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Abstract. A new finite element level set method is developed to simulate the interface
motion. The normal velocity of the moving interface can depend on both the local ge-
ometry, such as the curvature, and the external force such as that due to the flux from
both sides of the interface of a material whose concentration is governed by a diffusion
equation. The key idea of the method is to use an interface-fitted finite element mesh.
Such an approximation of the interface allows an accurate calculation of the solution
to the diffusion equation. The interface-fitted mesh is constructed from a base mesh, a
uniform finite element mesh, at each time step to explicitly locate the interface and sep-
arate regions defined by the interface. Several new level set techniques are developed
in the framework of finite element methods. These include a simple finite element
method for approximating the curvature, a new method for the extension of normal
velocity, and a finite element least-squares method for the reinitialization of level set
functions. Application of the method to the classical solidification problem captures
the dendrites. The method is also applied to the molecular solvation to determine
optimal solute-solvent interfaces of solvation systems.

AMS subject classifications: 65M

Key words: Level set method, finite element, interface-fitted mesh, curvature approximation, ve-
locity extension, reinitialization, solidification, dendrites, molecular solvation, variational implicit-
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1 Introduction

Consider a moving interface Γ = Γ(t) that separates two regions Ω− = Ω−(t) and Ω+ =
Ω+(t), respectively, where t denotes time. The interface Γ can have multiple connected
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Figure 1: The geometry of interface motion.

components. We assume all Γ, Ω−, and Ω+ are inside a large computational domain Ω

whose boundary is denoted by ∂Ω, cf. Fig. 1.
The motion of the interface Γ(t) is completely determined by its normal velocity,

vn = vn(x,t), at each point x ∈ Γ(t) at each time t. For many physical systems, such a
normal velocity consists of two parts. One is the local geometry, such as the curvature or
mean curvature. The other is the external force such as flux of certain diffusive material.
The concentration of such material is governed by a one-sided or two-sided diffusion
equation, together with suitable boundary conditions on the moving interface Γ(t). A
typical system of a moving interface can thus be described by the following equations:

vn = Fgeo(H,K)+Fext(u,∇u), on Γ(t), (1.1a)

A−(u)= f−, in Ω−(t), (1.1b)

A+(u)= f+, in Ω+(t), (1.1c)

boundary conditions for u, on Γ(t). (1.1d)

Here, Fgeo(H,K) is a function of the mean curvature H and Gaussian curvature K,
Fext(u,∇u) is a function of a field variable u and its gradient ∇u, and A−(u) and A+(u)
are partial differential operators of u, and f− and f+ are known functions on Ω− and Ω+,
respectively. We shall call (1.1b) and (1.1c) the field equations for u. We also call (1.1d) the
interface conditions.

There are many examples of moving interfaces that separate different media that are
deforming or flowing. For instance, an ice-water boundary moves during the change
of temperature, an interface separates two fluids with different viscosities and densities
in a two-phase flow, phase boundaries in solid-solid phase transformations such as pre-
cipitates and martensite interfaces, domain boundaries that separate different parts of
material such as grain boundaries in polycrystals, and the solute-solvent interface that
separates a molecule from its surrounding solvent in a solvation system.

We use the level set method to numerically track the interface motion [12–14]. This
method is perhaps one of the most popular methods due to its easy handling of topolog-
ical changes, such as interface merging and breaking up. We denote by φ=φ(x,t) a level
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set function of Γ(t), i.e., Γ(t)={x :φ(x,t)=0}. We assume that φ(x,t)<0, for x∈Ω−, and
φ(x,t) > 0, for x ∈ Ω+, for all t. Once a level set function φ(x,t) is determined, we can
locate the interface Γ(t) by finding the zero level set of φ(x,t). The level set function is
determined by the following level set equation:

∂φ

∂t
+vn|∇φ|=0, (1.2)

where vn is the normal velocity given in (1.1a). The normal velocity needs to be extended
away from the interface so that the level set equation (1.2) can be solved in the computa-
tional box Ω with some boundary conditions for φ(x,t) on the boundary ∂Ω.

In this work, we develop a finite element level set method with interface-fitted meshes
for tracking a moving interface that is described by (1.1a)-(1.1d) in the two-dimensional
setting. We use a uniform mesh as our base mesh, cf. [10]. In each time step, we use the
base mesh to construct an interface-fitted mesh. This means the restriction of the mesh
onto Ω− or Ω+ is a finite element mesh covering Ω− or Ω+, respectively. This way, we
can more accurately approximate the interface condition (1.1d) and hence the solution of
the partial differential equations (1.1b) and (1.1c).

We also develop some new level set techniques. First, we extend the normal velocity
by solving the Laplace equation on both sides of the equation, using the velocity on the
interface as the Dirichlet boundary data. We will present some examples to show how
this method works. Second, we reinitialize the level set function by solving a Poisson’s
equation. The reinitialization is necessary to prevent |∇φ(x,t)| from being too large or
too small which can cause instabilities and large errors in locating the zero level set from
φ(x,t). We keep the level set function smooth across the interface by imposing a gradient
jump condition, then solve an overdetermined system by the least-squares method. This
method produces a new level set function that is smooth over the domain and across the
interface. Being smooth is important because it increases the accuracy of the curvature
calculation. We will give some examples to demonstrate how this reinitialization works.
Finally, we introduce a simple finite element method to approximate the curvature with
an O(h2) accuracy, where h is the mesh size of the base mesh.

Our algorithm consists of the following main steps:

1. Define the base mesh. Initialize the level set function. Input all parameters;

2. Locate the interface and construct an interface-fitted mesh;

3. Solve field equations;

4. Calculate normal velocity;

5. Extend normal velocity;

6. Unrefine the mesh;

7. Solve the level set equation on the base mesh and move the interface;

8. Go to Step 2.
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We apply our method to solve the Stefan problem that models the dendritic solid-
ification of a frozen seed placed into a supercooled liquid. The cases of zero, nonzero
isotropic, and anisotropic surface tension are all considered. Our results recover those
obtained in the previous study using finite difference schemes [2]. We also apply our
method to determine the optimal molecular surfaces using the recently developed vari-
ational implicit-solvent model [3, 4, 7, 8]. The central quantity in this model is a free en-
ergy functional of all possible surfaces that enclose a set of points representing atoms
of molecules (solutes) under consideration. The free energy includes the surface energy
and the solute-solvent van der Waals type interaction energy. We apply our level set
method to relax an initial solute-solvent interface. We present numerical examples to
demonstrate that our method converges. These examples also show that the variational
implicit-solvent model captures some key features of molecular solvation.

Finite element based level set methods have been applied to interface motion in fluid
dynamics [6, 11, 15, 16]. In these earlier works, the authors developed special finite el-
ement methods for solving fluid flow equations that often have convection terms, and
combined them with the level set method to numerically track moving interfaces. Special
techniques of numerical integration are also designed in [15, 16]. In [6], a discontinuous
Galerkin finite element method and a stabilized continuous finite element method are
developed for fluid flow problems to prevent a significant loss of mass which occurs of-
ten in a simple level set implementation. However, the locally, interface fitting meshing
does not seem to be developed systematically in these works. The finite element level set
method proposed in [9] for dendritic growth of crystals is along the line of finite element
methods for motion by mean curvature, cf. [5]. We notice that different techniques of
interface-fitting meshing are proposed in [10, 17, 18].

The rest of this paper is organized as follows: in Section 2, we describe the construc-
tion of interface-fitted meshes; in Section 3 and Section 4, we present our new methods for
the extension of normal velocity and the reinitialization of the level set function, respec-
tively; in Sections 5, we describe our finite element method to approximate the curvature
and prove that this approximation is second-order accurate; Section 6 and Section 7 are
the application of our method to solidification and solvation, respectively; finally, in Sec-
tion 8, we discuss our results and draw conclusions.

2 Interface-fitted finite element mesh

Let us fix our computational domain to be the rectangle Ω = [a1,a2]×[b1,b2], in the x1x2

plane with ai,bi ∈ R and ai < bi (i = 1,2). Let M1 and M2 be two positive integers and
hi =(bi−ai)/Mi (i =1,2). Let xij = ai+ jhi (i =1,2; j =0,1,··· ,Mi). Let h=max(h1,h2). We
denote by Th the uniform mesh of triangles with all the vertices (x1i,x2j) (i=0,··· ,M1; j=
0,··· ,M2) and all edges parallel to the lines x1 =0, x2 =0, and h2x1 =h1x2. This is our base
mesh.
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Figure 2: A refined edge.

We denote by Sh the corresponding linear finite element space:

Sh =
{

φh∈C(Ω) : φh|K ∈P1(K), ∀K∈Th

}

,

where P1(K) denotes the space of polynomials on K of degrees less than or equal to 1.
We also denote by Nij ∈ Sh the linear finite element nodal basis at (x1i,x2j), i.e., Nij = 1
at (x1i,x2j), and Nij = 0 at all other vertices. Denote also x = (x1,x2). Then any function
φh∈Sh can be uniquely represented as

φh(x)=
M2

∑
j=0

M1

∑
i=0

φh(x1i,x2j)Nij(x), ∀x∈Ω.

We now construct an interface-fitted finite element mesh Th,Γ using the level set func-
tion φ of the interface Γ, cf. Fig. 1. For convenience, we drop the time t for a moment. Fix
an arbitrary edge with the two vertices v1 and v2 as in Fig. 2. We examine the value of
the level set function φ at each vertex,

φ1 =φ(v1), and φ2 =φ(v2).

If the value is positive at one end and negative at the other, then the interface crosses that
particular edge. In this case, we locate the point v∗ along that edge where the level set
function is zero and add a vertex there, splitting the edge into two edges. This point is
given by the equation

v∗=
φ(v2)v1−φ(v1)v2

φ(v2)−φ(v1)
.

We then call this edge refined.
Once all of these new vertices are added, we examine each triangle. For each triangle,

there can be zero, one or two edges that were refined. If only one edge was refined, then
the value of the level set function must be zero on the opposite vertex. In this case a new
edge is added joining the new vertex with the opposite vertex, splitting the triangle into
two triangles, cf. upper-left triangle in Fig. 3. The more common situation is when two
edges of a triangle were refined. In this case, this splits the triangle into a triangle and a
quadrilateral. We then split this quadrilateral into two triangles by adding an edge along
one of the diagonals, cf. lower-right triangle in Fig. 3. This splits the original triangle into
three triangles.

The mesh refinement process is illustrated in Fig. 4. We denote by Th,Γ the interface-
fitted mesh that we just constructed. We also denote by Sh,Γ the corresponding linear
finite element space.
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(a) (b) (c)

Figure 3: Example of two types of interface-fitted mesh refinement. (a) Original triangles in base mesh. (b)
Edge (dashed) added along interface. (c) Edges (dotted) added to split lower triangle into three triangles.

Figure 4: Left: The base mesh Th. Middle: The base mesh Th with an interface Γ. Right: An interface-fitted
mesh Th,Γ.

3 Extension of normal velocity

To have an efficient and smooth extension of the normal velocity, we solve the following
system of equations

∆u=0, in Ω−,

∆u=0, in Ω+,

u=vn, on Γ,

∂u

∂n
=0, on ∂Ω,

where vn is the normal velocity on the interface Γ that needs to be extended and u is the
extended velocity.

The extended normal velocity may not have a continuous derivative along Γ. Near
the points on the interface with the highest velocity, the extension will have lower ve-
locity values on either side. This is potentially a problem, since after unrefinement of
the interface-fitted mesh, the explicit values of the normal velocity on the interface are
lost, and the interpolated normal velocity values on the interface will be lower than they
should be. See Fig. 5 for an illustration of this point in one dimension. When we unrefine
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Figure 5: Illustration of how nonsmooth velocity extension can create errors. (a) Velocity value on the interface
vertex (circle) is extended away to the base mesh vertices (solid dots) to create a continuous function. (b) When
the interface vertex is removed and only base mesh vertices remain, the interpolated (dashed line) interface
value is lower than it should be.

the interface-fitted mesh, we lose the values of the velocity at the nodes on the interface,
so the extended normal velocity should capture the correct velocity of the interface im-
plicitly. That is, the representation of the velocity on the unrefined mesh should be such
that at the location of the interface it should still equal what we want the velocity to be on
the interface. This can be accomplished by requiring the extension to be differentiable.
Therefore, we extend the normal velocity by solving the following system:

∆u=0, in Ω−, (3.1a)

∆u=0, in Ω+, (3.1b)

u=vn, on Γ, (3.1c)
r∂u

∂n

z
Γ
=0, (3.1d)

∂u

∂n
=0, on ∂Ω, (3.1e)

where vn is the normal velocity on the interface Γ that needs to be extended, u is the
extended velocity, and JzKΓ = z|Ω+

−z|Ω− is the jump of a function z across the interface
Γ. The system (3.1a)-(3.1e) is overdetermined. We shall explain at the end of this section
how to find a least-squares solution of this system.

Unrefining the mesh is simply removing the vertices and edges that were added at the
refinement step. In practice this just means reverting back to the original mesh. We do not
need to explicitly remove each edge and vertex, so it does not require the computational
time that refinement does. The quantities that were defined on the refined mesh retain
the defining values at the vertices on the unrefined mesh. The values on the vertices that
were on Γ are simply lost. This is not a problem for the extended normal velocity if we
defined it to be smooth across Γ.

We now give details how we solve the overdetermined system (3.1a)-(3.1e) using a
least-squares method. We express our finite element approximation uh∈Sh as

uh(x)=
M2

∑
j=0

M1

∑
i=0

uijNij(x), ∀x∈Ω, (3.2)
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where Nij is the piecewise linear finite element basis function at the node (x1i,x2j) and
the coefficient uij approximates u at the corresponding node.

For convenience, we denote by I− the set of (i, j) such that (x1i,x2j) is a finite element
node in Ω− and by I+ the set of (i, j) such that (x1i,x2j) is a finite element node in Ω+∪∂Ω.
We also denote by IΓ the set of (i, j) such that (x1i,x2j) is a finite element node on Γ. We
impose the condition (3.1c) by setting

uij =vn(x1i,x2j), if (i, j)∈ IΓ.

Therefore only those values uij with (i, j)∈ I−∪ I+ are to be determined.

The finite element approximation of (3.1a) and (3.1c) leads to the non-singular system
of linear equations for the unknowns uij with (i, j)∈ I−

∑
(i,j)∈I−

uij

∫

Ω−
∇Nij ·∇Nkl dx= ∑

(i,j)∈IΓ

vn(x1i,x2j)
∫

Ω−
∇Nij ·∇Nkl dx, ∀(k,l)∈ I−. (3.3)

Similarly, we obtain by (3.1b), (3.1c), and (3.1e) the system of linear equations for uij with
(i, j)∈ I+

∑
(i,j)∈I+

uij

∫

Ω+

∇Nij ·∇Nkl dx= ∑
(i,j)∈IΓ

vn(x1i,x2j)
∫

Ω+

∇Nij ·∇Nkl dx, ∀(k,l)∈ I+. (3.4)

To discretize the interface condition (3.1d), let us note that Γ consists of edges of finite
elements. Denote by EΓ the set of all such edges. Fix an edge γ∈EΓ. This edge is shared by
two triangle elements T−⊂Ω− and T+⊂Ω+, respectively. Let x−γ ∈Ω− and x+

γ ∈Ω+ be the
non-interface vertices of T− and T+, respectively. Denote by N−

γ and N+
γ the local linear

finite element shape functions on T−
γ and T+

γ associated with x−γ and x+
γ , respectively.

The unit normal at γ is given by ∇N−
γ /|∇N−

γ | or ∇N+
γ /|∇N+

γ |. Notice that these two
unit vectors have opposite directions. The condition (3.1d) is then discretized to be

∇uh|T−
γ
·
∇N−

γ
∣

∣∇N−
γ

∣

∣

+∇uh|T+
γ
·
∇N+

γ
∣

∣∇N+
γ

∣

∣

=0, ∀γ∈EΓ. (3.5)

Now all the linear equations in (3.3)-(3.5) form an overdetermined system of linear
equations of the form AU = F, where A is a matrix with more rows than columns, U is
the vector of all the unknowns uij, and F is a known vector. The least-squares solution of
this system is the unique solution of the normal equation

AT AU = ATF,

and can be obtained by a direct method. The solution vector U and the expression (3.2)
give us the desired approximate solution to the system (3.1a)-(3.1e).
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4 Reinitialization

We propose to reinitialize the level set function by solving the following problem:

∆φ=G, in Ω−,

∆φ=0, in Ω+,

φ=1, on ∂Ω,

φ=0, on Γ,

where G > 0 is a constant and is often chosen to be in between 1 and 10. This problem
consists in fact of two separate boundary-value problems on Ω− and Ω+, respectively.
By the Maximum Principle, the reinitialized level set function φ, which is the solution to
the above system, satisfies the designed property that

φ<0, in Ω− and φ>0, in Ω+.

Since we reinitialize on an interface-fitted mesh Th,Γ, the interface does not move.
That is, we can set the values of φ on Γ to zero. But we need to consider the location
of the interface (zero level set) after we unrefine the mesh. If the new level set function
is not smooth over Γ, then unrefinement would implicitly move the zero level set, and
consequently, the interface. To solve this problem, we can require that the jump in the
gradient of φ across the interface is zero. Therefore, we solve the following system:

∆φ=G, in Ω−,

∆φ=0, in Ω+,

φ=1, on ∂Ω,

φ=0, on Γ,
r∂φ

∂n

z
Γ
=0,

where G≥ 0 can be set to 0. This is an overdetermined system and is solved by a least-
squares method similar to that for the system (3.1a)-(3.1e).

Fig. 6 shows reinitialization without the gradient jump condition. Fig. 6, left, shows
the level set function after reinitialization. It is shown from the side view to highlight
the jump in the gradient. Fig. 6, right, shows the interface location before reinitialization
and the location after reinitialization and unrefinement. After unrefining the mesh, the
location of Γ moves since Γ is then interpolated from the values of φ on the base mesh.
Fig. 7 shows reinitialization with the gradient jump condition. Fig. 7, left, shows the level
set function, from the side view, after reinitialization. There is no jump in the gradient as
there was in Fig. 6, left. Fig. 7, right, shows that the interface stays in the same location
after mesh unrefinement.
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Figure 6: Example of reinitialization without gradient jump condition. Left: Level set function (side view)
shown after reinitialization. Right: Interface movement during reinitialization. Interface is a circle before but
becomes ragged after unrefinement.
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Figure 7: Example of reinitialization with gradient jump condition. Left: Level set function shown after
reinitialization. Right: Interface movement during reinitialization with gradient jump condition. Interface
remains a circle after unrefinement.

5 Curvature approximation

The (mean) curvature of any level set (not necessary the zero level set) of the level set
function φ is given by

κ =∇· ∇φ

|∇φ| , (5.1)

if the level set function is smooth (e.g., φ∈C2) and the gradient∇φ is nonzero. To calculate
this curvature, we use a local averaging method on the base mesh. We prove analytically
and demonstrate numerically that this method results in O(h2) accuracy for the practical
case h=h1 =h2 which we assume in this section.

Let ω be an arbitrary patch of triangular elements in the base mesh that share the
common vertex v0, cf. Fig. 8. For each vertex vi of the elements in the patch (i =0,··· ,6),
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Figure 8: A patch of triangles around a vertex v0 where ω =∪6
i=1ωi.

let Ni be the corresponding piecewise linear finite element basis function: Ni =1 at vertex
vi and Ni = 0 on other vertices. Since N0 vanishes on the boundary of the patch ω, we
have by (5.1) that

∫

ω
κ(v0)N0 dx≈

∫

ω
κN0 dx=

∫

ω

(

∇· ∇φ

|∇φ|
)

N0 dx

=−
∫

ω

∇φ

|∇φ| ·∇N0 dx+
∫

∂ω

( ∇φ

|∇φ| ·n
)

N0 dx

=−
6

∑
i=1

∫

ωi

∇φ

|∇φ| ·∇N0 dx,

where n is the exterior unit normal at the boundary ∂ω. Thus,

κ(v0)≈−
∫

ω
∇φ
|∇φ| ·∇N0 dx
∫

ω
N0 dx

=− 1

h2

∫

ω

∇φ

|∇φ| ·∇N0 dx,

where we used the fact that the integral of N0 over ω is h2.

Consequently, we propose the following formula for computing κh(v0), the finite ele-
ment approximation of the curvature κ(v0):

κh(v0)=− 1

h2

∫

ω

∇φh

|∇φh|
·∇N0 dx, (5.2)

where φh is the finite element interpolation of the level set function φ. If we denote φi =
φ(vi), for i=0,··· ,6, then

φh(x)=
6

∑
i=0

φiNi(x)

for all x∈ω.
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By a series of calculations, we have

−
∫

ω1

∇φh

|∇φh|
·∇N0 dx=

(φ2−φ0)h

2
√

(φ1−φ2)2+(φ2−φ0)2
,

−
∫

ω2

∇φh

|∇φh|
·∇N0 dx=

(φ2+φ3−2φ0)h

2
√

(φ0−φ3)2+(φ2−φ0)2
,

−
∫

ω3

∇φh

|∇φh|
·∇N0 dx=

(φ3−φ0)h

2
√

(φ0−φ3)2+(φ3−φ4)2
,

−
∫

ω4

∇φh

|∇φh|
·∇N0 dx=

(φ5−φ0)h

2
√

(φ5−φ4)2+(φ0−φ5)2
,

−
∫

ω5

∇φh

|∇φh|
·∇N0 dx=

(φ5+φ6−2φ0)h

2
√

(φ6−φ0)2+(φ0−φ5)2
,

−
∫

ω6

∇φh

|∇φh|
·∇N0 dx=

(φ6−φ0)h

2
√

(φ6−φ0)2+(φ1−φ6)2
.

Assume now φ is smooth enough. Taylor expanding the right-hand side of each of the
above equations and then summing over i=1,··· ,6, we then obtain with the help of Math-
ematica that

κh(v0)=− 1

h2

∫

ω

∇φh

|∇φh|
·∇N0 dx=∇· ∇φ(v0)

|∇φ(v0)|
+O(h2)=κ(v0)+O(h2).

This proves that our local averaging scheme (5.2) for the finite element approximation of
the curvature has the error O(h2).

We numerically test our local averaging method by calculating the curvature of a
circular interface using different grid sizes. The domain is a square with side length one.
The level set function φ is a cone centered in the center of the domain, cf. Fig. 9. Thus,
the level sets of φ are circles whose curvatures are κ = 1/radius. The zero level set of φ
(representing our interface) is a circle of radius 1/4 with κ =4.

We first calculate the curvature on a uniform mesh. This gives a function whose
value at a particular point is the approximate curvature of the level set of φ at that point.
We then refine the mesh to an interface-fitted mesh. The value of the curvature on the
interface nodes is interpolated from the pre-refinement curvature calculation. We repeat
this procedure on several grids from coarse to fine.

Fig. 9 shows the level set function on a particular mesh. Fig. 10, left, shows the cal-
culated curvature on the domain. Note that near the center of the domain the level sets
become small circles whose curvatures become infinite, so we cannot expect high accu-
racy in this area. Fig. 10, right, shows the absolute error in the curvature calculation
across the domain. Note the error is higher on the boundary of the domain as we expect
because the approximation is not O(h2) there due to the lack of symmetry. Also, the er-
ror is higher near the center where the curvature should become infinite. The interface is
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Figure 9: A cone shaped level set function used to test the curvature approximation. The interface is a circle
of radius 1/4.
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Figure 10: Left: Calculated curvature of the level set function. Right: Calculated curvature absolute error on
the domain. Both with grid spacing h=1/32.

not located near these areas so the error is smaller on and near the interface. Fig. 11 is a
log-log graph of the maximum relative error, defined by

Relative Error=
|κ−κcalculated|

κ
,

on the interface for several grid sizes. A simple linear regression on the data in the graph
gives a best fit line with a slope of 2.065. This suggests that the error is O(h2) as expected.

It is interesting to note from (5.2) that the largest curvature that can be calculated is
inversely proportional to the grid spacing h, since by (5.2)

|κh(v0)|=
∣

∣

∣

∣

− 1

h2

∫

ω

∇φh

|∇φh|
·∇N0 dx

∣

∣

∣

∣

≤ 1

h2

∫

ω
|∇N0|dx≤

√
2

h3

∫

ω
dx=

3
√

2

h
.

Fig. 12 illustrates this limit on various mesh sizes.
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Figure 11: The maximum relative error of the calculated curvature on a circular interface versus grid spacing
h. The simple linear regression line is plotted and it has slope 2.065.
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Figure 12: Calculated curvature of the level set function on various grid sizes: h=1/8, 1/16, 1/32, 1/64.

6 Application to solidification

We apply our method to solve the Stefan problem that models dendritic solidification.
We recover the previous results obtained by a finite difference level set method without
interface-fitting [2].
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Consider a frozen seed placed into a supercooled liquid. The frozen seed is repre-
sented by the area Ω−, and the supercooled liquid is represented by the area Ω+. The
interface between these areas is Γ. As liquid solidifies around the frozen seed, Γ changes
shape. In a rescaled form, the Stefan problem that describes the dynamics of this solidifi-
cation process is as follows:

∂T

∂t
=∆T, in Ω−(t)∪Ω+(t), (6.1a)

T(x,t)=−εCκ−εV vn, on Γ(t), (6.1b)

∂T

∂n
=0, on ∂Ω, (6.1c)

vn =−
r∂T

∂n

z
, on Γ(t), (6.1d)

T(x,0)=0, on Ω−(t), (6.1e)

T(x,0)=−1

2
, on Ω+(t). (6.1f)

Here, T=T(x,t) is the temperature at point x and time t, εC and εV are the surface tension
coefficient and the molecular kinetic coefficient, respectively, and κ and vn are the curva-
ture and normal velocity of the moving front Γ. Eq. (6.1b) is called the Gibbs-Thomson
relation. Eq. (6.1d) is called the Stefan condition.

Our algorithm is as follows:

1. Choose a base mesh with spacing appropriate for the problem. Initialize the level set function.
Input the parameters εC and εV . Input the initial temperature T;

2. Calculate the curvature κ as described in Section 5;

3. Interface-fit the mesh to Γ as detailed in Section 2. The calculated curvature κ is interpolated
onto Γ, since it is used in the Gibbs-Thomson relation;

4. Solve the heat equation (6.1a) together with the interface and boundary conditions (6.1b) and
(6.1c) for one time step;

5. Calculate the normal velocity using (6.1d);

6. Extend the normal velocity vn onto the rest of the domain using the method explained in Sec-
tion 3;

7. Unrefine the mesh back to the base mesh by simply throwing away the interface-fitted refinements;

8. Evolve φ on the base mesh by solving the level set equation (1.2) for one time step;

9. Reinitialize the level set function φ using the method detailed in Section 4, if necessary;

10. Go to Step 2.

Varying the surface tension coefficient εC. We vary our choice of εC and the initial
shape of Γ to produce different results for comparison. The value εC can be zero, repre-
senting no surface tension; εC can be a constant, representing isotropic surface tension;
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or εC can vary based on the direction of the normal to Γ, representing anisotropic surface
tension. We let εV =0, so the Gibbs-Thomson relation becomes simply T(x,t)=−εCκ. In
the examples presented below, the initial frozen seed is a small pentagon. The computa-
tional domain is the square Ω = (−1.5,1.5)×(−1.5,1.5). We use a 129×129 grid for the
base mesh. The time step is ∆t=0.00025 and the final time is 0.4.

Figure 13: Unstable solidification: no surface ten-
sion εC =0.

Figure 14: Solidification with isotropic surface ten-
sion εC =0.001.

Fig. 13 shows the time progression of the case where εC = 0, representing no surface
tension effects. As time progresses, the pentagon initially expands to form five dendritic
arms, but these arms unstably split as the growth proceeds.

Fig. 14 shows the case where εC = 0.001, indicating a small isotropic surface tension
effect. The initial frozen seed expands to form five dendritic arms, but unlike the previ-
ous case with no surface tension, the dendritic arms do not split. Instead, they expand
outward with a smooth edge.

Figure 15: Solidification with anisotropic surface tension.

Fig. 15 shows the case where εC = 0.001
[

(8/3)sin4(2(θ−45◦))
]

, with εC = 0.001, rep-
resenting anisotropic surface tension effects. Growth is favored on the interface where
the normal direction is diagonal while growth is inhibited where the interface normal
direction is vertical or horizontal.



48 B. Li and J. Shopple / Commun. Comput. Phys., 10 (2011), pp. 32-56

Varying the phase angle of an anisotropy. Here we vary the phase angle θ0 of the
anisotropic surface tension and anisotropic kinetic effects. Specifically, we consider the
εC and εV in the Gibbs-Thomson relation to be

εC(n)= εC

[

1−cos(4(θ+θ0))
]

,

εV(n)= εV

[

1−cos(4(θ+θ0))
]

,

where θ is the angle formed by the outward normal n and the positive x-axis measured
counterclockwise. These give a fourfold anisotropy. In our examples, we let εC = εV =
0.001. Our initial interface representing the frozen seed is an eight-sided star shape. Our
computational domain is Ω=(−1,1)×(−1,1). We use a 129×129 grid for the base mesh.
The time step is ∆t=0.0001 and the final time is 0.4.

Figure 16: Solidification with a four-fold anisotropic surface tension. Left: The phase angle is 0◦. Right: The
phase angle is 45◦. The shape is shown at t=0,0.01,0.02,0.03, and 0.04 in both cases.

Fig. 16 shows that the growth is favored in the vertical and horizontal directions when
the phase angle θ0 = 0◦ and is favored in the diagonal directions when the phase angle
θ0 =45◦.

7 Application to solvation

We now apply our method to the numerical simulation of molecular solvation using the
recently developed variational implicit-solvent (i.e., continuum-solvent) model [1, 3, 4, 7,
8]. In this model, an underlying system of molecules in a solution is divided geometri-
cally into three parts: the solute region Ωs, the solvent (e.g., water) region Ωw, and the
corresponding solute-solvent interface Γ that separates the solute region Ωs and the sol-
vent region Ωw, cf. Fig. 17 where n is the unit normal along the solute-solvent interface Γ

pointing from the solute region Ωs to the solvent region Ωw. Here, we assume that there
is a sharp interface that separates the solvent and solutes, and we treat the solvent as a
continuum. We also assume that there are N solute atoms in the system that are located
at x1,··· ,xN inside Ωs. These solute particles are fixed.
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Figure 17: A schematic description of a solvation system with an implicit solvent.

The basic assumption in this model is that the experimentally observed equilibrium
molecular structures minimize the following effective solvation free-energy functional:

G[Γ]=
∫

Γ
γdS+ρw

N

∑
i=1

∫

Ωw

Usw(|x−xi|)dV. (7.1)

Here, the first term is the surface energy, where γ is the surface tension. In a simple
case, one can take γ to be a positive constant. The second term is the van der Waals type
interaction energy between solute particles located at x1,··· ,xN and solvent molecules
governed by a Lennard-Jones type potential (cf. Fig. 18)

Usw(r)=4εsw

[(σsw

r

)12
−

(σsw

r

)6]

. (7.2)

The parameter ρw is the solvent density which we take to be a constant. The parameters
εsw and σsw can vary with different particles.

Figure 18: The Lennard-Jones Potential U(r)=4ε
[

(σ/r)12−(σ/r)6
]

.

To find a (local) minimizer of the functional (7.1), we use the level set method. We
begin with an initial surface that surrounds all the solute particles located at x1,··· ,xN . We
then evolve the surface in the direction of steepest decent of the free energy. This means
that the surface moves with the normal velocity same as the negative first variation of the
free energy G[Γ] with respect to the location change of the surface Γ [3]:

vn =−δΓG[Γ]=−γκ+ρw

N

∑
i=1

Usw(|x−xi|), (7.3)

where κ is the (mean) curvature.
Our algorithm is as follows:
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1. Choose an initial base mesh with spacing appropriate for the problem. Input parameters and
initialize the level set function. The input parameters are the surface tension constant γ, the
Lennard-Jones energy parameters σsw, εsw (for each particle) and the solute particle locations
x1,··· ,xN;

2. Calculate the curvature κ as described in Section 5;

3. Interface-fit the grid to Γ;

4. Calculate the Lennard-Jones potential term ρw ∑
N
i=1Usw(|x−xi|) on Γ (at the vertices on Γ);

5. Extend the Lennard-Jones potential term away from Γ using the method of normal velocity
extension as explained in Section 3;

6. Solve the level set equation (1.2) with the extended normal velocity (7.3);

7. Reinitialize the level set function φ;

8. Go to Step 2.

Note that in Step 5 we extend the Lennard-Jones potential from the interface rather
than using its default values away from the interface. This way we can avoid the rapid
change of the Lennard-Jones potential near solute particles. Such rapid changes can cause
numerical instabilities.

Since our functional (7.1) is in general nonconvex and our method is a relaxation
method, different initial surfaces will lead to possibly different final, relaxed surfaces that
represent equilibrium solute-solvent interfaces. It is therefore crucial to define different
kinds of initial surfaces. Based on how close a surface is to some or all of the fixed solute
particles, we classify initial surfaces into three types: loose wraps, tight wraps, and mixed
wraps. A loose wrap is a large surface that loosely wraps all the particles. For instance,
a large spherical surface that contains all the solute particles x1,··· ,xN is a loose wrap.
A tight wrap is a small surface that tightly wraps all the particles. An initial level set
function that represents a tight wrap can be generated by

φ(x)= min
1≤i≤N

(|x−xi|−σ̂i),

where each σ̂i >0 is small enough, e.g., σ̂i <σi/2. A mixed wrap is a surface with a locally
loose wrap for some particles and locally tight wrap for other particles.

In what follows we test on three artificial systems to demonstrate how our model and
method can capture quantitatively some of the physical properties in real molecular sys-
tems. In these tests, we choose our computational domain to be Ω=(0,1)×(0,1). We use
some artificial parameters that can be viewed as rescaled from real physical parameters.
To avoid complication, we shall also use only a loose wrap or a tight wrap as an initial
surface.

A three-particle system. We place two particles at (0.3,0.35) and (0.6,0.65). Both
of them have ε = 0.005 and σ = 0.15. We place the third particle at (0.5,0.2) with the
corresponding values ε = 0.003 and σ = 0.1. We also set the parameters γ = 0.0001 and
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Figure 19: Level set relaxation of the solute-solvent interface for the three-particle system. Left: A loose wrap
initial surface. Middle: The final, relaxed surface. Right: An intermediate surface during the relaxation.

ρ = 0.5 in the free energy functional (7.1). We generate a loose wrap by initializing the
level set function φ to be at least 1.5σ from the ith particle for all i. Fig. 19 shows the
progression of the surface Γ to the steady state that represents the optimal solute-solvent
interface. We find our level set method captures the break up of the interface.
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Figure 20: Free energy vs. step number for the three-particle system.

Fig. 20 shows the value of the surface energy, van der Waals energy, and the total free
energy as the algorithm proceeds. The top line represents the surface energy. It increases
from time step 75 to time step 250 as the interface becomes longer. As the surface energy
increases, it is more than offset by the decrease of the van der Waals energy so that the
total free energy (surface energy plus van der Waals energy) monotonically decreases to
a steady state.

A ring system. We now consider an artificial ring molecule that consists of 8 solute
particles evenly distributed on a circle. Fig. 21 shows a sequence of snapshots of our level
set calculations starting with a large circle, a loose wrap. In the relaxed system, there is no
solvent inside the ring region of solute molecule. This is the dewetting phenomena that
is important in biomolecular solvation. Fig. 22 shows a different sequence of snapshots



52 B. Li and J. Shopple / Commun. Comput. Phys., 10 (2011), pp. 32-56

Figure 21: Snapshots of the level set relaxation of the solute-solvent interface for a ring molecule with a
loose-wrap initial surface. Order: from left to right and from top to bottom.

Figure 22: Snapshots of the level set relaxation of the solute-solvent interface for a ring molecule with a
tight-wrap initial surface. Order: from left to right and from top to bottom.

of our level set calculations starting with two circles, one large and one small, that form
a ring containing all the solute particles. In the relaxed system, the solvent is inside the
ring region of solute molecule. These examples demonstrate that our level set method
captures different local minima of the free-energy functional.
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A two-rod system. This system consists of 18 solute particles with 9 evenly dis-
tributed on one line and the other 9 evenly distributed on a different line. These two
lines are parallel. The parameters in the model are: γ = 0.00035, ρw = 0.5, all ε = 0.0062,
and all σ=0.1. We consider different values of the distance d between these two lines. For
each of the distance d, we consider both loose-wrap and tight-wrap initial surfaces.

2.2 sigma 2.2 sigma

3.2 sigma 3.2 sigma

4.2 sigma 4.2 sigma

Figure 23: Top: d = 2.2σ. Middle: d = 3.2σ. Bottom: d = 4.2σ. The left ones are relaxed from initially loose
wraps and the right ones are from initially tight wraps.

Fig. 23 shows the result of our level set calculations. When the distance is small, the
free-energy minimizing surface is a one-component surface that wraps all the 18 parti-
cles. When the distance is large, the free-energy minimizing surface is a two-component
surface with each component wraps all the particles on the same rod, and the system is a
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Figure 24: Free energy vs. distance d for the two-rod system.

two-rod molecule with each one a linear polymer. In both cases, the free-energy minimiz-
ing surface seems to be unique, regardless of loose-wrap or tight-wrap initial surfaces.
When the rod separation distance is neither too small nor too large, there are two local
minimizers of the free energy functional: a one-component large surface wrapping all the
particles, corresponding to the loose initial surface, and a two-component surface with
each component wrapping tightly the particles on one line. The one-component surface
shows the dewetting phenomenon: inside the surface there is no solvent.

Fig. 24 plots the free energy values vs. the distance d. It is rather clear that when the
distance d is in the range between 2.4σ ∼ 4σ, the system has two local minimizers, one
corresponding to an initial tight wrap and the other to loose wrap. The free energy of the
one-component equilibrium surface is larger than that of the two-component tight-wrap
surface. This means that dewetting is a local but not global minimizer of the underlying
system.

8 Conclusions

We have introduced a finite element based level set method for numerically evolving
surfaces. The key feature of this method is the construction of an interface-fitted mesh
and its unrefinement with respect to a fixed base mesh in each time step of evolution. An
advantage of using such interface-fitted meshes is that a high accuracy can be achieved
in solving field equations together with interface conditions. Another advantage of our
method is to relatively easily handle interfaces with complex geometries.

We have developed new level set techniques for the extension of normal velocity and
the reinitialization of level set function. The main idea is to solve Laplace’s or Poisson’s
equations on both sides of the interface with suitable interface conditions. Approximate
solutions to such elliptic interface problems can be obtained by iteration methods with a
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few iterations. We have also designed a simple, finite element based scheme for comput-
ing the curvature. Our analysis and numerical tests show a second-order convergence of
this scheme.

We have used our method to solve the classical solidification problem and the new
molecular solvation problem. We have reproduced the previous numerical results of
dendritic solidification. We have also captured some key properties of variational solva-
tion of molecules. In addition, our numerical tests have shown high accuracy of these
techniques.

Our method needs to be much refined and improved, particularly in two aspects.

i. Combined with the adaptive finite element method. When an interface-fitted mesh is ini-
tially constructed, it is often of poor quality in terms of the mesh regularity. Using
the adaptive finite element method to solve the field equations, one can simultane-
ously improve the quality of the mesh. A possible difficulty is to keep nodes on the
interface unchanged.

ii. Extension to three-dimension. In principle, this can be carried out. But much imple-
mentation work is needed.
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