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Abstract. In this paper, the high-order space-time discontinuous Galerkin cell vertex
scheme (DG-CVS) developed by the authors for hyperbolic conservation laws is ex-
tended for time dependent diffusion equations. In the extension, the treatment of the
diffusive flux is exactly the same as that for the advective flux. Thanks to the Riemann-
solver-free and reconstruction-free features of DG-CVS, both the advective flux and the
diffusive flux are evaluated using continuous information across the cell interface. As
a result, the resulting formulation with diffusive fluxes present is still consistent and
does not need any extra ad hoc techniques to cure the common “variational crime”
problem when traditional DG methods are applied to diffusion problems. For this
reason, DG-CVS is conceptually simpler than other existing DG-typed methods. The
numerical tests demonstrate that the convergence order based on the L2-norm is op-
timal, i.e. O(hp+1) for the solution and O(hp) for the solution gradients, when the
basis polynomials are of odd degrees. For even-degree polynomials, the convergence
order is sub-optimal for the solution and optimal for the solution gradients. The same
odd-even behaviour can also be seen in some other DG-typed methods.

AMS subject classifications: 65M99, 76M25

Key words: High-order method, space-time method, discontinuous Galerkin (DG) method, cell-
vertex scheme (CVS), diffusion equations.

1 Introduction

Recently, the authors developed a compact high order space-time scheme for hyperbolic
conservation laws [1–4]. The method integrates the best features of the space-time Con-
servation Element/Solution Element (CE/SE) [5] method and the discontinuous Galerkin
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Figure 1: Solution elements (SEs) and conservation elements (CEs) in the x-t domain. Left: solution elements;
right: conservation elements.

(DG) method. The core idea is to construct a staggered space-time mesh through alter-
nate cell-centered CEs and vertex-centered CEs (cf. Fig. 1 (right)) within each time step.
Inside each SE (cf. Fig. 1 (left)), the solution is approximated using high-order space-time
DG basis polynomials. The space-time flux conservation is enforced inside each CE us-
ing the DG discretization. The solution is updated successively at the cell level and at
the vertex level within each physical time step. For this reason and the method’s DG
ingredient, the method was named as the space-time discontinuous Galerkin cell-vertex
scheme (DG-CVS) [3].

DG-CVS equally works on higher dimensions on arbitrary grids. Fig. 2 shows the
conservation elements and solution elements on quadrilateral meshes and triangular
meshes. Obviously, the definitions of CEs and SEs on higher dimensions are analogous
to that for 1-D meshes (cf. Fig. 1). Fig. 3 demonstrates the resulting dual mesh at the
cell level and the vertex level for both rectangular meshes and triangular meshes, respec-
tively.

A summary of the main features of DG-CVS is given as follows:

• Based on space-time formulation. The space-time formulation is advantageous in han-
dling moving boundary problems since it automatically satisfies the so-called Geo-
metric Conservation Law.

• High-order accuracy in both space and time.

• Riemann solver free. In contrast to the traditional DG methods, DG-CVS does not
need any numerical flux. The Riemann-solver-free feature offers two-fold advan-
tages. First, this Riemann-solver-free approach eliminates some pathological be-
haviours associated with some Riemann solvers. Second, it is suitable for some
hyperbolic PDE systems whose eigenstructures are not explicitly known.

• Reconstruction free. DG-CVS solves for the solution and its all spatial and temporal
derivatives simultaneously at each space-time node, thus eliminating the need of
reconstruction.

• Suitable for arbitrary spatial meshes.

• Highly compact regardless of order of accuracy.
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Figure 2: Conservation elements (CEs) and solution elements (SEs) in the x-y-t domain. First row: CEs for
rectangular meshes; second row: CEs for triangular meshes; third row: SEs for rectangular meshes; fourth row:
SEs for triangular meshes.

Figure 3: Dual meshes for the solution updating at the cell level (in red) and the vertex level (in black). Left:
rectangular mesh; right: triangular mesh.
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In this paper, we aim to show that DG-CVS for hyperbolic conservation laws can be
straightforwardly extended to time dependent diffusion equations by simply incorporat-
ing the diffusive flux into the space-time flux. This method appears conceptually simpler
than existing DG-based diffusion equation solvers.

It is well known that it is non-trivial to solve diffusion equations using the traditional
DG method. In traditional DG methods, the solution between two adjacent cell interfaces
is discontinuous. Integration by parts leads to the surface integral where a numerical flux
must be provided. For the first order advective flux, the numerical flux can be obtained
by considering the left and the right states of the solution across the cell interface. This
approach is in spirit the same as the one for the finite volume method (e.g., Riemann
solvers) and is a standard approach in many DG methods. However, for the second
order diffusive flux, similar integration by parts alone has been shown to result in an
inconsistent formulation since it suffers from the so-called “variational crime”. In other
words, the solution which satisfies the weak form does not satisfy the original differential
equation. Actually, significant errors result from such simple “integration by parts” on
diffusive terms.

To cure this, various methods have been proposed. In the method of Baumann-Oden
[6], extra jump terms are added to the element boundaries to eliminate the inconsistency.
In the Local Discontinuous Galerkin (LDG) of Cockburn and Shu [7] method which was
motivated by the DG method of Bassi and Rebay [8], the second order diffusion equation
is rewritten into a first order system which is further solved by the standard DG method.
Refer to the unified analysis of various DG methods for elliptic equations by Arnold et al.
[9] for a comprehensive comparison between various DG methods including the earlier
interior penalty (IP) method. The space-time DG method of [10, 11] et al. is conceptually
similar to LDG except that it makes no distinction between space and time in its DG
discretization. More recently, the compact DG method of Peraire and Persson [12] is a
variant of the LDG method with improved compactness. The recovery DG method of
van Leer [13] uses the locally recovered solution to construct the diffusive fluxes. The
central local discontinuous Galerkin methods by Liu et al. [14] which are also variants of
the LDG method are built on the overlapping grids to avoid the need of numerical fluxes.

In the current DG-CVS, as will be shown in this paper, the diffusive flux is treated
in exactly the same way as that for the advective fluxes. The resulting formulation does
not suffer from the variational crime. The reason is simple. In DG-CVS, the space-time
flux conservation is enforced in the staggered space-time mesh. Both the advective and
diffusive fluxes across the spatial cell interface are evaluated using the smooth solution
at the previous time level. Therefore, all spatial fluxes are continuous and unique across
the cell interface. As a result, no extra reconstruction or recovery or ad hoc penalty and
coupling terms are needed to ensure the consistency of the variational form for diffusive
terms. For this reason, DG-CVS is conceptually simper than other existing DG methods
for diffusion equations.

This paper aims to demonstrate the efficacy and performance, especially the conver-
gence rates, of DG-CVS for transient diffusion equations. In [3], DG-CVS has been shown
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to exhibit optimal convergence rates based on discrete l-norms for hyperbolic equations,
i.e. DG-CVS is (p+1)th order accurate when the basis polynomial is of degree p. In this
paper, we find that, if the same l-norms are used to evaluate the errors for diffusion equa-
tions, inconsistent convergence behavior will be observed. To attain the optimal conver-
gence rate for both advection and diffusion equations, the L2-norm which is based on the
continuous integration should be used instead. We will also find that this L2 optimality
only holds when the degree of basis polynomials is odd. For even degree approximation,
the convergence is suboptimal. In addition, the L2 optimality for odd degree approxi-
mation is found to be mesh independent. Similar odd-even behavior for odd and even
approximations have also been observed in some other DG-typed methods [15–19].

The rest of the paper is organized as follows. Section 2 describes the basic discretiza-
tion formulation based on DG-CVS. Section 3 presents some test results by solving time
dependent advection-diffusion equations, heat equations and Burgers equation on both
structured and unstructured meshes using DG-CVS. In that section, the convergence per-
formance of DG-CVS will be presented and discussed. Finally, general concluding re-
marks are given in Section 4.

2 DG-CVS formulation for advection-diffusion equations

To illustrate the formulation of DG-CVS, we consider the following one-dimensional
scalar advection-diffusion problem with appropriate initial and boundary conditions

∂u(x,t)

∂t
+

∂ f (u)

∂x
−ν

∂2u

∂x2
=0, (x,t)∈ [xL ,xR]×[0,T], (2.1)

where u is the unknown solution, f is the advective flux and ν is the constant diffusion
coefficient.

2.1 Space-time discontinuous Galerkin formulation

Following the idea of the discontinuous Galerkin (DG) method, an approximate solution
uh is sought within each space-time solution element (SE), denoted as K. When restricted
to the SE, uh belongs to the finite dimensional space U(K) such that

uh(x,t)=
N

∑
j=1

φj(x,t)sj, (2.2)

where {φj(x,t)}N
j=1 are some type of space-time polynomial basis functions defined within

the solution element, {sj}
N
j=1 are the unknowns to be determined and N is the number of

basis functions depending on the degree of the polynomial function.
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The first spatial derivative of the solution can be expressed in terms of the basis func-
tions as follows.

∂uh(x,t)

∂x
=

N

∑
j=1

∂φj

∂x
sj. (2.3)

Galerkin orthogonality states that for all test functions vh ∈U(K)

∫

ΩK

vh

(

∂uh

∂t
+

∂ f h

∂x
−ν

∂2uh

∂x2

)

dΩ=0, (2.4)

where ΩK is the space-time conservation element (CE) corresponding to the solution el-
ement K. Note that the conservation element is identical to the solution element except
for the volumeless vertical spike in the solution element as seen in Fig. 1. The space-time
flux conservation in weak form as in (2.4) is for each individual space-time conservation
element. Therefore, the current method can be considered as a space-time discontinuous
Galerkin method.

It is sufficient to replace vh in Eq. (2.4) by each of the basis functions {φi}
N
i=1. Integrat-

ing the resulting weak form by parts yields

∫

ΩK

[

∂φi

∂t
uh+

∂φi

∂x

(

f h−ν
∂uh

∂x

)]

dΩ=
∫

Γ
φiF

h
ndΓ, (2.5)

where

Fh
n =Fh ·n=

(

f h−ν
∂uh

∂x
,uh

)

·(nx,nt) (2.6)

is the space-time flux normal to the CE boundary. n=(nx,nt) is the outward unit normal
of the boundary of the space-time conservation element. Γ= ∂Ωk is the boundary of the
CE. Note that the partial integration is also performed on the time-dependent term, which
is a salient difference between space-time DG methods and semi-discrete DG methods.
As can be seen, the formulation in (2.5) contains both the volume integral and the surface
integral.

2.2 Fluxes across the space-time cell interface

The advective flux f in (2.5) can be a linear or nonlinear function of the advected quantity
depending on the specific problem. Here the linear case is presented for simplicity’s sake.
When the flux f is a linear function of u, e.g., f = au where a is the constant advection
speed. Then Eq. (2.5) becomes

∫

ΩK

[

∂φi

∂t
uh+

∂φi

∂x

(

auh−ν
∂uh

∂x

)]

dΩ=
∫

Γ
φiF

h
ndΓ. (2.7)

From here on, for notational simplicity, the superscript ’h’ is omitted.
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Figure 4: Illustration of space-time flux conservation element (explicit scheme).

To further illustrate the DG-CVS formulation, especially the flux terms on the right
hand side of Eq. (2.7), a cell level CE shown in Fig. 4 is taken as a specific example. In
Fig. 4, m is the spatial index and n is the temporal index. Here the solution at (m+ 1

2 ,n+
1
2) is being updated using the known information at nodes (m,n) and (m+1,n) at the
previous half time level. As shown in Fig. 4, the CE boundary Γ is divided into five
sections Γ1, Γ2, Γ3, Γ4 and Γ5 where

• Γ1 belongs to the SE associated with the cell-level node (m+ 1
2 ,n+ 1

2 ) where the
solution is to be determined.

• Γ2 and Γ3 belong to the SE associated with the vertex-level node (m,n) where the
solution is already known and

• Γ4 and Γ5 belong to the SE associated with the vertex-level node (m+1,n) where
the solution is also already known.

In addition, the interior volume of the CE belongs to the SE (m+ 1
2 ,n+ 1

2). Within the SEs
associated with space-time nodes (m,n) and (m+1,n), the solution and its gradient have
been obtained in the previous time level and can be evaluated according to Eqs. (2.2) and
(2.3). The fluxes across Γ2, Γ3, Γ4 and Γ5 can be correspondingly computed. As a result,
(2.7) becomes

∫

ΩK

[

∂φi

∂t
u(m+ 1

2 ,n+ 1
2 )+

∂φi

∂x

(

au(m+ 1
2 ,n+ 1

2 )−ν
∂u(m+ 1

2 ,n+ 1
2)

∂x

)]

dΩ−
∫

Γ1

φiF
(m+ 1

2 ,n+ 1
2 )

n dΓ

=
∫

Γ2+Γ3

φiF
(m,n)
n dΓ+

∫

Γ4+Γ5

φiF
(m+1,n)
n dΓ, (2.8)

where the left hand side contains the unknowns at the time level tn+1/2 and the right hand
side contains the known solution at the time level tn. In (2.8), the superscripts represent
the space-time indices in the space-time domain, as shown in Fig. 4.

As can be seen here, the diffusive flux is treated exactly the same way as that for
the advective flux. Both the advective flux and the diffusive flux across the space-time
boundaries of two adjacent conservation elements are evaluated using the continuous
information provided by the nodes at the previous half time level. In the derivation of the
formulation, no Riemann solvers are employed for the advective flux and no techniques
like penalty terms for the diffusive flux. This is the most essential feature distinguishing
the current method from other DG methods.
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2.3 Further simplification of the formulation

On boundary Γ1, the outward unit normal n=(0,1). Therefore,

F
(m+ 1

2 ,n+ 1
2 )

n =u(m+ 1
2 ,n+ 1

2 ) on Γ1. (2.9)

Similarly, on boundaries Γ3 and Γ4, the outward unit normal n=(0,−1), leading to

F
(m,n)
n =−u(m,n) on Γ3 and F

(m+1,n)
n =−u(m+1,n) on Γ4. (2.10)

For stationary meshes, the side boundaries of the CE are vertical and thus have outward
unit normals n=(±1,0). As a result,

F
(m,n)
n =−

(

au(m,n)−ν
∂u(m,n)

∂x

)

on Γ2, (2.11a)

F
(m+1,n)
n = au(m+1,n)−ν

∂u(m+1,n)

∂x
on Γ5. (2.11b)

Substituting all these into (2.8) to obtain

∫

ΩK

[

∂φi

∂t
u(m+ 1

2 ,n+ 1
2 )+

∂φi

∂x

(

au(m+ 1
2 ,n+ 1

2)−ν
∂u(m+ 1

2 ,n+ 1
2 )

∂x

)]

dΩ−
∫

Γ1

φiu
(m+ 1

2 ,n+ 1
2 )dΓ

=−
∫

Γ3

φiu
(m,n)dΓ−

∫

Γ2

φi

(

au(m,n)−ν
∂u(m,n)

∂x

)

dΓ

−
∫

Γ4

φiu
(m+1,n)dΓ+

∫

Γ5

φi

(

au(m+1,n)−ν
∂u(m+1,n)

∂x

)

dΓ. (2.12)

Eq. (2.12) is for updating the solution at the space-time node (m+ 1
2 ,n+ 1

2) which is at the
cell level. For vertex level nodes, similar formulation can be derived.

A linear equation system can be obtained from (2.12). If we substitute (2.2) and (2.3)
into (2.12), the left hand side of (2.12) becomes

∫

ΩK

∂φi

∂t

(

N

∑
j=1

φjs
(m+ 1

2 ,n+ 1
2 )

j

)

dΩ+a
∫

ΩK

∂φi

∂x

(

N

∑
j=1

φjs
(m+ 1

2 ,n+ 1
2)

j

)

dΩ

−ν
∫

ΩK

[

∂φi

∂x

(

N

∑
j=1

∂φj

∂x
s
(m+ 1

2 ,n+ 1
2 )

j

)]

dΩ−
∫

Γ1

φi

(

N

∑
j=1

φjs
(m+ 1

2 ,n+ 1
2 )

j

)

dΓ. (2.13)

Replacing the left hand side of (2.12) by (2.13), we obtain the following matrix-vector
form

Ms=b, (2.14)
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where M is an N×N matrix, s is an N×1 vector containing the unknowns, {sj}
N
j=1, and

b is another N×1 vector containing the right hand side of (2.12) which is known. The
elements of M and b, Mij and bi are explicitly given as

Mij =
∫

ΩK

[

∂φi

∂t
φj+a

(

∂φi

∂x
φj

)

−ν

(

∂φi

∂x

∂φj

∂x

)]

dΩ−
∫

Γ1

φiφjdΓ, (2.15a)

bi=−
∫

Γ3

φiu
(m,n)dΓ−

∫

Γ2

φi

(

au(m,n)−ν
∂u(m,n)

∂x

)

dΓ

−
∫

Γ4

φiu
(m+1,n)dΓ+

∫

Γ5

φi

(

au(m+1,n)−ν
∂u(m+1,n)

∂x

)

dΓ. (2.15b)

The linear system (2.14) is solved for each space-time node. No coupling exists between
adjacent nodes. Therefore, the formulation in (2.12) is globally explicit.

Remark 2.1. In DG-CVS, unknowns are stored at both vertices and cell centroids of the
spatial mesh. However, the solutions at vertices and cell centroids are updated at differ-
ent time levels within each time step in an alternate fashion. At the beginning of each
physical time step (tn), the solution is assumed known at the vertices of the mesh, either
given as the initial condition or obtained from the previous time step. Inside each new
time step, the solution is updated in two successive steps. The first step updates the so-
lution at cell centroids at the half-time level (tn+1/2) based on the known vertex solutions
at the previous time level (tn). The second step updates the solution at vertices at the
new time level (tn+1) based on the known cell solutions at the previous half-time level
(tn+1/2). The same process is repeated for new time steps.

Remark 2.2. The integrals in Eq. (2.12) are implemented quadrature-free. Refer to our
earlier paper [3] for details. The surface integrals in Eq. (2.12) are evaluated using the
Gaussian quadrature rule.

Remark 2.3. If the advective flux f is a nonlinear function of u, the standard Newton-
Raphson method is used to solve the local nonlinear equation system at each space-time
node.

2.4 Quick verification

To verify that the DG-CVS formulation based on Eq. (2.12) produces correct solutions and
does not suffer from the “variational crime”, we solve the 1-D heat equation on [−1,1]
with initial solution u0 = sin(πx) and periodic boundary conditions. The domain is di-
vided by 10 evenly-spaced cells. Fig. 5 shows the p1 and p3 solution at t=0.1. Here the
local solution variation is also plotted together with the solution at the vertex. As can be
seen, the p1 solution is fairly accurate on this coarse mesh and the p3 solution visually
sits on top of the underlying exact solution. This simple test confirms that the DG-CVS
formulation is consistent in the sense that it does not produce wrong solutions.
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Figure 5: Solution of 1-D heat equation at t=0.1. Left: p1 solution. Right: p3 solution.

3 Numerical tests and discussions

In this section, more numerical results and discussions are presented to demonstrate the
accuracy and convergence performance of DG-CVS for time dependent scalar diffusion
equations.

3.1 Grid convergence study

An important measurement of the performance of any high-order method is its conver-
gence order of accuracy. In the context of finite element-based methods, when basis
polynomials of degree p is used, and if the solution u and the solution gradient ux are
approximated using Eqs. (2.2) and (2.3), respectively, then the optimal convergence or-
ders are p+1 for the solution u and p for the solution gradient. Theoretical analysis
of convergence orders of high-order methods is difficult, if not impossible. However,
the convergence order can be easily determined numerically via the grid convergence
study with appropriate error norms. In this sub-section, the grid convergence study is
conducted on the 1-D advection-diffusion equation and the 2-D heat equation. The con-
vergence behavior of DG-CVS for the advection equation and the diffusion equation will
be compared.

To determine the numerical convergence order, the following error norms are defined:

l∞(ǫ)=
nv

max
i=1

|uh(xi)−uexact(xi)|, (3.1a)

l2(ǫ)=

√

1

nv

nv

∑
i=1

(uh(xi)−uexact(xi))
2

, (3.1b)

L2(ǫ)=

√

1

|Ω|

nv

∑
i=1

∫

Ωi

(

uh
i (x)−uexact

i (x)
)2

dΩ , (3.1c)
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where nv is the number of vertices in the computational domain, uh(xi) is the computed

numerical solution at ith vertex and uexact(xi) is the analytical solution at the ith vertex,
Ωi is the spatial domain associated with the ith vertex and |Ω| is the size of the entire
computational domain. Here, l∞ and l2 norms are evaluated at the discrete location of
vertices and L2 norm is obtained by integrating the continuous solution within the spatial
domain associated with each vertex.

3.1.1 Convergence orders on 1-D meshes

The first test is to solve the following 1-D linear scalar advection-diffusion equation

∂u

∂t
+a

∂u

∂x
−ν

∂2u

∂x2
=0, −1≤ x≤1, (3.2a)

u(x,0)=u0(x)=sin(πx), periodic b.c. (3.2b)

The analytical solution is given as

uexact= e−π2νt sin(π(x−at)).

The following two cases are tested:

• Pure advection equation. a=1.0, ν=0.

• Heat equation. a=0, ν=1.0.

For each case, four meshes (number of cells nc= 10,20,40, and 80) are used for varying
degrees of basis polynomials (p=1,2,3, and 4).

For the advection case, the time step is chosen as δt = σδx/a where δx is the cell
interval and the Courant number σ= 0.5, 0.3125, 0.25 and 0.25 for p1, p2, p3 and p4 cases,
respectively. For the stability limits in the case of advection equations, one can refer to
our earlier paper [3]. All cases are computed up to t= 1.0. The numerical convergence
orders using the l∞, l2 and L2 norms are recorded in Tables 1, 2 and 3. All three tables
show that the numerical convergence orders are p+1 for u and p for ux for all p’s. The
convergence orders are optimal.

For the diffusion case, the time step is chosen as δt=0.1δx2/ν for all p1−p4 cases. All
cases are computed up to t = 0.1. The numerical convergence orders based on various
norms are recorded in Tables 4 and 5 and 6. Comparing with the optimal convergence
rates for the advection equation, one can see that the convergence rates for the diffusion
equation appear inconsistent. For clarity’s sake, the following observations from Tables
4 and 5 and 6 are summarized:

• When p is odd,

– the convergence rates based on the l∞ and l2 norms are optimal for u and
super-optimal for ux;

– the convergence rates based on the L2 norm are optimal for both u and ux.
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Table 1: 1-D advection equation. a=1.0, t=1.0. Numerical convergence order determined by l∞ norm.

nc=10 nc=20 nc=40 nc=80

p variable l∞(ǫ) l∞(ǫ) order l∞(ǫ) order l∞(ǫ) order comments

1 u 2.11E-02 4.88E-03 2.113 1.13E-03 2.112 2.70E-04 2.064 optimal

ux 1.08E-01 4.38E-02 1.301 2.09E-02 1.071 1.03E-02 1.016 optimal

2 u 2.13E-04 2.77E-05 2.946 3.51E-06 2.979 4.41E-07 2.995 optimal

ux 2.89E-02 7.18E-03 2.008 1.79E-03 2.001 4.48E-04 2.000 optimal

3 u 2.56E-05 1.58E-06 4.019 9.71E-08 4.023 6.04E-09 4.007 optimal

ux 4.04E-04 6.03E-05 2.742 7.80E-06 2.951 9.83E-07 2.989 optimal

4 u 4.18E-07 1.28E-08 5.031 3.90E-10 5.037 1.25E-11 4.965 optimal

ux 5.59E-05 3.51E-06 3.992 2.21E-07 3.991 1.39E-08 3.990 optimal

Table 2: 1-D advection equation. a=1.0, t=1.0. Numerical convergence order determined by l2 norm.

nc=10 nc=20 nc=40 nc=80

p variable l2(ǫ) l2(ǫ) order l2(ǫ) order l2(ǫ) order comments

1 u 1.48E-02 3.36E-03 2.134 7.88E-04 2.095 1.90E-04 2.055 optimal

ux 7.71E-02 3.07E-02 1.330 1.46E-02 1.071 7.25E-03 1.010 optimal

2 u 1.61E-04 2.02E-05 2.994 2.52E-06 3.006 3.14E-07 3.006 optimal

ux 2.13E-02 5.20E-03 2.037 1.28E-03 2.018 3.19E-04 2.009 optimal

3 u 1.76E-05 1.09E-06 4.013 6.79E-08 4.009 4.24E-09 3.999 optimal

ux 2.86E-04 4.18E-05 2.774 5.45E-06 2.940 6.91E-07 2.981 optimal

4 u 3.12E-07 9.28E-09 5.069 2.79E-10 5.057 8.93E-12 4.964 optimal

ux 4.13E-05 2.54E-06 4.022 1.58E-07 4.008 9.89E-09 3.999 optimal

Table 3: 1-D advection equation. a=1.0, t=1.0. Numerical convergence order determined by L2 norm.

nc=10 nc=20 nc=40 nc=80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 1.17E-02 2.79E-03 2.064 6.87E-04 2.020 1.71E-04 2.006 optimal

ux 4.04E-01 2.03E-01 0.993 1.02E-01 0.998 5.09E-02 0.999 optimal

2 u 5.73E-04 7.21E-05 2.990 9.03E-06 2.997 1.13E-06 2.999 optimal

ux 3.66E-02 9.21E-03 1.990 2.31E-03 1.998 5.77E-04 1.999 optimal

3 u 2.55E-05 1.64E-06 3.961 1.03E-07 3.988 6.47E-09 3.997 optimal

ux 2.31E-03 2.94E-04 2.975 3.69E-05 2.992 4.62E-06 2.998 optimal

4 u 8.02E-07 2.50E-08 5.005 7.80E-10 5.002 2.46E-11 4.986 optimal

ux 1.00E-04 6.25E-06 3.999 3.90E-07 4.002 2.45E-08 3.996 optimal
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Table 4: 1-D heat equation. ν=1.0, t=0.1. Numerical convergence order determined by l∞ norm.

nc=10 nc=20 nc=40 nc=80

p variable l∞(ǫ) l∞(ǫ) order l∞(ǫ) order l∞(ǫ) order comments

1 u 9.72E-03 2.62E-03 1.894 6.58E-04 1.991 1.65E-04 1.998 optimal

ux 3.04E-02 7.82E-03 1.959 1.97E-03 1.990 4.93E-04 1.997 super-optimal

2 u 1.32E-03 3.70E-04 1.838 9.40E-05 1.977 2.36E-05 1.994 sub-optimal

ux 3.17E-02 8.28E-03 1.936 2.09E-03 1.983 5.25E-04 1.996 optimal

3 u 7.29E-05 5.10E-06 3.836 3.24E-07 3.976 2.03E-08 3.994 optimal

ux 5.08E-05 3.66E-06 3.792 2.37E-07 3.948 1.50E-08 3.987 super-optimal

4 u 5.14E-06 3.23E-07 3.993 1.99E-08 4.020 1.24E-09 4.006 sub-optimal

ux 2.79E-05 1.77E-06 3.974 1.11E-07 3.992 6.98E-09 3.998 optimal

Table 5: 1-D heat equation. ν=1.0, t=0.1. Numerical convergence order determined by l2 norm.

nc=10 nc=20 nc=40 nc=80

p variable l2(ǫ) l2(ǫ) order l2(ǫ) order l2(ǫ) order comments

1 u 6.89E-03 1.81E-03 1.933 4.60E-04 1.974 1.16E-04 1.989 optimal

ux 2.25E-02 5.66E-03 1.988 1.41E-03 2.006 3.51E-04 2.006 super-optimal

2 u 9.38E-04 2.55E-04 1.877 6.57E-05 1.959 1.66E-05 1.985 sub-optimal

ux 2.34E-02 5.99E-03 1.965 1.50E-03 2.000 3.74E-04 2.004 optimal

3 u 5.16E-05 3.52E-06 3.875 2.26E-07 3.959 1.43E-08 3.985 optimal

ux 3.75E-05 2.65E-06 3.822 1.70E-07 3.964 1.07E-08 3.995 super-optimal

4 u 3.65E-06 2.23E-07 4.032 1.39E-08 4.002 8.71E-10 3.997 sub-optimal

ux 2.06E-05 1.28E-06 4.003 7.98E-08 4.008 4.97E-09 4.006 optimal

Table 6: 1-D heat equation. ν=1.0, t=0.1. Numerical convergence order determined by L2 norm.

nc=10 nc=20 nc=40 nc=80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 4.90E-03 1.24E-03 1.982 3.11E-04 1.995 7.78E-05 1.999 optimal

ux 1.49E-01 7.50E-02 0.994 3.75E-02 0.999 1.88E-02 1.000 optimal

2 u 1.22E-03 2.78E-04 2.130 6.75E-05 2.042 1.68E-05 2.011 sub-optimal

ux 1.54E-02 3.93E-03 1.965 9.90E-04 1.991 2.48E-04 1.998 optimal

3 u 3.70E-05 2.45E-06 3.918 1.55E-07 3.978 9.76E-09 3.994 optimal

ux 6.50E-04 8.09E-05 3.006 1.01E-05 3.000 1.26E-06 3.000 optimal

4 u 3.92E-06 2.30E-07 4.094 1.41E-08 4.025 8.77E-10 4.007 sub-optimal

ux 3.75E-05 2.15E-06 4.128 1.31E-07 4.034 8.14E-09 4.008 optimal
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• When p is even, the convergence rates based on all norms are sub-optimal for u and
optimal for ux.

Since l-norms do not produce the same convergence orders for the heat equation as those
for the advection equation no matter whether p is odd or even, while the convergence
orders based on the L2-norm are optimal for both the heat equation and the advection
equation when p is odd, this indicates that L2-norm is a more appropriate norm for de-
termining the convergence order. We will focus on L2-norm in the remaining tests.

The inconsistent convergence behavior between odd degree and even degree approx-
imations has also been reported in the methods of many other researcher [15–19]. It is
also interesting to note that the first version of the central LDG method by Liu et al. [14]
is sub-optimal first order accurate for p=1 and optimal (p+1)th order accurate for p>1.

3.1.2 Convergence orders on 2-D structured and unstructured meshes

To investigate the convergence behavior of DG-CVS for 2-D diffusion equations, rectan-
gular and unstructured triangular meshes with various resolutions are used. Fig. 6 shows
the coarsest rectangular and unstructured triangular meshes used in the test. The coarsest
rectangular mesh is composed of 10×10 rectangular cells and is designated as “qua-10”.
The coarsest triangular mesh is designated as “tri-10” whose edge resolution is compa-
rable to that of mesh qua-10. The meshes will be refined isotropically several times in the
grid convergence study, resulting in a series of meshes designated as “qua-20”, “qua-40”,
“qua-80”, “tri-20”, “tri-40” and “tri-80”, respectively.

Figure 6: Two-dimensional meshes used in the tests. Left: rectangular mesh. Right: unstructured triangular
mesh.

The following 2-D heat equation with sinusoidal initial solution is solved using DG-
CVS.

∂u

∂t
−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

=0, −1≤ x,y≤1, (3.3a)

u(x,y,0)=sin(π(x+y)), periodic b.c. (3.3b)
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Table 7: 2-D heat equation with sinusoidal initial solution on rectangular meshes. ν= 1.0, t= 0.1. Numerical
convergence order determined by the L2 norm.

qua-10 qua-20 qua-40 qua-80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 4.27e-03 1.09e-03 1.970 2.73e-04 1.997 6.84e-05 1.997 optimal

ux and uy 7.81e-02 3.94e-02 0.987 1.98e-02 0.993 9.89e-03 1.001 optimal

2 u 8.37e-04 2.02e-04 2.051 5.00e-05 2.014 1.25e-05 2.000 sub-optimal

ux and uy 1.24e-02 3.21e-03 1.950 8.11e-04 1.985 2.03e-04 1.998 optimal

3 u 5.43e-05 3.73e-06 3.864 2.39e-07 3.964 1.51e-08 3.984 optimal

ux and uy 1.28e-03 1.58e-04 3.018 1.97e-05 3.004 2.47e-06 2.996 optimal

4 u 2.92e-06 1.68e-07 4.119 1.05e-08 4.000 6.54e-10 4.005 sub-optimal

ux and uy 1.01e-04 6.06e-06 4.059 3.75e-07 4.014 2.34e-08 4.002 optimal

Table 8: 2-D heat equation with sinusoidal initial solution on triangular meshes. ν= 1.0, t= 0.1. Numerical
convergence order determined by the L2 norm.

tri-10 tri-20 tri-40 tri-80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 4.82e-03 1.25e-03 1.947 3.22e-04 1.957 8.12e-05 1.988 optimal

ux 7.26e-02 3.64e-02 0.996 1.82e-02 1.000 9.13e-03 0.995 optimal

uy 7.25e-02 3.64e-02 0.994 1.82e-02 1.000 9.13e-03 0.995 optimal

2 u 1.37e-03 3.46e-04 1.985 8.65e-05 2.000 2.17e-05 1.995 sub-optimal

ux 9.07e-03 2.30e-03 1.979 5.80e-04 1.988 1.46e-04 1.990 optimal

uy 9.03e-03 2.29e-03 1.979 5.78e-04 1.986 1.45e-04 1.995 optimal

3 u 3.14e-05 2.02e-06 3.958 1.28e-07 3.980 8.07e-09 3.987 optimal

ux 7.30e-04 9.23e-05 2.983 1.16e-05 2.992 1.46e-06 2.990 optimal

uy 7.30e-04 9.23e-05 2.983 1.16e-05 2.992 1.46e-06 2.990 optimal

4 u 2.15e-06 1.33e-07 4.015 8.35e-09 3.994 5.27e-10 3.986 sub-optimal

ux 4.62e-05 2.96e-06 3.964 1.88e-07 3.977 1.19e-08 3.982 optimal

uy 4.62e-05 2.96e-06 3.964 1.88e-07 3.977 1.19e-08 3.982 optimal

The analytical solution is given as

uexact= e−2π2νt sin(π(x+y)).

The time step is chosen to be δt = σh2/ν where h is the local characteristic size of the
element and σ = 0.2 for p1 cases and σ = 0.1 for all other cases. Table 7 and Table 8
show the convergence orders on rectangular meshes and triangular meshes, respectively.
Both tables show the same convergence rates which indicates the convergence orders are
independent on the type of the spatial mesh. In addition, the same convergence rates as
those in Table 6 for the 1-D heat equation are observed, that is, the convergence orders
are optimal for both u and its gradient when p is odd, and sub-optimal for u and optimal
for u’s gradients when p is even.
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3.2 More tests of 2D cases

In this sub-section, we provide two more test cases. Both cases involve time dependent
boundary conditions. The first case is the 2-D heat equation with the delta initial solution,
and the second case is the 2-D nonlinear viscous Burgers equation.

From the previous tests, one can conclude that the convergence orders based on the
L2 norm is optimal for both the solution and its gradients when p is odd. Besides, this
optimality holds for both the advection and diffusion equations. Since in practice, the
governing equations often involve both advection and diffusion simultaneously, it jus-
tifies to employ basis polynomials of odd degrees for best and consistent convergence
rates. Therefore, in the remaining test cases, only results of odd p will be presented.

3.2.1 2-D heat equation with the delta initial solution

This case is to solve the following 2-D heat equation using DG-CVS.

∂u

∂t
−

(

∂2u

∂x2
+

∂2u

∂y2

)

=0, −1≤ x,y≤1, (3.4a)

u(x,y,0)=u0, (3.4b)

where u0 is the delta function at the origin of the domain (0,0). The solution to Eq. (3.4)
with such an initial condition is called the fundamental solution of the heat equation [20].
The analytical solution is given as

uexact=
1

4πt
e

(

−
x2+y2

4t

)

.

The boundary conditions on the four boundaries are time varying depending on the
above analytical solution formula.

The time step is chosen to be δt = σh2 where h is the local characteristic size of the
element and σ= 0.2 for the p1 case and σ = 0.1 for the p3 case. Fig. 7 shows the carpet
view of the solution at three instants, t=0.01, t=0.05, and t=0.2, on both the rectangular
and triangular meshes, respectively.

Tables 9 and 10 show the convergence rates of p1 and p3 approximations on rectan-
gular and triangular meshes, respectively. Not surprisingly, the convergence rates are
optimal for all cases.

In Fig. 8, the solution u and its gradient ux along the horizontal line y=0 are shown
together with the analytical solutions at t = 0.05. To visually compare the accuracy be-
tween p1 and p3 results, we intentionally choose a coarse 20×20 mesh. As can be seen,
the p1 solution is not accurate enough to resolve the local extrema. By contrast, the p3
solution lies on top of the analytical solution.
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Figure 7: Solution of 2-D heat equation with the delta initial solution. Top row: solutions on the rectangular
mesh qua-50. Bottom row: solutions on the triangular mesh tri-50. Left column: solution at t= 0.01, middle
column: solution at t=0.05. Right column: solution at t=0.2.
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Figure 8: Comparison between p1 and p3 solutions on the 20×20 mesh at y=0 and t=0.05 for the case of the
fundamental solution of the 2-D heat equation.
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Table 9: 2-D heat equation with delta initial solution on rectangular meshes. t=0.05. Numerical convergence
order determined by L2 norm.

qua-10 qua-20 qua-40 qua-80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 1.20e-02 3.12e-03 1.943 7.88e-04 1.985 1.98e-04 1.993 optimal

ux and uy 2.53e-01 1.28e-01 0.983 6.43e-02 0.993 3.22e-02 0.998 optimal

3 u 4.53e-04 3.33e-05 3.766 2.19e-06 3.927 1.38e-07 3.988 optimal

ux and uy 6.82e-03 7.78e-04 3.132 9.38e-05 3.052 1.15e-05 3.028 optimal

Table 10: 2-D heat equation with delta initial solution on triangular meshes. t=0.05. Numerical convergence
order determined by L2 norm.

tri-10 tri-20 tri-40 tri-80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 1.15e-02 3.02e-03 1.929 7.71e-04 1.970 1.95e-04 1.983 optimal

ux 2.23e-01 1.12e-01 0.994 5.64e-02 0.990 2.83e-02 0.995 optimal

uy 2.32e-01 1.17e-01 0.988 5.85e-02 1.000 2.93e-02 0.998 optimal

3 u 1.72e-04 1.11e-05 3.954 6.99e-07 3.989 4.37e-08 4.000 optimal

ux 4.12e-03 5.00e-04 3.043 6.17e-05 3.019 7.69e-06 3.004 optimal

uy 4.46e-03 5.42e-04 3.041 6.71e-05 3.014 8.35e-06 3.006 optimal

3.2.2 2-D viscous Burgers equation

Finally, the following 2-D viscous Burgers equation is solved using DG-CVS.

∂u

∂t
+u

∂u

∂x
+u

∂u

∂y
−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

=0, 0≤ x,y≤25, (3.5)

with the analytical solution given as

uexact=
2

e
x−xc+y−yc−2t

ν +1
,

where (xc,yc)=(0,0) is a constant location.
The 1-D version of this case was presented in [21]. This case is constructed such

that the original wave is propagated without changing shape under the effect of both
nonlinear advection and linear diffusion. The initial solution at t= 0 and the boundary
conditions on all four boundaries are provided by the analytical solution. Therefore the
boundary conditions are time dependent.

We first conduct the grid convergence study on this nonlinear advection-diffusion
case. In the study, ν=2.5 is chosen and the simulation is run up to t=10. In the current
study, the time step is chosen as δt=σmin(h/a,h2/ν) where h is the local mesh size and
σ = 0.2 for the p1 case and σ = 0.1 for the p3 case. For the purpose of determining the
convergence rates, this choice of time steps may not be appropriate since advection and
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Table 11: Solution of 2-D viscous Burgers equation on rectangular meshes. ν=2.5, t=10. Numerical convergence
order determined by L2 norm.

qua-10 qua-20 qua-40 qua-80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 1.38e-02 3.15e-03 2.131 7.71e-04 2.031 1.92e-04 2.006 optimal

ux and uy 1.74e-02 8.52e-03 1.030 4.21e-03 1.017 2.09e-03 1.010 optimal

3 u 2.83e-04 1.69e-05 4.066 1.11e-06 3.928 7.88e-08 3.816 optimal

ux and uy 7.11e-04 9.12e-05 2.963 1.19e-05 2.938 1.61e-06 2.886 optimal

Table 12: Solution of 2-D viscous Burgers equation on triangular meshes. ν=2.5, t=10. Numerical convergence
order determined by L2 norm.

tri-10 tri-20 tri-40 tri-80

p variable L2(ǫ) L2(ǫ) order L2(ǫ) order L2(ǫ) order comments

1 u 8.08e-03 2.19e-03 1.883 5.49e-04 1.996 1.38e-04 1.992 optimal

ux 1.54e-02 7.79e-03 0.983 3.86e-03 1.013 1.93e-03 1.000 optimal

uy 1.54e-02 7.79e-03 0.983 3.86e-03 1.013 1.93e-03 1.000 optimal

3 u 1.70e-04 1.21e-05 3.812 1.00e-06 3.597 1.03e-07 3.279 optimal

ux 4.16e-04 5.31e-05 2.970 6.44e-06 3.044 7.96e-07 3.016 optimal

uy 4.16e-04 5.34e-05 2.962 6.48e-06 3.043 8.02e-07 3.014 optimal

diffusion have different time scales. A more appropriate approach may be the operator
splitting method where the advection and the diffusion are treated with different time
steps. Tables 11 and 12 show the convergence rates of p1 and p3 on rectangular and
triangular meshes, respectively. The convergence rates, though not as neat as those for
the pure diffusion equation, are still close to optimal.

To further demonstrate the accuracy of DG-CVS for various values of ν, the following
three cases are simulated on both qua-50 and tri-50 meshes where the size of the mesh is
indicated by δx=0.5:

• short wave (δx/ν=10, i.e. ν=0.05);

• medium wave (δx/ν=1, i.e. ν=0.5);

• long wave (δx/ν=0.2, i.e. ν=2.5).

Fig. 9 plots the p1 solution along the diagonal line x−y=0 together with the exact solu-
tion. As can be seen, all types of waves have been captured accurately in terms of both
location and magnitude. In the case of the short wave, no limiter is applied and there-
fore slight overshoot and undershoot can be seen. The p3 solution is not shown since no
much visual difference can be seen between the p3 solution and the p1 solution. Fig. 10
compares the computed solution gradients (ux or uy) with the exact solution for the case
of ν= 0.5. As can be seen, the p3 solution is superior to the p1 solution in resolving the
local sharp extremum of the solution gradient.
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Figure 9: p1 solution of 2-D viscous Burgers equation along the diagonal line x−y=0 at t=20. Left: ν=0.05;
middle: ν=1.0; right: ν=2.5.
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Figure 10: ux or uy of the 2-D viscous Burgers equation with ν=0.5 along the diagonal line at t=20. Left: p1
solution; right: p3 solution.

4 Conclusions

The paper extends the authors’ high-order space-time discontinuous Galerkin cell-vertex
scheme (DG-CVS) for hyperbolic conservation laws to time dependent scalar diffusion
equations. The extension is straightforward by simply incorporating the diffusive flux
into the space-time flux. The space-time flux conservation is locally enforced using the
space-time discontinuous Galerkin approach over staggered space-time conservation el-
ements. With DG-CVS, the diffusive flux is treated in exactly the same way as the ad-
vection flux without any ad hoc techniques. DG-CVS updates the solution at the cell
level and the vertex level successively within each physical time step. The inter-element
advective and diffusive fluxes for updating the solution at a vertex (cell) are provided
by the information of the adjacent cells (vertices) where the solutions have been deter-
mined at the previous half time level. Therefore, both the advective and diffusive flux is
continuous and unique across the spatial cell interface. For this reason, the DG-CVS for-
mulation for diffusion equations is consistent and does not suffer from the “variational
crime”. DG-CVS appears conceptually simpler than traditional DG methods for diffusion
equations.

The grid convergence study reveals that DG-CVS is L2 optimal for both advection
and diffusion equations when the degree of basis polynomials, p, is odd. In other words,
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DG-CVS is (p+1)th order accurate for the solution and pth order accurate for the solu-
tion gradients for odd p. The L2 optimality for odd p holds for arbitrary meshes. When
p is even, the convergence rate of DG-CVS is still optimal for advection equations but
sub-optimal for diffusion equations. In practice, one can choose the odd p for best per-
formance when solving advection-diffusion equations.

The numerical tests verify that DG-CVS accurately solves the time dependent diffu-
sion equations as well as advection equations. Our ongoing work is to extend DG-CVS
further to solve the compressible Navier-Stokes equations.
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