p∗))

=Aǫ(0)exp

(

iSǫ(0)

ǫ

)
√

c

1−icS′′
ǫ (0)

+
1

2πǫ
(Fǫ[ũφ4aφ4a],φ(ξ−p∗))+O(ǫ)

=Aǫ(0)exp

(

iSǫ(0)

ǫ

)
√

c

1−icS′′
ǫ (0)

+O(ǫ).

By setting

g=
1

2πǫ
(Fǫ[uφ2a],φ(ξ−p∗)),
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we have
g

g0
=

√

c

1−icS′′
ǫ (0)

+O(ǫ).

This implies that

γ
de f
= −ℑ

(

g0

g

)2

=S′′
ǫ (0)+O(ǫ). (4.8)

So far, we have succeeded in finding first order approximations of the phase parame-

ters Aǫ(0)exp
( iSǫ(0)

ǫ

)

, S′
ǫ(0) and S′′

ǫ (0). The requirements for the first and third quantities
have been met as in (3.23). We need to improve the approximating accuracy half-order
higher for the second quantity. However, without some representation constraint spec-
ified, this mission is generally impossible. To illustrate this point, let us rewrite ue(x)
into

ue(x)=Aǫ(x)exp(−iarg(Aǫ(x)))exp

(

i(Sǫ(x)+ǫarg(Aǫ(x)))

ǫ

)

.

Here arg(Aǫ(x)) is the angle function of Aǫ(x). If Aǫ(x) is smooth enough, so can
arg(Aǫ(x)) be made, and the new amplitude function Ãǫ(x)= Aǫ(x)exp(−iarg(Aǫ(x)))
is thus real. We call this form of WKB data canonical. Note that S̃′′

ǫ (x), the second order
derivative of the new phase function S̃ǫ(x) = Sǫ(x)+ǫarg(Aǫ(x)), approximates S′′

ǫ (x)
within the first order accuracy, which means that any first order approximation of S′′

ǫ (x)
is still a first order approximation of S̃′′

ǫ (x). However, since S′
ǫ(x) and S̃′

ǫ(x) have an O(ǫ)
difference, compared with S̃′

ǫ(x), the accuracy of any approximation of S′
ǫ(x) cannot ex-

ceed first order. Considering this point, from now on, we always assume the WKB data is
expressed in the canonical form.

Let us reexamine the approximation of S′
ǫ(0). A direct computation shows that

g1

g0
=S′

ǫ(0)−
iǫA′

ǫ(0)

Aǫ(0)
−

iǫ2 Aǫ(0)
(

R′
ǫ(0)− iS′

ǫ(0)Rǫ(0)
ǫ

)

−iǫ2 A′
ǫ(0)Rǫ(0)

Aǫ(0)
[

Aǫ(0)exp
(

iSǫ(0)
ǫ

)

+ǫRǫ(0)
] . (4.9)

A remarkable fact is that if the data is locally noise-free, i.e., Rǫ(0)=R′
ǫ(0)=0, ℜ(g1/g0)

would recover S′(0) exactly since Aǫ(x) is real by canonical. If the density function rǫ(ξ)
of Rǫ(x) (see Assumption 4.1) is supported in an interval of length O(

√

ǫ|lnǫ|) centered
at ξ=S′

ǫ(0), then we have

∣

∣

∣

∣

R′
ǫ(0)−

iS′
ǫ(0)Rǫ(0)

ǫ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

i(ξ−S′
ǫ(0))

ǫ
rǫ(ξ)dξ

∣

∣

∣

∣

≤ O(
√

ǫ|lnǫ|)
ǫ

||rǫ(ξ)||L1(R). (4.10)

Recalling (4.9) we have

ℜ
(

g1

g0

)

=S′
ǫ(0)+O(ǫ

3
2 |lnǫ| 1

2 ).

In the general case, we can still follow the same line by a simple filtering technique.
In the Fourier space the function Fǫ[ueφ2a](ξ) is essentially supported in an interval of
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length O(
√

ǫ) centered at ξ = S′
ǫ(0). For example, in the special case of A(x)≡ A and

S(x)= px+ γ
2 x2, we have

Fǫ [ueφ2a](ξ)=A

√

4πǫa

1−2iaγ
exp

(

− a(p−ξ)2

ǫ(1−2iaγ)

)

. (4.11)

The profile of this function is Gaussian with the characteristic width

√

ǫ(1+4a2γ2)
2a . By

setting

I= p+

[

−
√

3ǫ|lnǫ|(1+4a2γ2)

2a
,

√

3ǫ|lnǫ|(1+4a2γ2)

2a

]

,

a direct computation shows that

1

2πǫ

∫

R\I
Fǫ [ueφ2a](ξ)dξ=O(ǫ

3
2 ),

1

2πǫ

∫

R\I
ξFǫ [ueφ2a](ξ)dξ=O(ǫ

3
2 ).

In the general case, we expect the above formulae also hold by resetting

I= p∗+

[

−
√

3ǫ|lnǫ|(1+4a2γ2)

2a
,

√

3ǫ|lnǫ|(1+4a2γ2)

2a

]

,

where p∗ and γ are the first order approximation of S′
ǫ(0) and S′′

ǫ (0) determined by (4.4)
and (4.8) (the proof is open). Combining these with (4.1)-(4.2) in case that Rǫ=0 gives

1

2πǫ

∫

I
Fǫ [ueφ2a](ξ)dξ=Aǫ(0)exp

(

iSǫ(0)

ǫ

)

+O(ǫ
3
2 ),

1

2πǫ

∫

I
ξFǫ [ueφ2a](ξ)dξ=[S′

ǫ(0)Aǫ(0)−iǫA′
ǫ(0)]exp

(

iSǫ(0)

ǫ

)

+O(ǫ
3
2 ).

On the other hand, by setting

r̃ǫ(ξ)=
1

2πǫ
Fǫ[Rǫφ2a](ξ)χI(ξ), R̃ǫ(x)=

∫

R
exp

(

iξx

ǫ

)

r̃ǫ(ξ)dξ,

where χI(ξ) is the indicator function of I, we have

||r̃ǫ ||L1(R)≤||rǫ||L1(R)

∥

∥

∥

∥

1

2πǫ
Fǫ[φ2a]

∥

∥

∥

∥

L1(R)

= ||rǫ||L1(R)=O(1).

This implies that R̃ǫ(x)=O(1). Thus then,

g̃0
de f
=

1

2πǫ

∫

I
Fǫ [uφ2a](ξ)dξ=Aǫ(0)exp

(

iSǫ(0)

ǫ

)

+O(ǫ
3
2 )+ǫR̃ǫ(0),

g̃1
de f
=

1

2πǫ

∫

I
ξFǫ [uφ2a](ξ)dξ=[S′

ǫ(0)Aǫ(0)−iǫA′
ǫ(0)]exp

(

iSǫ(0)

ǫ

)

+O(ǫ
3
2 )−iǫ2R̃′

ǫ(0),
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and we have

g̃1

g̃0
=S′

ǫ(0)−
iǫA′

ǫ(0)

Aǫ(0)
−

iǫ2 Aǫ(0)
(

R̃′
ǫ(0)− iS′

ǫ(0)R̃ǫ(0)
ǫ

)

−iǫ2 A′
ǫ(0)R̃ǫ(0)+O(ǫ

3
2 )

Aǫ(0)
[

Aǫ(0)exp
(

iSǫ(0)
ǫ

)

+ǫR̃ǫ(0)
]

+O(ǫ
3
2 )

. (4.12)

Since R̃ǫ(x) has a density function r̃ǫ(ξ) which is compactly supported in I, by (4.10) we
have

p
de f
= ℜ

(

g̃1

g̃0

)

=S′
ǫ(0)+O(ǫ

3
2 |lnǫ| 1

2 ).

For the moment we do not know how to remove the |lnǫ| 1
2 factor by a more sophisticated

filtering technique. However, this factor increases very slowly with respect to ǫ. For
example, when ǫ is as small as 2−23, this quantity is still less than 4.

We summarize the above parameter recovery algorithm in the following. The win-

dow function φ2a is replaced with h
1
2
0 =(2πb2)−

1
4 φ2a. This treatment is purely for the ease

of reference in the later.

PR A. Given a spatial point q. Multiply u(x+q) with h
1
2
0 (x) and compute the Fourier transform

D(ξ)
de f
= Fǫ[u(x+q)h

1
2
0 (x)](ξ).

PR B. Compute

g0=
(2πb2)

1
4

2πǫ

∫

R
D(ξ)dξ, g1=

(2πb2)
1
4

2πǫ

∫

R
ξD(ξ)dξ, (4.13)

and set

Ã= g0, p∗=ℜ
(

g1

g0

)

. (4.14)

PR C. Compute

g=
(2πb2)

1
4

2πǫ

∫

R
D(ξ)φ(ξ−p∗)dξ, (4.15)

and set

γ=−ℑ
(

g0

g

)2

.

PR D. Set

I= p∗+

[

−
√

3ǫ|lnǫ|(1+4a2γ2)

2a
,

√

3ǫ|lnǫ|(1+4a2γ2)

2a

]

, (4.16)

and compute

g̃0=
(2πb2)

1
4

2πǫ

∫

I
D(ξ)dξ, g̃1=

(2πb2)
1
4

2πǫ

∫

I
ξD(ξ)dξ. (4.17)

Set p=ℜ(g̃1/g̃0).

In the end, {Ã,p,γ} are the approximations of phase parameters of the un-corrupted

single-phased wave function ue(x)=Aǫ(x)exp
( iSǫ(x)

ǫ

)

at x=q.
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5 Composite coherent states approximation method

In the last section, we proposed the parameter recovery algorithm for the corrupted
single-phased wave function. Now we study the possibility of generalizing this algo-
rithm to the more complicated multi-phased wave functions.

By multi-phased we mean at least in some interval, the data can be written as

u(x)=
L

∑
l=1

ul(x)+ǫRǫ(x), ul(x)=Al,ǫ(x)exp

(

iSl,ǫ(x)

ǫ

)

, (5.1)

where Rǫ(x) satisfies Assumption 4.1. Each ul(x) is called a phase branch. Multi-phased
structure may arise when the data is indeed a combination of single-phased wave func-
tions in the whole definition domain (see Example 2), or it is derived by evolving a single-
phased data based on some Hamiltonian flow (see Example 3). In the latter case, the
caustics may appear, and away from caustics, the number of phases may be different at
different regions.

Our basic idea is to separate the different phase branches in the Fourier space. Suppose
in an open interval I, the first phase branch separates from the others, i.e., there exists a
constant Cgap>0 such that for any q∈ I, it holds that S′

1,ǫ(q) 6=S′
j,ǫ(q), ∀ j≥2, and

S′
1,ǫ(q)≥ max

S′
j,ǫ(q)<S′

1,ǫ(q),j≥2
S′

j,ǫ(q)+Cgap,

S′
1,ǫ(q)≤ min

S′
j,ǫ(q)>S′

1,ǫ(q),j≥2
S′

j,ǫ(q)−Cgap.

Then for any fixed q∈ I, the Fourier transform of the windowed function u(x+q)h
1
2
0 (x)

will contain a bump centered at ξ = S′
1,ǫ(q) and having a width of O(

√
ǫ). If ǫ is small

enough, this bump contains most part of the significant energy spectra of the function

u1(x+q)h
1
2
0 (x), and separates from the other significant part of energy spectra of u(x+

q)h
1
2
0 (x) almost with a distance of Cgap. Thus the phase parameters of u1(x) at x= q can

be extracted out with the recovery algorithm described in the last section.
To make through this idea, we need to locate all bumps in the energy spectra, and

judge whether they are indeed associated with some phase branch. If so, suppose
{Ãjl ,pjl ,γjl} is the recovered phase parameters at q= qj associated with a phase branch
ul, then the following coherent state

Ãjl exp

(

i

ǫ

(

pjl(x−qj)+
γjl

2
(x−qj)

2

))

h
1
2
j (x)

is a half-order approximation of ul(x)h
1
2
j . Otherwise, the difference between the above co-

herent state and ul(x)h
1
2
j will be large. This implies that the difference is a good candidate

which judges whether an energy bump is related to a specific phase branch.
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Our CSA method based on the parameter recovery is described in the following,
which will be referred to as PR-CSA in the later.

PR-CSA A. Given a wave function u(x)∈ L2(R) and an energy ratio r= o(ǫ2). Set the parameters

a, b and L appropriately, and set qj = j
√

ǫa/b.

PR-CSA B. At each spatial point qj, compute

mj = ||u(x+qj)χ(x)h
1
2
0 (x)||2.

Sort {mj}j∈Z, and find a subset of {mj}j∈Z with least number from large to small, so

that

∑
j∈I

mj ≥ (1−r)‖u‖2.

Denote the set of associated indices by I.

PR-CSA C. Specify two error tolerances E1 = o(ǫ2), E2 = O(ǫ). For each index j ∈ I, compute

the Fourier coefficients {Cjk}k∈Z of u(x+qj)χ(x)h
1
2
0 (x). Set mjk = |Cjk|2/L. Sort

{mjk}k∈Z, and find a subset of {mjk}k∈Z with least number from large to small, the

associated indices denoted by I j, so that

∑
k∈I j

mjk≥ (1−E1)mj.

Decompose I j into a union of segments, i.e.,

I j=∪Nj

l=1I jl, |I jl|=bl−al+1, I jl =[al ,bl ], a1<b1 < ···< aNj
<bNj

.

Apply the parameter recovery algorithm at qj by replacing R in (4.13) and (4.15) with
2πǫ

L I jl, I in (4.16) with I∩ 2πǫ
L I jl, and all the continuous integrals with their discrete

counterparts. The derived results are denoted by {Ãjl , pjl,γjl}. Set

ujl(x)= Ãjl exp

(

i

ǫ

(

pjl(x−qj)+
γjl

2
(x−qj)

2

))

.

The exact Fourier transform of ujl(x+qj)h
1
2
0 (x) is

C̃(ξ)=(2πb2)−
1
4 Ãjl

√

4πǫa

1−2iaγjl
exp

(

−
a(pjl−ξ)2

ǫ(1−2iaγjl)

)

.

If
∑k∈I jl

|Cjk−C̃( 2πǫk
L )|2

L∑k∈I jl
mjk

=
∑k∈I jl

|Cjk−C̃( 2πǫk
L )|2

∑k∈I jl
|Cjk|2

≤E2, (5.2)

we say the energy segment I jl is a coherent state segment, or I jl admits a coherent

state approximation, and the computed parameters {Ãjl , pjl,γjl} are acceptable. The

corresponding coherent state function is denoted by

CSjl(x)= Ãjl exp

(

i

ǫ

(

pjl(x−qj)+
γjl

2
(x−qj)

2

))

hj(x).
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Otherwise, we say I jl is a non-coherent state segment. If all I jl associated with qj are

coherent state segments, we say the point qj is a regular point. Otherwise, it is irregular.

PR-CSA D. A CSA is formed by setting

uCS(x)=∑
j∈I

∑
I jl :coherent state segment

CSjl(x).

Remark 5.1. In the above algorithm, PR-CSA B intends to remove some part of the wave
function which has a negligible energy. The left hand side of (5.2) in PR-CSA C is the
square of L2 error between a possible phase branch and its local half-order approximation

windowed by the Gaussian function h
1
2
0 .

Generally, the parameter recovery algorithm in PR-CSA C would fail to present a set
of acceptable parameters at a specific energy segment I jl in three cases:

• The noise is relatively strong compared with the specific phase branch;

• At least two phase branches approach each other, which leads to an enlarged bump
not resembling a Gaussian at all;

• A caustic point is developing around qj, so that the detected spread γjl has a large
magnitude.

When either of these cases happens, the accuracy of the derived CSA by PR-CSA becomes
problematic in a small region containing the irregular point qj. To solve this problem,
we can apply WFT-CSA to further reduce the approximating error. The point is how to
specify the error tolerance E in the WFT-CSA algorithm appropriately. If E is set too large,
the approximating accuracy around the irregular points does not match the CSA accuracy
away from the irregular points. On the other hand, if E is set too small, there exists a risk
that in the regular region, which only contains regular points, more coherent states will be
looked for, so that the benefit of PR-CSA is destroyed completely, and the overall number
of coherent states will be comparative to that by applying WFT-CSA straightforwardly.

If qj is a regular point, then due to the error cancelation effect, uCS(x)h
1
2
j (x) is a first

order approximation of u(x)h
1
2
j (x) on any energy segment associated with qj. However,

if qj is irregular, and I jl is one of the associated non-coherent state energy segments, then

uCS(x)h
1
2
j (x) does not approximate u(x)h

1
2
j (x) at all on I jl. Even worse, the same thing

will happen to any coherent state segment I j′ l′ which is adjacent to I jl in the phase space.
This is because only one-sided coherent state approximation is constructed at qj′ by PR-
CSA and the error cancelation effect does not take place around qj′ .

Based on the above analysis, we can separate all the energy segments into two groups:
a bad group B which needs further treatment and the remaining good group. The bad
group includes all non-coherent state segments and a part of coherent state segments
which are close to any one of the non-coherent state segments. Given a non-coherent
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state segment I jl and a coherent state segment I j′ l′ , the criterions set empirically in our
numerical experiments for this closeness are

• The spatial distance between these two energy segments is small so that

|CSj′ l′(qj)|≥10−14. (5.3)

• The two segments should overlap in the momentum space, which means

I jl∩I j′ l′ 6=∅.

The error tolerance E used in WFT-CSA is then computed by

E =‖u−uCS‖2
2− ∑

I jl∈B,k∈I jl

L|Cjk|2, (5.4)

where Cjk are the Fourier coefficients of (u(x+qj)−uCS(x+qj))χ(x)h
1
2
0 (x). After a set of

coherent states are determined by WFT-CSA, the overall CSA is then set as their summa-
tion together with uCS(x).

The above CSA method, which merges the ideas of PR-CSA and WFT-CSA, is termed
composite coherent states approximation (CCSA). For the ease of reference, we formulate the
CCSA method in the following.

CCSA A. Given a wave function u(x)∈ L2(R). Set the parameters a and b appropriately, and set

qj = j
√

ǫa/b.

CCSA B. Set the energy ratio r=o(ǫ2). Perform the PR-CSA algorithm to derive a first CSA u1,CS(x).

CCSA C. Determine the bad group of energy segments B. For each I jl ∈B, compute the Fourier

coefficients Cjk of the function (u(x+qj)−u1,CS(x+qj))χ(x)h
1
2
0 (x).

CCSA D. Compute the error tolerance E with (5.4) by replacing uCS in (5.4) with u1,CS.

CCSA E. Set mjk = |C2
jk|/L. Sort mjk with I jl ∈B and k∈ I jl. Find a set of mjk with least number

from large to small, so that their summation is larger than ∑I jl∈B,k∈I jl
mjk−E . Denote by

J the set of associated double indices.

CCSA F. Each (j,k)∈J corresponds to a coherent state of the form

CSjk(x)=
Cjk

L
exp

(

2iπk(x−qj)

L

)

h
1
2
j (x).

A CSA is formed by setting

u2,CS(x)= ∑
(j,k)∈J

CSjk(x).

CCSA G. The CSA derived by CCSA is finally set as uCS(x)=u1,CS(x)+u2,CS(x).
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6 Numerical experiments

In all the numerical tests of this section, we set a=1, b=1.4 and L=6
√

4ǫa. In the PR-CSA,
we set r=ǫ3, E1=ǫ3 and E2=100ǫ.

As a first numerical test, we validate the asymptotic accuracy of the phase parameter
recovery algorithm in Section 3. The corrupted wave function is set as

u(x)=ue(x)+ǫRǫ(x),

where

ue(x)=exp

(

− x2

2

)

exp

(

i(sinx+x2)

ǫ

)

.

and

Rǫ(x)=exp

(

− x2

2

)[

exp

(

i(1+
√

ǫ)x

ǫ

)

+exp

(

2ix

ǫ

)]

.

In Fig. 1 we demonstrate the absolute error of Ã, p∗, p and γ at q = 0, derived by the
parameter recovery algorithm. Linear regression shows that the asymptotic accuracies of
these quantities are 1.000, 1.009, 1.494 and 0.985 respectively, which matches our analysis
in Section 3 very well.

In the following, we present three examples to demonstrate the performance of the
proposed composite coherent states approximation (CCSA) method.

Example 6.1. Consider the single-phased WKB wave function

uǫ(x)=exp

(

− x2

2

)

exp

(

ix2

ǫ

)

.

Table 1 compares the WFT-CSA method and the CCSA method, where the relative L2

errors and some other statistics are listed. Num1 stands for the number of coherent states
determined by PR-CSA embedded in CCSA, while Num2 stands for the number by the
local WFT-CSA method in CCSA. For this example, Num2 is always zero. One can see
that the beam number reduction by CCSA is tremendous. For example, when ǫ= 2−13,
the number of coherent states by CCSA is less than one sixtieth of that by WFT-CSA, but
their approximating accuracies remain on the same level. In Fig. 2 we show the coherent

Table 1: Example 6.1.

1/ǫ 29 210 211 212 213

WFT-CSA
Num 15176 23556 36450 55890 85276
Errors 7.56E-4 3.98E-4 2.03E-4 1.03E-4 5.18E-5
Rate - 1.90 1.96 1.97 1.99

CCSA

Num1 261 389 579 857 1266
Num2 0 0 0 0 0
Errors 8.35E-4 4.27E-4 2.12E-4 1.05E-4 5.30E-5
Rate - 1.96 2.01 2.02 1.98
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Figure 1: The decaying rates are 1.000, 1.009, 1.494 and 0.985, respectively.

state distribution in the phase space for both CCSA and WFT-CSA in a small region when
ǫ=2−10. The black line depicts the function p=2q, which is the central curve of the energy
distribution. Compared with that by CCSA, the number of coherent states by WFT-CSA
is more than seventy times larger.
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Figure 2: Example 6.1. ǫ=2−10. Left: beam distribution for CCSA. Right: beam distribution for WFT-CSA.

Example 6.2. Consider the two-phased WKB wave function

uǫ(x)=exp

(

− x2

2

)[

exp

(

ix2

2ǫ

)

+exp

(

− ix2

2ǫ

)]

.

Since the wave function has two branches which cross at point (0,0) in the phase space,
the coherent states approximation method, essentially based on the single-phased pa-
rameter recovery, fails in presenting an acceptable set of phase parameters around this
point. The local WFT-CSA part of CCSA method handles this problem, and acts like a
patch which connects the four broken phase branches, see Fig. 3. Table 2 lists some statis-
tics. Again, CCSA reduces the number of coherent states significantly, and meanwhile, it
maintains the accuracy on the same level as WFT-CSA.
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Table 2: Example 6.2.

1/ǫ 29 210 211 212 213

WFT-CSA
Num 17023 26155 40168 61173 93077
Errors 4.89E-4 2.88E-4 1.60E-4 8.69E-5 4.56E-5
Rate - 1.70 1.80 1.84 1.91

CCSA

Num1 484 740 1118 1672 2486
Num2 2022 2217 2471 2581 2893
Errors 5.49E-4 3.10E-4 1.67E-4 8.98E-5 4.70E-5
Rate - 1.77 1.86 1.86 1.91

Example 6.3. The wave function uǫ is obtained by evolving the Schrödinger equation

iǫΦǫ,t =−ǫ2

2
Φǫ,xx,

Φǫ(x,0)=exp

(

− x2

2

)

exp

(

iexp(−x2)

ǫ

)

to t=2, i.e., uǫ(x)=Φǫ(x,2). The numerical method used is the Fourier transform method
by truncating the domain to [−10,10] and imposing periodic boundary conditions. At the
initial time, the central energy curve, actually the Lagrangian manifold associated with
the WKB initial data, is

{(s,τ)|τ=−2sexp(−s2), s∈R}.

Then, this curve evolves in the phase space obeying the Hamiltonian system

q̇= p, ṗ=0.

At t=2, the displaced curve is

{(s+2τ,τ)|τ=−2sexp(−s2), s∈R}.

Note that though the wave function is single-phased at the initial time, it develops two
caustic points at q≈±1.0775 when t=2.

In Fig. 4 we show the coherent states distribution by the CCSA method. The local
WFT part of CCSA presents a set of coherent states which stick the broken phase branch
together. Table 3 lists the beam number and some other information. One can see that
the coherent states reduction by CCSA, though still obvious, is not as significant as that
for the last two examples. In particular, unlike the last two examples, the relative error
does not degenerate with first order. The reason for this is that the detected errors E

do not decrease with second order, see Table 3. In fact, as ǫ changes from 2−12 to 2−13,
this quantity even increases. To understand why this happens, in Fig. 5 we plot the
error function uǫ(x)−uǫ,CS(x), and the local coherent states distribution. We see that the
coherent states approximation error by PR-CSA increases very fast when the spatial point
approaches the caustic point (See also the zoom-in plots of the error function in Fig. 6).
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Figure 3: Example 6.2. ǫ=2−10. Left: beam distribution for CCSA. Right: zoom-in plot.
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Figure 4: Example 6.3. ǫ=2−10. Left: beam distribution for CCSA. Right: zoom-in plot.
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Figure 5: Example 6.3. ǫ=2−13. Left: error plot. Right: local beam distribution.
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Figure 6: Example 6.3. Error plot. Left: ǫ=2−12. Right: ǫ=2−13.
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Table 3: Example 6.3.

1/ǫ 29 210 211 212 213

CCSA

Num1 337 529 805 1203 1776
Num2 2789 2661 2688 2621 2682
Errors 2.51E-4 2.32E-4 2.27E-4 2.43E-4 2.45E-4
Rate - 1.08 1.02 0.93 0.99

E by (5.4) 2.79E-7 1.66E-7 1.09E-7 1.09E-7 1.13E-7

WFT-CSA
Num 8975 12822 18158 25450 35950
Errors 2.16E-4 2.09E-4 2.11E-4 2.30E-4 2.37E-4

Though the approximating error decreases at the regular region when ǫ gets smaller, the
regular region itself is becoming larger. This explains the abnormal phenomenon observed
from Table 3.

7 Conclusions and future works

Function approximation for highly oscillatory functions is an interesting and important
issue in the computational science. In this paper we considered this problem by utilizing
Gaussian coherent state functions and proposed a composite approximating method. The
traditional windowed Fourier transform method, though powerful, is not efficient when
the energy distribution of the data function is focused around some low-dimensional
manifolds of the phase space. An important case of such kind is the multi-phased WKB
wave function.

It is known that if an analytical expression of the WKB function is available, the Tay-
lor expansion method can present a coherent states approximation with the accuracy to
O(ǫ). However, generally we cannot expect this a priori information, especially when
the wave function is corrupted with noise. We proposed a parameter recovery algorithm
based on the asymptotic expansion of some moments associated with the wave function.
Unlike the optimization-based methods [3, 18], our algorithm is a direct method, which
avoids the fragile stability problem on the initial guess selection.

A simple but important fact about multi-phased wave functions is such that the dif-
ferent phase branches will mostly separate in the Fourier space. Based on this fact, we
proposed the coherent states approximation algorithm based on the phase parameter re-
covery. If neither cross-points nor caustics appear, this algorithm will present a coherent
states approximation with the accuracy to O(ǫ). Otherwise, the coherent states approxi-
mation algorithm will fail in some local regions. In this case, we resort to the windowed
Fourier transform technique. The essence of composite coherent states approximation
method is to handle these two cases by different means, but maintain as much as pos-
sible the benefit of the coherent states approximation algorithm based on the parameter
recovery.

Our numerical experiments showed that the reduction of coherent states is tremen-
dous wherever the parameter recovery is performed successfully. However, the proposed
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composite coherent states approximation method can still be improved in several aspects:

• Coherent states approximation around cross-points and caustics. Numerical exper-
iments showed that the number of coherent states by the local windowed Fourier
transform method is still large. A rough idea for solving the caustic problem is to
utilize the fractional Fourier transform [1].

• Generalize the method into two dimensions. This work might be more tricky, but
intuitively, the idea of parameter recovery algorithm proposed in this paper is still
applicable for two-dimensional single-phased wave functions.

These are the topics of our current interest. The progress will be reported in a forthcoming
paper.
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A Partition of unity by Gaussians

Set

hj(a,b,x)=
1√

2πb2
exp

(

−
(x−qj)

2

2ǫa

)

,

where qj = j
√

ǫa/b. We would like to compute the summations

Sm(a,b,x)
de f
= ∑

j∈Z

(x−qj)
mhj(a,b,x). (A.1)

Since Sm is an
√

ǫa/b-periodic function, we can expand Sm into the Fourier series form

Sm(a,b,x)= ∑
n∈Z

an,mexp

(

2πnibx√
ǫa

)

,

where the n-th Fourier coefficient an,m satisfies the relation

an,m =
b√
ǫa

∫

√
ǫa/b

0
Sm(a,b,x)exp

(

−2πnbix√
ǫa

)

dx

=
1√

2πǫa
∑
j∈Z

∫

√
ǫa/b

0
(x−qj)

mexp

(

−
(x−qj)

2

2ǫa

)

exp

(

−2πnibx√
ǫa

)

dx

=
1√

2πǫa
∑
j∈Z

∫

√
ǫa/b

0
(x−qj)

mexp

(

−
(x−qj)

2

2ǫa

)

exp

(

−
2πnib(x−qj)√

ǫa

)

dx
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=
1√

2πǫa

∫

R
xmexp

(

− x2

2ǫa

)

exp

(

−2πnibx√
ǫa

)

dx

=
(ǫa)

m
2√

2π

∫

R
xm exp

(

− x2

2

)

exp(−2πnibx)dx.

Setting
ξn =2πnb,

we have

an,m=



































exp
(

− ξ2
n

2

)

, m=0,

−iξn
√

ǫaexp
(

− ξ2
n

2

)

, m=1,

(1−ξ2
n)ǫaexp

(

− ξ2
n

2

)

, m=2,

iξn(ξ2
n−3)(ǫa)

3
2 exp

(

− ξ2
n

2

)

, m=3.

Lemma A.1. Set

Rm(ǫ)=
∞

∑
n=1

nmǫn2
.

If ǫ≤2−(m+1)/3, then
Rm(ǫ)≤2ǫ.

Proof. Since

Rm(ǫ)=ǫ+
∞

∑
n=2

nmǫn2
=ǫ+

∞

∑
n=1

(n+1)mǫ(n+1)2

≤ǫ+
∞

∑
n=1

2mǫ3nmǫn2
=ǫ+2mǫ3Rm(ǫ),

we have
Rm(ǫ)≤

ǫ

1−2mǫ3
.

This ends the proof.

Lemma A.2. If exp
(

−2π2b2
)

≤2−4/3, then for any x∈R we have

|S0(a,b,x)−1|≤4exp
(

−2π2b2
)

≡C0(b), (A.2)

|S1(a,b,x)|≤8πb
√

ǫaexp
(

−2π2b2
)

≡C1(b)
√

ǫa, (A.3)

|S2(a,b,x)−ǫaS0(a,b,x)|≤16π2b2ǫaexp
(

−2π2b2
)

≡C2(b)ǫa, (A.4)

|S3(a,b,x)|≤8πb(4π2b2+3)(ǫa)
3
2 exp

(

−2π2b2
)

≡C3(b)(ǫa)
3
2 . (A.5)

Furthermore, if exp
(

−2π2b2
)

≤ǫ≤2−4/3, then there exists a universal constant c such that

C0(b)≤4ǫ, C1(b)≤ c
√

ǫ, C3(b)≤ c
√

ǫ. (A.6)
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Proof. Since
|Sm(a,b,x)−a0,m|≤ ∑

n∈Z\{0}
|an,m|,

noticing

ξn =2πbn, exp(−ξ2
n/2)=exp

(

−2π2b2
)n2

,

and using Lemma A.1, the estimate (A.2)-(A.5) follows directly. Since

C1(b)=8πbexp
(

−2π2b2
)

≤
√

ǫmax
b∈R

(

8πbexp
(

−π2b2
)

)

,

C3=8πb(4π2b2+3)exp
(

−2π2b2
)

≤
√

ǫmax
b∈R

(

8πb(4π2b2+3)exp
(

−π2b2
)

)

,

the estimates (A.6) follows.

B ǫ-scaled Fourier transforms

Given a function f (x)∈L2(Rx), we denote by f̂ (ξ)∈L2(Rξ) the ǫ-scaled fourier transform

f̂ (ξ)=Fǫ[ f ](ξ)=
∫

Rx

f (x)exp

(

− ixξ

ǫ

)

dx.

The inverse transform from a(ξ)∈L2(Rξ) to ǎ(x)∈L2(Rx) is

ǎ(x)=F−1
ǫ [a](x)=

1

2πǫ

∫

Rξ

a(ξ)exp

(

ixξ

ǫ

)

dξ.

It is straightforward to verify that

(Fǫ[ f ],Fǫ[g])=2πǫ( f ,g), Fǫ[ f g]=
1

2πǫ
Fǫ[ f ]∗Fǫ[g], Fǫ[ f ∗g]=Fǫ[ f ]Fǫ[g].

Here ∗ denotes the convolution operator defined by

( f ∗g)(x)=
∫

R
f (y)g(x−y)dy.

C Tight frame by coherent states

Denote

ϕpq(x)=
1

(πǫa)
d
4 (2πǫ)

d
2

exp

(

i

ǫ

(

p ·(x−q)+
i

2a
||x−q||2

))

,

which is parameterized in the phase space Rd
p×Rd

q . Then the set of coherent state func-

tions {ϕpq} forms a tight frame since
∫∫

Rd
p×Rd

q

ϕpq(x)ϕ∗
pq(y)dpdq

=
1

(πǫa)d/2(2πǫ)d

∫∫

Rd
p×Rd

q

exp

(

ip ·(x−y)

ǫ
− ||x−q||2+||y−q||2

2ǫa

)

dpdq
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=
1

(πǫa)d/2

∫

Rd
q

δ(x−y)exp

(

−||x−q||2+||y−q||2
2ǫa

)

dq

=
1

(πǫa)d/2

∫

Rd
q

δ(x−y)exp

(

−||x−q||2
ǫa

)

dq

=δ(x−y).

References

[1] L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE
Trans. Signal Processing 42 (11) (1994), 3084-3091.

[2] A. Arama, A. Boag and E. Heyman, Matching pursuit algorithm for Gaussian beam de-
composition, Antennas and Propagation Society International Symposium (2005), 272-275.

[3] G. Ariel, B. Engquist, N.M. Tanushev, R. Tsai, Gaussian beam decomposition of high fre-
quency wave fields using expectation-maximization, 2010, preprint.

[4] V. Cerveny, M. Popov and I. Psencik, Computation of wave fields in inhomogeneous media
- Gaussian beam approach, Geophys. J.R. Astr. Soc. 70 (1982), 109-128.

[5] S.H. Gray and N. Bleinstein, True-amplitude Gaussian-beam migration, Geophysics 74 (2)
(2009), S11-S23.

[6] E.J. Heller, Time-dependent approach to semiclassical dynamics, J. Chem. Phys., 62 (1975),
1544-1555.

[7] E.J. Heller, Frozen Gaussians: a very simple semiclassical approximation, J. Chem. Phys. 75
(1981), 2923-2931.

[8] M.F. Herman and E. Kluk, A semiclassical justification for the use of non-spreading
wavepackets in dynamics calculations, Chem. Phys. 91 (1984), 27-34.

[9] N.R. Hill, Prestack Gaussian-beam depth migration, Geophysics 66 (4) (2001), 1240-1250.
[10] K. Kay, The Herman-Kluk approximation: derivation and semiclassical corrections, Chem.

Phys. 322 (2006), 3-12.
[11] S.G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans.

Signal Processing 41 (1993), 3397-3415.
[12] M. Motamed and O. Runborg, Taylor expansion and discretization errors in Gaussian beam

superposition, Wave Motion 47 (2010), 421-439.
[13] H.M. Ozaktas and M.F. Erden, Relationships among ray optical, Gaussian beams, and frac-

tional Fourier transform descriptions of first-order optical systems, Optics Communica-
tions 143 (1997), 75-86.

[14] M.B. Porter and H.P. Bucker, Gaussian beam tracing for computing ocean acoustic fields, J.
Acoust. Soc. Am. 82 (4) (1987), 1349-1359.

[15] J. Qian and L. Ying, Fast Gaussian wavepacket transforms and Gaussian beams for the
Schrödinger equation, J. Comput. Phys. (2010), doi: 10.1016/j.jcp.2010.06.043.

[16] A. Shlivinski, E. Heyman, A. Boag and C. Letrou, A phase-space beam summation formu-
lation for ultrawide-band radiation, IEEE Trans. Antennas Propagation 52(8) (2004), 2042-
2056.

[17] N.M. Tanushev, Superpositions and higher order Gaussian beams, Commun. Math. Sci. 6
(2008), 449-475.

[18] N.M. Tanushev, B. Engquist and R. Tsai, Gaussian beam decomposition of high frequency
wave fields, J. Comput. Phys. 228 (2009), 8856-8871.


