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Abstract. Standard compact scheme and upwinding compact scheme have high order
accuracy and high resolution, but cannot capture the shock which is a discontinuity.
This work developed a modified upwinding compact scheme which uses an effective
shock detector to block compact scheme to cross the shock and a control function to
mix the flux with WENO scheme near the shock. The new scheme makes the original
compact scheme able to capture the shock sharply and, more importantly, keep high
order accuracy and high resolution in the smooth area which is particularly important
for shock boundary layer and shock acoustic interactions. Numerical results show
the scheme is successful for 2-D Euler and 2-D Navier-Stokes solvers. The examples
include 2-D incident shock, 2-D incident shock and boundary layer interaction. The
scheme is robust, which does not involve case related parameters.
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M∞ Mach number Re Reynolds number
P Pressure ρ Density
U Velocity E Internal energy

f Original function f̂ Flux at the cell interface

F Original function H Primitive function of f̂
IS WENO smoothness ω WENO weights
Ω Control function
TC Truncation error on coarse grid TF Truncation error on fine grid
MR Multigrid truncation error ratio LR Local left and right slope ratio
CS Compact Scheme MUCS Modified upwinding compact scheme
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1 Introduction

The flow field is in general governed by the Navier-Stokes system which is a system of
time dependent partial differential equations. However, for external flows, the viscosity
is important largely only in the boundary layers. The main flow can still be considered
as inviscid and the governing system can be dominated by the time dependent Euler
equations which are hyperbolic. The difficult problem with numerical solution is the
shock capturing which can be considered as a discontinuity or mathematical singularity
(no classical unique solution and no bounded derivatives). In the shock area, continuity
and differentiability of the governing Euler equations are lost and only the weak solution
in an integration form can be obtained. The shock can be developed in some cases be-
cause the Euler equation is non-linear and hyperbolic. On the other hand, the governing
Navier-Stokes system presents parabolic type behavior and is therefore dominated by
viscosity or second order derivatives in the boundary layer. One expects that the equa-
tion should be solved by a high order compact scheme to get high order accuracy and
high resolution. High order of accuracy is critical in resolving small length scales in flow
transition and turbulence processes. However, for hyperbolic systems, the analysis al-
ready shows the existence of characteristic lines and Riemann invariants. Apparently,
the upwind finite difference scheme coincides with the physics for a hyperbolic system.
History has shown the great success of upwind technologies. From the point of view of
shocks, it makes no sense to use high order compact schemes for shock capturing. High
order compact schemes use all gird points on one grid line to calculate the derivative by
solving a tri-diagonal or penta-diagonal linear system. However, the shock does not have
finite derivatives and downstream quantities cannot cross shock to affect the upstream
points. From the point of view of the above statements, upwind scheme is appropriate for
the hyperbolic system. Many upwind or bias upwind schemes have achieved great suc-
cess in capturing the shocks sharply, such as [4,15], MUSCL [21], TVD [5], ENO [6,17,18]
and WENO (see [7, 12]). All these shock-capturing schemes are based on upwind or bias
upwind technology, which is nice for hyperbolic systems, but is not favorable to the N-S
system which presents parabolic equation behavior. The small length scale is very impor-
tant in the flow transition and turbulence process and thus very sensitive to any artificial
numerical dissipation. High order compact schemes (see [10, 22]) are more appropriate
for simulation of flow transition and turbulence because it is central and non-dissipative
with high order accuracy and high resolution.

Unfortunately, the shock-boundary layer interaction, which is important to high speed
flow, is a mixed type problem which has shock (discontinuity), boundary layer (viscos-
ity), separation, transition, expansion fans, fully developed turbulence, and reattach-
ment. In the case of shock-boundary layer interaction, there are elliptic (parabolic for
time dependent problems) areas (separation, transition, turbulence) and hyperbolic ar-
eas (main flow, shocks, expansion fans), which makes the accurate numerical simulation
extremely difficult if not impossible. We may divide the computational domain into sev-
eral parts: the elliptic (parabolic for time dependent problems), hyperbolic, and mixed.
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The division or detection can be performed by a switch function automatically such as
shock detectors which simply sets Ω= 1 for the shock area and Ω= 0 for the rest. The
switch function may give good results for shock-boundary layer interaction, but it will
have too many logical statements in the code which may slow down the computation.
The switch function could also be case-related and very difficult to adjust. It would also
slow down the convergence for steady problems.

A combination of compact and WENO schemes should be desirable. There are some
efforts to combine WENO with standard central (see [1, 9]) and WENO with upwinding
compact (UCS) schemes (see [1, 14]). Their mixing function is still some kind complex
and has a number of case related adjustable coefficients.

In order to overcome the drawback of the CS scheme, we need to achieve local de-
pendency in shock regions and recover the global dependency in smooth regions. This
fundamental idea will naturally lead to a combination of a local dependent scheme, e.g.,
WENO and global dependent upwinding compact schemes.

This effort is to use WENO to improve a 7th order upwinding compact scheme as we
called as ”modified upwinding compact scheme (MUCS)”, which uses a new shock de-
tector to find the shock location and a new control function to mix the upwinding com-
pact scheme. The mixing function is designed in the following ways: the new scheme
automatically becomes bias when approaching the shock, but rapidly recovers to be up-
winding compact, with high order of accuracy and high resolution.

A few black box type subroutines are written and users can use a compact scheme for
shock and shock boundary layer interaction by calling these subroutines.

2 Compact and WENO schemes

2.1 Compact scheme

Before discussing our new scheme, first let us see how to construct the CS and WENO
schemes.

2.1.1 Primitive function for conservation

For 1-D conservation laws:

ut(x,t)+ fx(u(x,t))=0. (2.1)

When a conservative approximation to the spatial derivative is applied, a semi-discrete
conservative form of the Eq. (2.1) is described as follows:

duj

dt
=−

1

∆x

(

f̂ j+ 1
2
− f̂ j− 1

2

)

, (2.2)

where

f j =
1

∆x

∫ xj+
∆x
2

xj−
∆x
2

f̂ (ξ)dξ,
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and then

( fx)j =−
1

∆x

(

f̂ j+ 1
2
− f̂ j− 1

2

)

.

Note that f is the original function, but f̂ is the flux defined by the above integration.
Eq. (2.2) is an exact formula for the flux, but f̂ is different from f .

Let H be the primitive function of f̂ defined below:

H
(

xj+ 1
2

)

=
∫ xj+

∆x
2

−∞
f̂ (ξ)dξ=

i=j

∑
i=−∞

∫ xi+
∆x
2

xi−
∆x
2

f̂ (ξ)dξ=∆x
j

∑
i=−∞

fi . (2.3)

H is easy to calculate, but it is a discrete function. The numerical flux f̂ at the cell inter-
faces is the derivative of its primitive function H, i.e.,

f̂ j+ 1
2
=H′

j+ 1
2
. (2.4)

All formulae given above are exact without approximations. However, the primitive
function H is a discrete function and we have to use numerical methods to get the deriva-
tives. This will introduce numerical errors.

This procedure, f → H → f̂ → f ′x, was introduced by [17, 18]. There is still one prob-
lem left for numerical methods, which is how to solve (2.4) or how to get more accurate
approximation for derivatives of a discrete data set Hj+1/2.

2.1.2 Data normalization

In order to find a universal formula, we need to normalize the data set, u(i), i=1,··· ,n,

udi f f = |umax−umin|, (2.5a)

u=
u−umin

udi f f
. (2.5b)

Here, umax and umin are the maximum and minimum values of u respectively and u is
normalized. For simplicity, we throw out the hat of u and use u(i) as the normalized data
set.

2.1.3 High-order compact schemes

Traditional finite difference schemes use the idea of Lagrange interpolation. To obtain
nth order of accuracy, a stencil covering n+1 grid points is needed. In other words, the
derivative at a certain grid point depends upon the function values at these n+1 grid
points and only these grid points. In contrast, standard compact schemes (see [10, 22])
use the idea of Hermitian interpolation. By using derivatives as well as function values, a
compact scheme achieves high order of accuracy without increasing the width of stencils.
As discussed in Lele’s paper, a compact scheme has not only high order of accuracy, but
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also high resolution. Fourier analysis indicates that, with the same order of accuracy, a
compact scheme has better spectral resolution than a traditional, explicit finite difference
scheme. For this reason, compact schemes are favorable in the simulation of turbulent
flows where small-length-scale structures are important. Due to the usage of derivatives,
compact schemes usually give us a tri-diagonal or penta-diagonal system. Although the
tri-diagonal matrix is sparse, the inverse of a tri-diagonal matrix is dense, which means
the derivative at a certain grid point depends upon all the grid points along a grid line.
The success of compact schemes indicates that the global dependency is very important
for high resolution. However, while the global dependency is good for resolution it is not
so applicable for shock capturing.

A Pade-type compact scheme could be constructed based on the Hermite interpola-
tion where both function and derivatives at grid points are involved, e.g., an eighth order
finite difference scheme can be constructed if both the function and first order derivative
are used at five grid points. For a function f , we may write a compact scheme by using
five grid points [10]:

β− f ′j−2+α− f ′j−1+ f ′j +α+ f ′j+1+β+ f ′j+2=
b− f j−2+α− f j−1+c f j+α+ f j+1+b+ f j+2

h
. (2.6)

We can get 8th order accuracy by using the above formula based on Taylor series.
If we use a symmetric and tri-diagonal system, by setting β−= β+= 0, we can get a

one parameter family of compact schemes [10]:

α f ′i−1+ f ′i +α f ′i+1=
1

h

[

−
1

12
(4α−1) fi−2−

1

3
(α+2) f j−1+

1

3
(α+2) f j+1+

1

12
(4α−1) fi+2

]

. (2.7)

If α=1/3, we will get a standard sixth order compact scheme

1

3
f ′i−1+ f ′i +

1

3
f ′i+1=h−1

[

−
1

36
fi−2−

7

9
f j−1+

7

9
f j+1+

1

36
fi+2

]

. (2.8)

Note that we only use the compact scheme (CS) for the derivative of the primitive func-
tion to get the flux: f̂ j+1/2=H′

j+1/2.

2.1.4 Upwinding compact scheme

The standard compact scheme does not have dissipation (non-dissipative scheme) and
needs a filter even for smooth area. The upwinding compact scheme can keep the high
order without the filter. Following our conservative primitive function approach, the 7th

order up-winding scheme can be described as follows:
For the positive primitive function H+:

1) Interior points

1

2
H′

j− 3
2
+H′

j− 1
2
+

1

4
H′

j+ 1
2

=
1

h

( 1

240
Hj− 7

2
−

1

12
Hj− 5

2
−

11

12
Hj− 3

2
+

1

3
Hj− 1

2
+

31

48
Hj+ 1

2
+

1

60
Hj+ 3

2

)

. (2.9)
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2) For boundary points

Point 0

H′
j− 1

2
+6H′

j+ 1
2

=
1

h

(

−
69

20
Hj− 1

2
−

17

10
Hj+ 1

2
+

15

2
Hj+ 3

2
−

10

3
Hj+ 5

2
+

5

4
Hj+ 7

2
−

3

10
Hj+ 9

2
+

1

30
Hj+ 11

2

)

. (2.10)

Point 1

1

10
H′

j− 3
2
+H′

j− 1
2
+H′

j+ 1
2

=
1

h

(

−
227

600
Hj− 3

2
−

13

12
Hj− 1

2
+

7

6
Hj+ 1

2
+

1

3
Hj+ 3

2
−

1

24
Hj+ 5

2
+

1

300
Hj+ 7

2

)

. (2.11)

Point 2

1

4
H′

j− 3
2
+H′

j− 1
2
+

1

2
H′

j+ 1
2

=
1

h

(

−
1

60
Hj− 5

2
−

31

48
Hj− 3

2
−

1

3
Hj− 1

2
+

11

12
Hj+ 1

2
+

1

12
Hj+ 3

2
−

1

240
Hj+ 5

2

)

. (2.12)

Point N−1

H′
j− 3

2
+H′

j− 1
2
+

1

10
H′

j+ 1
2

=
1

h

(

−
1

300
Hj− 9

2
+

1

24
Hj− 7

2
−

1

3
Hj− 5

2
−

7

6
Hj− 3

2
+

13

12
Hj− 1

2
+

227

600
Hj+ 1

2

)

. (2.13)

Point N

6H′
j− 3

2
+H′

j− 1
2

=
1

h

(

−
1

30
Hj− 13

2
+

3

10
Hj− 11

2
−

5

4
Hj− 9

2
+

10

3
Hj− 7

2
−

15

2
Hj− 5

2
+

17

10
Hj− 3

2
+

69

20
Hj− 1

2

)

. (2.14)

For the negative primitive function H−, the formula is similar. Here, H+ represents the
primitive function of the positive flux and H− represents the primitive function of the
negative flux. A Lax-Friedrich flux splitting is applied in all computational examples.

2.2 WENO scheme [7]

The basic idea proposed in ENO (see [6]) and WENO (see [7]) schemes is to avoid the
stencil containing a shock. ENO chooses the smoothest stencil from several candidates to
calculate the derivatives. WENO controls the contributions of different stencils according
to their smoothness. In this way, the derivative at a certain grid point, especially one near
the shock, is dependent on a very limited number of grid points. The local dependency
here is favorable for shock capturing and helps capture the non-oscillatory property. The
success of ENO and WENO schemes indicate that the local dependency is critical for
shock capturing.
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2.2.1 Conservation form of derivative

∂U

∂t
+

∂F

∂x
=0. (2.15)

The ENO reconstruction can provide a semi-discretization for the derivative:

∂F

∂x
=

F̂i+ 1
2
− F̂i− 1

2

∆x
,

where F̂ is the flux which must be accurately obtained.

2.2.2 5th order WENO (bias upwind)

1) Flux approximation

In order to get a high order approximation for F̂j−1/2=H′
j−1/2, we can use three different

candidates (Fig. 1) which are all third order polynomials:

E0 : Hj− 7
2
, Hj− 5

2
, Hj− 3

2
, Hj− 1

2
; E1 : Hj− 5

2
, Hj− 3

2
, Hj− 1

2
, Hj+ 1

2
; E2 : Hj− 3

2
, Hj− 1

2
, Hj+ 1

2
, Hj+ 3

2
.

Let us look at candidate E0 first. Assume H is a third order polynomial:

H= a0+a1

(

x−xj− 1
2

)

+a2

(

x−xj− 1
2

)2
+a3

(

x−xj− 3
2

)3
,

we can have

E0 : F̂j− 1
2
=

1

3
Fj−3−

7

6
Fj−2+

11

6
Fj−1, (2.16a)

E1 : F̂j− 1
2
=−

1

6
Fj−2+

5

6
Fj−1+

1

3
Fj, (2.16b)

E2 : F̂j− 1
2
=

1

3
Fj−1+

5

6
Fj−

1

6
Fj+1. (2.16c)

 (a) 

 (b) 

Figure 1: (a) WENO candidates. (b) 5th order WENO scheme.
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2) Optimal weights for high order of accuracy

The final scheme should be a combination of the three candidates:

E=C0E0+C1E1+C2E2.

If we set C0=1/10, C1=6/10, C2=3/10, we will have

∂F

∂x
=

F̂j+ 1
2
− F̂j= 1

2

∆x
=

1

∆x

(

−
1

30
Fj−3+

1

4
Fj−2−Fj−1+

1

3
Fj+

1

2
Fj+1−

1

20
Fj+2

)

+O(∆x5).

Using the Taylor expansion for Fj−k, we find

∂F

∂x
=

F̂j+ 1
2
− F̂j− 1

2

∆x
=F′

j −
1

60
(∆x)5F

(6)
j +

1

140
(∆x)6F

(7)
j +··· , (2.17)

which shows that the scheme with optimal weights and 6 grid points has a 5th order
truncation error. Note that the scheme is a STANDARD 5th order bias upwind finite
difference scheme.

3) Bias upwind weights

Let us define a bias weight for each candidate according to WENO:

ωk=γk

( 2

∑
i=0

γi

)−1
, γk=

Ck

(ε+ ISk)p
, (2.18)

where

ISi=
∫ x

j+ 1
2

x
j− 1

2

∞

∑
k=1

[

p2(x)(k)
]2

h2k−1dx,

IS0=
13

12
(Fj−2−2Fj−1+Fj)

2+
1

4
(Fj−2−4Fj−1+3Fj)

2,

IS1=
13

12
(Fj−1−2Fj+Fj+1)

2+
1

4
(Fj−1−Fj+1)

2,

IS2=
13

12
(Fj−2Fj+1+Fj+2)

2+
1

4
(Fj+2−4Fj+1+3Fj)

2.

The 5th order WENO can be obtained

F̂j− 1
2
=ω0E0+ω1E1+ω2E2, (2.19a)

F̂j− 1
2
=ω0,j− 1

2

(1

3
Fj−3−

7

6
Fj−2+

11

6
Fj−1

)

+ω1,j− 1
2

(

−
1

6
Fj−2+

5

6
Fj−1+

1

3
Fj

)

+ω2,j− 1
2

(1

3
Fj−1+

5

6
Fj−

1

6
Fj+1

)

. (2.19b)

WENO is a scheme with great successes by many users. However, since the scheme
has 5th order dissipation everywhere and third order dissipation near the shock, some
researchers in the DNS/LES community still consider the scheme is too dissipative for
flow transition and turbulence. Let us turn to compact schemes for assistance.
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3 Modified compact scheme

Compact scheme is great to resolve small length scales, but cannot be used for the cases
when a shock or discontinuity is involved. Our new modified compact scheme is an
effort to remove the weakness by introducing WENO flux when the computation is ap-
proaching the shock.

3.1 Effective new shock detector

A very effective shock detector [13] has been proposed by C. Liu. The detector has two
steps. The first step is to check the ratio of the truncation errors on the coarse and fine
grids and the second step is to check the local ratio of the left and right hand slopes. The
currently popular shock/discontinuity detectors such as Harten’s, Jameson’s and WENO
can detect shocks, but mistake high frequency waves and critical points as shocks. The
schemes then damp the physically important high frequency waves. Preliminary results
show that the new shock/discontinuity detector is very delicate. The new detector can
detect all shocks including strong, weak and oblique shocks or discontinuities in func-
tion and first, second, and third order derivatives without artificial case related constants.
However the new detector never mistakes high frequency waves, critical points and ex-
pansion waves as shock. This will overcome the bottle neck problem with numerical
simulation for the shock-boundary layer interaction, shock-acoustic interaction, image
process, porous media flow, multiple phase flow, detonation wave and anywhere the
high frequency waves are important, but discontinuity exists and is mixed with high fre-
quency waves. To introduce our new two step shock/discontinuity detector, we need to
introduce some popular shock detectors first.

1) Harten’s switch function and Jameson’s shock detector

Harten (1978) defined an automatic switch function that is able to detect large changes
in the variation of the function values fi. It generates values between 0 and 1, where 0 is
considered smooth and 1 is considered non-smooth.

The switch is defined as

θj+ 1
2
=max

(

θ̂j, θ̂j+1

)

, (3.1)

with

θ̂i =















∣

∣

∣

∣

∣

∣α
i+ 1

2

∣

∣−
∣

∣α
i− 1

2

∣

∣

∣

∣α
i+ 1

2

∣

∣+
∣

∣α
i− 1

2

∣

∣

∣

∣

∣

∣

p

, if
∣

∣αi+ 1
2

∣

∣+
∣

∣αi− 1
2

∣

∣> ε,

0, otherwise,

where αi+1/2= fi+1− fi, and ε is a suitably chosen measure of insignificant variation in f .
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Jameson’s (1981) shock detector is similar, which can be described as:

νi =
|pi−1−2pi+pi+1|

|pi−1|+2|pi|+|pi+1|
, (3.2)

which is related to the second order derivative of the pressure.

2) WENO

The WENO weights use smoothness measurements that evaluate the changes in the
variation of the function values fi. Assuming that the three weights have equal contribu-
tion, we can determine that a function is smooth if all values are approximately 1/3.

ωi=αi

(

∑
j

αj

)−1
, αi=(ISi+ε)−2, i=0,1,2, (3.3)

where

IS0=
13

12
( fi−2−2 fi−1+ fi)

2+
1

4
( fi−2−4 fi−1+3 fi)

2, (3.4a)

IS1=
13

12
( fi−1−2 fi+ fi+1)

2+
1

4
( fi−1− fi+1)

2, (3.4b)

IS2=
13

12
( fi+2−2 fi+1+ fi)

2+
1

4
( fi+2−4 fi+1+3 fi)

2. (3.4c)

3) New two step shock/discontinuity locator [13]

Step 1 Determine the multigrid ratio of the approximation of the sum of the 4th, 5th and 6th truncation
errors for [F = f +smooth sine wave of small amplitude] and select the points where the
ratio is smaller than 4. Theoretically, the ratio of the 4th order truncation error of coarse and
fine grids should be 16, but any function that has a ratio of 4 will be considered smooth and
passing the test. The points which have a ratio less than 4 will be picked out for the second
left and right hand slope ratio check.

The multigrid truncation error ratio check is:

MR(i,h)=
TC(i,h)

TF(i,h)+ε
,

where

TC(i,h)=T4(i,2h)+T5(i,2h)+T6(i,2h)=
| f

(4)
i |(2h)4

4!
+
| f

(5)
i |(2h)5

5!
+
| f

(6)
i |(2h)6

6!
, (3.5a)

TF(i,h)=T4(i,h)+T5(i,h)+T6(i,h)=
| f

(4)
i |(h)4

4!
+
| f

(5)
i |(h)5

5!
+
| f

(6)
i |(h)6

6!
, (3.5b)

where TF(i,h) is the truncation error sum (4th, 5th and 6th) calculated at the fine grid with n
points, TC(i,h) is the truncation error sum calculated at the coarse grid with n/2 points by
Taylor expansion. TF(i,h) and TC(i,h) have 4th, 5th and 6th order derivatives, which are all
calculated by a 6th order compact scheme.
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Step 2 Calculate the local left and right slope ratio check only at the points which have first ratio less
than 4.

The new local left and right slope ratio check is:

LR(i)=
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∣

∣

∣

∣
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, (3.6)

where f ′R =3 fi−4 fi+1+ fi+2, f ′L =3 fi−4 fi−1+ fi−2 and ε is a small number to avoid division
by zero.

Step 3 Optional Step 3: Use a cutoff value of 0.8 to create a 0/1 switch function on the result of
Step 2. If the value is zero, f is considered locally smooth, and if the value is one, f is a
shock/discontinuity at that point.

Note that Liu’s first step always checks f +σsin(kπx+φ) instead of f , where σ is a small
number. Since all derivatives are calculated by a subroutine with a standard compact
scheme, the cost of two step checks is relatively inexpensive.

In order to find a universal formula, we need to normalize the data set, u(i), i=1,··· ,n,

udi f f = |umax−umin|, (3.7a)

u=
u−umin

udi f f
. (3.7b)

Here, umax and umin are the maximum and minimum values of u respectively and u is
normalized. For simplicity, we disregard the hat of u and use u(i) as the normalized data
set. However, this normalization is for finding the shock locator only and not for the
function itself which we calculate for derivatives.

3.2 Control function for using WENO to improve CS and UCS

3.2.1 Basic idea of the control function

The new shock detector can provide accurate location of shocks including weak shocks,
strong shocks, oblique shocks and discontinuity in function, first, second and third order
derivatives. However, the detector is a switch function and gives one in shock and zero
for others. As we mentioned above, a switch function cannot be directly used to mix CS
and WENO and we must develop a rather smooth function to mix CS (3.8a) and WENO
(3.8b):
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where F is the original function and H is a primitive function of F and H′ is the flux
F̂=H′.

We defined a new control function Ω:

Ω∗CS+(1−Ω)∗WENO, (3.9)

which will lead a tri-diagonal matrix system which is the core of our new scheme:
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. (3.10)

When Ω= 1.0, the equation becomes a standard sixth order compact scheme, but when
Ω=0.0 the scheme is a standard WENO scheme.

For the modified upwinding compact scheme (MUCS), the final matrix becomes:
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. (3.11)

3.2.2 Construction of the control function

In our new shock detector, we define

MR(i,h)=
TC(i,h)

TF(i,h)+ε

as a ratio of coarse grid truncation over find grid truncation. MR should be around 16.0
if the function has at least 6th order continuous derivatives. Here we define

Ω=1.0−min
{

1.0,
8.0

MR(i,h)

}

∗LR, (3.12)

where MR is the multigrid global truncation error ratio and LR is the local ratio of left
and right side angle ratio. If the shock is met, MR is small, LR is 1 and Ω=0.0, The WENO
will be used and the CS is fully blocked. If the area is smooth, MR should be around 16.0
and LR is close to zero (left and right angle are same). Additional requirements are set
such that any point must compare with left and right neighboring points. We pick the
largest Ω among the three neighboring points.
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The reason we pick MR=8.0 is that we treat the fourth order continuous function as
smooth function and only need half of LR for Ω. It is easy to find that there are no case
related adjustable coefficients which is quite different from many other published hybrid
schemes. The shock detector is very reliable and the new scheme is very robust which
can be found from the examples of our computation.

4 Computational results by MUCS

4.1 MUCS for 2-D Euler equations

An incident shock case with an inflow Mach number of 2 and attach angle of ϑ=35.241◦

was chosen as a sample problem to compare the WENO and MUCS results with the exact
solution. Since the incident shock has exact solution, it is a good prototype problem for
scheme validation. It is also a difficult problem to get sharp shocks without visible oscilla-
tion for any high order scheme. Three sizes of grids are selected, 33×33 as coarse, 65×65
as middle, and 129×129 as fine. The computational domain is x= 2.0 and y= 1.1 and a
uniform grids was used. We find that a modified compact scheme (MCS) worked well on
coarse and middle size grids, but has oscillations on the fine grids (129×129). However,
modified upwinding compact scheme or MUCS does not have serious oscillation, even
better than WENO after the second shock. On the other hand MUCS captured the shock
sharper than WENO for all grids. The control (mixing) function did use WENO (red
area) to block the UCS and used UCS for smooth area (blue area). All of the comparisons
are made by using same code and same boundary treatment but different subroutines
(WENO or MUCS) for derivatives only. Figs. 2 and 3 provide the numerical results and
comparison on a coarse grid of 33×33. Figs. 4 and 5 give the numerical results and com-
parison on a middle grid of 65×65. The fine grid of 129×129 results are depicted on
Figs. 6-8. From these figures we can find the 7th order MUCS results are very comparable
with the exact solution and are better than that obtained by 5th order WENO scheme.

4.2 MUCS for 2-D shock boundary layer interaction

4.2.1 2-D N-S code validation

In order to test if the current code can work for 2-D and 3-D shock-boundary layer in-
teraction, a 2-D incident shock-boundary layer interaction (Fig. 9) was studied by the
current code (Xie et al. 2009). The Reynolds number is 105 and the Mach number was
set to 2.15. The overall pressure ratio is 1.55. For comparison, the inflow condition was
set as that investigated by Degrez et al. (1987). Their experimental work has shown that
the shock-boundary layer interaction is laminar and two-dimensional. Therefore, we can
do a 2-D numerical simulation and compare with their computational and experimental
results. The computational grids is 257×257. The grid stretching in the streamwise di-
rection is 1.01. The stretching in normal direction is 1.015. A 2-D Navier-Stokes equation
is solved as the governing equation. Fig. 10 shows the computational results by current
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(a)
 (b) 

(b) (c)

Figure 2: Numerical test for 2-D incident shock on an 33×33 grid. (a) Pressure contour; (b) Mach number;
(c) control function (red is WENO and blue is UCS).

(a) (b)

Figure 3: Pressure distribution on coarse grids (33×33). (a) On the wall k=1; (b) k=10.

(a) (b)
   (a) 

(c)
(b)

Figure 4: Same as Fig. 2 except on an 65×65 grid.

(a)
   (a)

(b)

Figure 5: Pressure distribution on middle grids (65×65). (a) On the wall k=1; (b) k=20.
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(a)
(b)

(b) (c)

Figure 6: Same as Fig. 2 except on an 129×129 grid.

(a) (b) (c)

Figure 7: Pressure distribution at wall (k=1) on fine grids (129×129). (a) 7th order MUCS and exact; (b) 7th

order MUCS and 5th order WENO; (c) locally enlarged comparison.

(a)
   (a)

(b)

Figure 8: Pressure distribution on fine grids (129×129). (a) k=10; (b) k=20.

code and Fig. 11 gives a comparison of our computational results with the results given
by Degrez et al. It is observed that Degrez’s computation did not match his experimental
results well, and our computational results do not match very well either. However, the
discrepancy between computation and experiment is in the acceptable range.
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Figure 9: Sketch of incident shock-boundary layer interaction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Top is a normal view. (a) Pressure distribution; (b) density distribution; (c) Mach number distribu-
tion; (d) temperature distribution. Bottom is stretched in the normal direction by a factor of 5. (e) Pressure
distribution; (f) density distribution; (g) Mach number distribution; (h) temperature distribution.

(a) (b) (c)

Figure 11: Comparison of velocity profiles at different locations. (The red one is our computation, the black
solid line and black square are Degrez’s computation and experiment respectively.)
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4.2.2 Computation of 2-D incident shock-boundary layer interaction

In order to compare the performance of our MUCS scheme with standard WENO, we
select an incident shock case with Mach number 3 and Reynolds number Re=3×104 and
the attack angle ϑ=32.24◦. Three grids were selected: 33×33 as coarse, 65×65 as middle,
and 129×129 as fine. The solution at a grid of 257×257 is considered as a reference
solution. Fig. 12 gives a distribution contour for pressure with stream track. The incident
shock, leading shock, separation shock, expansion waves and reflecting shock are all
clearly captured. A structure of separation bubble with 5 vertexes is captured. Fig. 13
depicts the distribution of control function of OMGX and OMGZ in x- and z- directions.
The blue area is the area where compact scheme was used and the red area represents
the area where the WENO scheme was applied. Here, we use the results of grids 257×
257 as a reference. Figs. 14 and 15 provide a distribution of pressure, control functions
OMGX, OMGZ, obtained by MUCS on a grid of 129×129. The results on the grids of
129×129 by MUCS agree well with our reference results. Fig. 16 gives a comparison of
7th order MUCS and 5th order WENO schemes with the reference results on the pressure
distribution on the surface wall. It can be found that the results obtained by MUCS are
closer to the reference results. Table 1 provides a comparison of the size of the separation
bubbles on three grid levels and it is found that the grid convergence is acceptable. All
comparisons are made by a same code at same time step with different schemes and
different grids.

Table 1: Size of separation bubbles caused by shock/boundary layer interaction.

Grid Number 65×65 129×129 257×257
Size of separation bubbles 1.10 1.01 0.97

4.3 Problems with compact scheme and modified compact scheme (MCS)

For the 2-D Euler solver, the pressure distribution contour obtained by MCS looks fine.
However, MCS has a serious problem with artificial oscillations around the shock. Since
the MCS will become a compact scheme in the smooth area which is non-dissipative,
any low frequency error wave generated by shock overshooting will never be damped
(Fig. 18). Since the wave generated by numerical shock overshooting, which is in the
range of grid resolution, the error wave will remain forever if MCS is used. However, if
we use MUCS, the scheme becomes UCS which has dissipation after the shock and the
numerical shock overshooting will be damped quickly and the physical solution can be
obtained.

There is a serious question if the high order central compact scheme along with the
high order filter can still be used for DNS or LES for shock boundary layer interaction?
Unfortunately, we have to conclude that, in general, the numerical method of the high
order compact scheme along with the high order filter may not be useable for high order
DNS or LES for shocks.



C. Liu, P. Lu, M. Oliveira and P. Xie / Commun. Comput. Phys., 11 (2012), pp. 1022-1042 1039

(a) (b)

Figure 12: (a) Pressure distribution and stream traces by MUCS on grid of 257×257 as reference; (b) locally
enlarged.

(a) (b)

Figure 13: Control function on girds of 257×257. (a) Omega in x-direction; (b) Omega in z-direction (red area
is WENO and blue area is UCS).

(a) (b)

Figure 14: Pressure distribution obtained by MUCS on grids of 129×129. (a) Regular; (b) locally enlarged.

(a) (b)

Figure 15: Control function on girds of 129×129. (a) Omega in x-direction; (b) Omega in z-direction (red area
is WENO and blue area is UCS).



1040 C. Liu, P. Lu, M. Oliveira and P. Xie / Commun. Comput. Phys., 11 (2012), pp. 1022-1042

(a) (b)

Figure 16: Pressure distribution on the wall. (a) Results on grids of 257×257 as reference; (b) comparison of

7th order MUCS and 5th order WENO on grid 129×129.

(a) (b)

Figure 17: Pressure distribution. (a) Results on grids of 257×257 at k=50 as reference; (b) comparison of 7th

order MUCS and 5th order WENO on grid 129×129 at k=50.

(a) (b)

Figure 18: Problems with modified compact scheme (MCS) for 2-D Euler equation on grids of 129×129. (a)
Comparison of MCS and MUCS; (b) locally enlarged comparison of MCS, MUCS, and exact solution.

5 Conclusions

Modified up-winding compact scheme (MUCS) with a new shock detector and new mix-
ing function, which uses WENO to improve upwind compact scheme, can be used for
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Euler and Navier-Stokes equations for sharp shock capturing and high resolution for
small length scales. The new scheme, MUCS, does not have case-related parameters.
Modified central compact scheme (MCS) may give better resolution for shock-boundary
layer interaction than MUCS, but it failed to pass the test for the fine grid Euler equation.
The problem with MCS is that the central compact scheme does not have dissipation
and cannot damp the numerical oscillations caused by the shock overshooting. On the
other hand, the high order filter can only remove high frequency numerical errors. Once
the low frequency error is generated by the numerical scheme, CS cannot remove them.
Therefore, unfortunately, high order CS along with high order filter cannot work well
for DNS or LES for high speed flow with a shock. Modified central compact scheme
(MCS) needs further improvement to pass the fine grid check for the Euler equations.
Additional carefully selected dissipations may be needed for MCS.
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