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Abstract. The important task of evaluating the impact of random parameters on the
output of stochastic ordinary differential equations (SODE) can be computationally
very demanding, in particular for problems with a high-dimensional parameter space.
In this work we consider this problem in some detail and demonstrate that by combin-
ing several techniques one can dramatically reduce the overall cost without impacting
the predictive accuracy of the output of interests. We discuss how the combination of
ANOVA expansions, different sparse grid techniques, and the total sensitivity index
(TSI) as a pre-selective mechanism enables the modeling of problems with hundred of
parameters. We demonstrate the accuracy and efficiency of this approach on a number
of challenging test cases drawn from engineering and science.
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1 Introduction

Quantifying the impact of uncertainty in physical systems has received considerable at-
tention during the last decade, in particular emphasizing the need to develop efficient
and accurate computational techniques for high-dimensional problems. Applications of
such techniques can be found across the sciences and engineering with the uncertainty
being caused by insufficient or inaccessible data among other things.
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In this work we consider problems of the type

du(t,α)

dt
= f (u,t,α), t>0,

u(0,α)= g(α),

where the state vector u : R+×Rp →Rm, and the flux f : Rm×R+×Rp → Rm is assumed
Lipshitz continuous. The solution is parameterized by α = (α1,··· ,αp) which describes
the system, e.g., the details of the initial conditions or parameters in the flux.

This very general problem arises in numerous applications and there is a long his-
tory of the development of accurate and efficient methods for solving them provided α

is known accurately. We think of this as the purely deterministic case. However, for
many problems, the parameters are not known, known only with poor accuracy, or even
entirely inaccessible. One approach in such cases is to endow the parameters with a
confidence interval and associated probability density, hence turning the problem into a
stochastic problem. We must then consider methods that enable the rapid computation
of statistical measures such as the mean and variances of the state variables. This clearly
has to be approached carefully since minor, but correlated, changes in some parameters
may lead to major changes in the output variables. Simply freezing the parameters at
expectation values is generally far from adequate.

It is reasonable to categorize the majority of methods for computationally dealing
with such problems into two groups: sampling based statistical methods and probabilis-
tic techniques. In the first category one finds the classic Monte Carlo (MC) method [5]
which has the clear advantage of being simple, e.g., one needs only a deterministic solver.
The simplicity, however, comes at the cost of slow convergence as O(K−1/2) where K is
the number of samples. This quickly becomes prohibitive if even reasonable accuracy is
needed, in particular if the interest is on higher moments such as variance/sensitivity.
To accelerate convergence of the MC method, several techniques have been proposed,
e.g., Latin hypercube sampling [24], quasi-MC (QMC) method [6], and the Markov chain
MC (MCMC) [7] method. However, additional restrictions are often imposed by these
methods and their applicability is not general.

A particular alternative to sampling based techniques has recently received substan-
tial attention. Known as Stochastic Galerkin or Polynomial Chaos (PC) methods, these
are probabilistic in nature and based on a generalization of the Wiener-Hermite PC ex-
pansion. In this approach, the randomness is represented by the Wiener expansion and
the unknown expansion coefficients are found by a Galerkin procedure in the inner prod-
uct associated with the measure of the random variables used in the Wiener expansion.

Substantial recent work has shown the accuracy and efficiency of this approach, in
particular for problem of low to moderate dimensionality and problems with sufficient
smoothness in probability space, enabling a very efficient representations through the
Wiener expansion. However, a substantial disadvantage of the Galerkin approach is the
need to develop entirely new software to solve large coupled equations resulting from
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this procedure. This represents a significant problem as validated existing software can
not be used directly to model the impact of randomness and uncertainty.

To address this short coming of an otherwise successful approach, several authors
have proposed a modification. The bottleneck in the stochastic Galerkin approach is
the creation and solution of a large coupled system through the evaluation of the inner
products in the Galerkin procedure. It has been proposed to satisfy the high-dimensional
problem in a collocation fashion instead, resulting in a large number of decoupled small
problems, much in the sense of an MC approach. However, in contrast to MC based
techniques where the sampling points are drawn randomly from an a priori distribution,
in the collocation approach, the sampling points are deterministic and associated with
integration formulas for the evaluation of high-dimensional integrals.

This approach, now known as stochastic collocation, was first proposed by [26] and
more recently revisited and extended in [30] and subsequently considered in more detail
by numerous authors, see [33] for a recent review. A clear advantage of this approach
over the stochastic Galerkin formulation is its simple implementation, enabling one to
use existing validated software much in the same way as for MC.

A central component of the efficiency and accuracy of these techniques is found in the
construction of efficient and accurate integration methods for high-dimensional prob-
lems. In [30, 33] several options are discussed in detail, including Stroud’s cubature
points [25], resulting in a moderate accuracy but high efficiency and sparse grids con-
structed through Smolyak’s algorithm [21] combined with a one-dimensional integration
method. This latter approach improves accuracy but also adds cost.

Even with sparse integration techniques, the computational cost associated with ac-
curately solving problems with many parameters remain a significant challenge and ad-
ditional ideas have to be introduced. In this work we consider this problem and develop
a strategy that often allows a substantial compression of the parameter space without
impacting the accuracy of the statistics of the predicted output values of interest. A key
assumption in this is that one is often not interested in accurate estimation of all output
values of a system but just a few or a combination of these. This is an entirely reasonable
assumption for many problems and is used widely to accelerate the numerical solution of
complex systems of partial differential equations through adjoint based error estimation
(see [12] and references therein).

In this work we use this basic premise to first evaluate the sensitivity of the output
functional to parameter variations in a cheap fashion and subsequently compress the
parameter space based on this. The main tool here will be the Total Sensitivity Index
(TSI) to help identify those parameters which impact the output the strongest. This is
computed efficiently through an approximate ANOVA expansion using sparse grid tech-
niques. Compressing the parameter space further reduces the computational complexity
of the system and a new and more accurate ANOVA expansion for the reduced system
can be computed to efficiently evaluate the sensitivity of the output. We will demonstrate
that this multi-stage approach allows us to accurately and efficiently model problems
with several hundred parameters and accurately compute both expectation and sensitiv-



256 Z. Gao and J. S. Hesthaven / Commun. Comput. Phys., 10 (2011), pp. 253-278

ity values of the output of interests.
What remains of the paper is organized as follows. We begin in Section 2 with a brief

introduction to the stochastic collocation method and continue in Section 3 with some
background material on sparse grid integration methods. In Section 4 we introduce the
ANOVA expansion as an efficient way to represent and compress functions depending on
a high-dimensional parameter space. This sets the stage for Section 5 where we introduce
the total sensitivity index and demonstrates it effectivity in identifying the important re-
duced parameter space and enable a reduction of the parameter space without impacting
the accuracy of the predicted values. The accuracy and efficiency of this approach is il-
lustrated in Section 6 where we consider more complex problems. Section 7 contains a
few concluding remarks and outlook for future work.

2 The stochastic collocation method

Let us adopt the notation of [30]. (Ω,A,P) is a complete probability space, where Ω is the
event space, A∈2Ω the σ-algebra, and P the probability measure. We focus on the prob-
lem of finding a stochastic function, u ≡ u(α(ω),t), such that for P-almost everywhere
ω∈Ω, the following equation holds,

du(α(ω),t)

dt
= f (u,t,α(ω)), t>0, (2.1)

subject to the initial condition

u(α(ω),0)= g(α(ω)), (2.2)

where there state vector, u, and nonlinear flux, f , are defined as previously.

We now assume that the parameters, α, each can be endowed with a probability den-
sity and in most cases we will simply assume that all parameters are uniformly dis-
tributed random variables with a prescribed mean and variance. This is not, however,
an essential condition and can be relaxed.

To account for the impact of the uncertainty in the parameters, it is natural to con-
sider moments of the solutions over the probabilistic space. In other words, we need to
evaluate multi-dimensional integrals of the form

I[u]=
∫

Rp
G(u(ω))dµ(ω),

where µ is the joint distribution and G(u) is some function of u. The simplest way to
accomplish this is through a Monte Carlo approach like

I[u]≃ 1

M ∑
m

G(u(ωm))
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with the samples being drawn from the distribution, µ(ω). The disadvantage of this
is the low convergence rate which, however, is independent of the dimension p of the
random space.

Realizing that we need only evaluate integrals accurately, it is reasonable to utilize
more accurate integration techniques. At least for problems of moderate dimensionality
one would expect this to be superior in terms of accuracy and cost. A subtle assump-
tion in this argument is that the joint probability density of the random variables has a
certainly amount of smoothness. If not, however, the Monte Carlo integration will also
converge very slowly. This line of arguments were first explored in [26] for relatively
simple ordinary differential equations and discussed in much more detail in [30, 33].

The essence of the stochastic collocation approach is to abandon the random sam-
pling approach and consider the use of more advanced integration approaches and, in
this work, adaptive hierarchical integration techniques. In other words we solve the de-
terministic problems

du(α(ωk),t)

dt
= f (u,t,α(ωk)), t>0,

with the initial condition

u(α(ωk),0)= g(α(ωk)),

where ωk∈Γ represent specific instances of the parameter values chosen with an integra-
tion formula in mind.

3 Sparse grid integration methods

An objective in identifying this integration approach is to minimize the number of sam-
ples to achieve a given accuracy when evaluating the integral. For the multi-dimensional
integration, we utilize a number of different approaches, the simplest of which is the
Stroud [25] cubature points. These are useful to compute integrals of the form

I[u]=
∫

[−1,1]p
G(u(α))dα (3.1)

which will be associated with p-dimensional uniformly distributed random parameters,
α. This set of cubature points based on (p+1) points is exact for polynomials of degree
two, and are written as

I[u]≃ 2n

n+1

n

∑
i=1

G(u(αi)), (3.2)

where the n= p+1 cubature points αi =(α1
i ,α2

i ,··· ,αn
i ) are given by

α2r−1
i =

√

2

3
cos

(2r(i−1)π

n+1

)

, α2r
i =

√

2

3
sin

(2r(i−1)π

n+1

)

, (3.3)
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for r=1,··· ,[n/2],. If n is odd, αn
i =(−1)(i−1)/

√
3. Similarly, the Stroud-3 method is based

on 2p points and is exact for polynomials of degree three:

I[u]≃ 2n

2n

n

∑
i=1

G(u(αi)), (3.4)

where the n=2p cubature points αi are defined by

α2r−1
i =

√

2

3
cos

( (2r−1)iπ

n

)

, α2r
i =

√

2

3
sin

( (2r−1)iπ

n

)

, (3.5)

for r = 1,··· ,[n/2]. It can be shown [4, 32] that Stroud-2 and Stroud-3 methods employ
the minimal number of points for their corresponding integration accuracy. These very
simple schemes have recently been extended to general weights in [32].

While the Stroud schemes are efficient and often suffices to compute the expecta-
tion, their limited accuracy may present a problem. The most straightforward way to
extend the many known one-dimensional integration methods to higher (p) dimensions
is through tensor products. However, this quickly becomes prohibitive with the number
of samples growing like np for a quadrature using n points in p dimensions.

A valuable and often superior alternative is the use of sparse grid methods of which
the most notable one is based on the Smolyak construction [21], leading to sparse multi-
variate quadrature formulas based on sparse tensor products of one dimensional quadra-
ture formulas.

Consider the numerical integration of functions u(α) over a p-dimensional unit hy-
percube Ω :=[−1,1]p,

I[u] :=
∫

Ω
G(u(α))dα.

For the purpose of introduction consider first a one-dimensional quadrature formula for
a univariate function u

Q1
l u=

n1
l

∑
i=1

ωiG(u(α1
i )), (3.6)

with Q1
0u=0 and for i∈N+ define

△1
i u=(Q1

i −Q1
i−1)u. (3.7)

The tensor product of p-dimensional quadrature formulas is computed by the sums of
possible combinations of one-dimensional quadrature formula

Q1
l1
⊗···⊗Q1

lp
u=

n1
l1

∑
i1=1

···
n1

lp

∑
ip=1

ωl1i1 ···ωldid
G(u(α1

l1i1
,··· ,xα

p
lpip

)). (3.8)
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To decrease the computational cost of tensor product, Smolyak’s algorithm for the p-
dimensional quadrature formula is given by

Q
p
l u= ∑

|k|1≤l+p−1

(△1
k1
⊗···⊗△1

kp
)u (3.9)

for l∈n and k∈np. The last formula can also be written as

Q
p
l u= ∑

l≤|k|1≤l+p−1

(−1)l+p−|k|1−1

(

p−1

|k|1−l

)

(Q1
k1
⊗···⊗Q1

kd
)u. (3.10)

For other forms, see [29].

3.1 Gauss-Patterson quadrature rules

An essential feature of the Smolyak construction is that the sparse quadrature formulas
are nested if the corresponding one-dimensional quadrature nodes are nested. Notably,
this rules out the use of classic Gauss quadratures.

Seeking nested one-dimensional integration formulas, simple trapezoidal rules im-
mediately comes to mind. However, the limited accuracy of these makes this a less inter-
esting choice. A more appropriate, and widely used, approach is based on the Clenshaw-
Curtis rule [32, 33] which is exact for polynomials of order n when n+1 points are used.
This is considerably better than the second order accuracy of the trapezoidal rules but
falls short of the 2n+1 polynomial exactness of the Gaussian quadrature. The natural
question is whether there are nested quadratures which are better than the Clenshaw-
Curtis rules, but perhaps not quite as good as the classic quadratures.

This question was first considered by Kronrod [4] who extended an n-point Gauss-
Legendre quadrature formula by n+1 points such that the quadrature formulas com-
pleted the polynomial degree of the exactness with degree 3n+1 (n even) or 3n+2 (n
odd). The additional n+1 points are the zeros of the Stieltjes polynomials Fn+1 which
satisfy

∫ 1

−1
Pn(x)Fn+1(x)xjdx=0, j=0,1,··· ,n, (3.11)

where Pn(x) is the nth-order Legendre polynomial. Patterson iterated Kronrod’s scheme
and obtained a sequence of nested quadrature formulas with maximal degree of exact-
ness. The construction includes a sequence of polynomial Gk(x) of degree 2k−1(n+1),
k>1, satisfying

∫ 1

−1
Pn(x)

(k−1

∏
i=1

Gi(x)
)

Gk(x)xjdx=0, j=0,1,··· ,2k−1(n+1)−1. (3.12)

Through this method Fn+1(x)=G1(x) and Gk(x) are orthogonal to all the polynomials of
degree less than 2k−1(n+1) with respect to the weight function Pn(x)(∏

k−1
i=1 Gi(x)). The
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combination of the zeros of Pn(x) and Gj,16 j<k forms the grids for the Gauss-Patterson
quadrature.

When considering the efficiency of the integration measured through polynomial ex-
actness, it is well known that using a quadrature with n points, the Clenslaw-Curtis is
exact for polynomials up to order n−1 and the Gauss-Legendre quadrature is exact for
orders up to 2n−1. For the Gauss-Patterson rule, one can show exactness up to order
(3n−1)/2, confirming that this is truly a compromise [4]. However, it is worth keeping in
mind that polynomial exactness is just one measure of accuracy and making other choices
may well better highlight the advantages of other methods, e.g., in [19] it is shown that
the Clenslaw-Curtis very often is comparable in accuracy to Gauss quadrature despite
formally having lower polynomial exactness.

The nested structure of the Gauss-Patterson quadrature grids in combination with
the Smolyak’s construction results in a natural hierarchical structure for computing the
integrals. To improve the accuracy one needs only compute new additional grids from
level l to level l+1. This nested structure is an important property, in particular for
high dimensional problems to minimize the overall computational cost. For the one-
dimensional Clenshaw-Curtis rule, the number of points grows like 2l−1+1, whereas
the growth for the Gauss-Patterson rule is 2l−1 since the rule is based on the Gauss
quadrature. Hence, when comparing cost of the two methods, it is most appropriate to
compare the Clenslaw-Curtis rule at level l with the Gauss-Patterson rule at level l−1.

An important question to address is whether the Gauss-Patterson based approach,
with its improved accuracy but with more quadrature points at a given level, are com-
petitive with the more traditional Clenslaw-Curtis scheme when one compares cost vs
accuracy, i.e., to achieve a given accuracy in the integral, which of the two schemes re-
quire the least number of function evaluations. This has been addressed recently by
several authors [11, 15] with the conclusion that the Smolyak construction based on the
Gauss-Patterson rule is indeed the most efficient compromise and we shall use that in
what remains unless stated otherwise.

4 The ANOVA expansion

A key technique in what follows is the ANOVA expansion and the associated definition
of effective dimensions of a parameter space.

Without loss of generalization, we let the integration domain D be [0,1]p, and u ∈
L2(D). Let t be any subset of coordinate indices P = {1,··· ,p} and |t| denote the cardi-
nality of t, let α

t denote the |t|-vector containing the components of the vector α∈ [0,1]|t|

indexed by t. Let also A|t| denote the |t|-dimensional unit hypercube which is the pro-
jection of the p-dimensional unit hypercube Ap onto the hypercube indexed by t. Then u
can be expanded using an ANOVA expansion as [2, 13, 20]

u(α)=u0+ ∑
t⊆P

ut(α
t), (4.1)
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where ut(α
t),t⊆P is defined recursively through

ut(α
t)=

∫

Ap−|t|
u(α)dαP\t− ∑

w⊂t

uw(α
w)−u0, (4.2)

starting with

u0 =
∫

Ap
u(α)dα,

∫

A0
u(α)dα

∅ =u(α). (4.3)

Here dαP\t indicates integration over all the coordinates without indices included in t.
The total number of terms in the ANOVA expansion is 2p.

The ANOVA expansion is a finite and exact expansion of a general high-dimensional
function [2]. Furthermore, the individual terms in the expansion are mutually orthogo-
nal, i.e.,

∫

Ap
ut(α

t)uw(α
w)dα=δtw (4.4)

and, as a natural consequence of this, each terms has a zero mean
∫

Ap
ut(α

t)dα =0, |t|>0.

The computational realization of the ANOVA expansion is achieved through the recur-
sive formula (4.2) and the use of orthogonality, Eq. (4.4), as

1. Compute u0 of u(α) using

u0 =
∫

Ap
u(α)dα.

2. Compute the p, (p−1)-dimensional integrals

ui(αi)=
∫

Ap−1
u(α)dαi,

where dαi indicates all indices not including i. The first order terms in the ANOVA expansion
are then computed by

Ui =ui−u0. (4.5)

These terms each depend on one parameter.

3. Compute p(p−1)/2, (p−2)-dimensional integrals

uij(αi,αj)=
∫

Ap−2
u(α)dαij−u0, i< j=1,··· , p,

where dαij indicates all indices not including ij. The second order terms Uij will be computed
by the recursive formula

Uij =uij−Ui−Uj, i< j=1,··· , p,

where Ui and Uj are defined by Eq. (4.5). This accounts for all binary dependencies between
the parameters.
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4. The third or higher order terms in expansion are computed by using the similar recursive approach,

requiring the computation of
(

p
|t|

)

terms of p−|t| size integrals.

5. The ANOVA expansion of u(α) is now expressed as

u(α)=u0+
p

∑
i=1

Ui+ ∑
1=i<j≤p

Uij+ ∑
t⊂P
|t|=3

Ut+··· .

The computational bottleneck here is the need to evaluate a large number of high-
dimensional integrals needed in the construction of the expansion.

Define the truncated ANOVA expansion of order s as

u(α;s)=u0+ ∑
t⊆P
|t|≤s

ut(α
t), (4.6)

where ut(α
t) and u0 are as above.

The concept of effective dimension of a particular integrand was introduced in [1,17]
and also discussed in [18]. The effective dimension of u defined in the superposition
sense is the smallest integer ps such that

∑
0<|t|≤ps

Vt(u)≥qV(u), (4.7)

where q≤1. Here Vt(u) and V(u) are defined by

Vt(u)=
∫

Ap
(ut(α

t))2dα, V(u)= ∑
|t|>0

Vt(u), (4.8)

and can be thought of the variability of u over a given set t.
The relationship between the accuracy of the truncated ANOVA expansion and the

superposition dimension is made clear in the following result [22, 23, 28].

Theorem 4.1. Assume that the function u(α) has superposition dimension ps based on q and let
u(α;ps) denote the truncated ANOVA expansion of order ps. Then

Err(α,ps)≤ (1−q),

where Err(α,ps) is the normalized approximation error defined by

Err(α,ps)=
1

V(u)

∫

Ap

[

u(α)−u(α;ps)
]2

dα.

This highlights that if the superposition dimension is small, ps ≪ p, the function can
be well approximated by using just a few terms in the ANOVA expansion. This promises
to dramatically reduce the cost of the computation of the expansion.

To illustrate the efficiency of the ANOVA expansion in accurately and efficiently rep-
resenting a high-dimensional function using a truncated expansion, let us consider a sub-
set of the classic test functions [9, 10].
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Figure 1: The accuracy of the ANOVA expansion measured in both the L2 and the L∞ norm as a function of
the number of terms for the four test functions described in the text. (a) u1, (b) u2, (c) u3, (d) u4.

• Product Peak function: u1(x)=∏
p
i=1

(

c−2
i +(xi−ωi)

2
)−1

,

• Corner Peak function: u2(x)=(1+∑
p
i=1cixi)

−(p+1),

• Gaussian function: u3(x)=exp
[

−∑
p
i=1c2

i (xi−ωi)
2
]

,

• Continuous function: u4(x)=exp
[

−∑
p
i=1ci|xi−ωi

]∣

∣,

where the parameters c = (c1,··· ,cp) and ω = (ω1,··· ,ωp) are generated randomly. The
parameter ω acts as a shift parameter and the parameters c are constrained. See [9,10] for
the details.

In Fig. 1 we show both the L2 error and the L∞ error of the ANOVA expansion for
p = 10 for the four Genz test functions. The error is computed using a fine sparse grid.
It is clear that once the 4th order terms in the ANOVA expansion are computed, the
complete expansion approximates the full parametric variation very well to accuracies
below 10−10. It is encouraging that this appears to be insensitive to the choice of test-
function. This has been confirmed with many other tests also, typically showing that
including 2nd order terms often suffices. The observation that one often finds a small
effective dimension for high-dimensional problems has also been noted [17, 28], e.g., for
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large classes of problems one often finds that including 2nd or 3rd order terms in the
ANOVA expansion suffices for problems of moderate dimensionality, e.g., p≤25.

5 Parameter space compression through sensitivity estimation

While the use of the ANOVA expansion allows for an efficient way to represent the high-
dimensional function, the dimension of the parameter space remains unchanged. How-
ever, for many types of problems, certain parameters are likely more important than
others, in particular in cases where one is mainly interested in a subset of the dependent
variables or some specific output functional.

This suggests that if we could reliably and at modest cost quantify the importance
of the individual parameters on an output of interest, this could be used to compress
the parameter space without adversely impacting the accuracy of the prediction of the
output and its sensitivity.

To accomplish this we consider the Total Sensitivity Indices (TSI) used in the Fourier
Amplitude Sensitivity Test (FAST) and Sobol’ method [14, 22, 23]. The TSI of parameter i
is defined to measure the combined sensitivity of all terms depending on this particular
parameter. To realize how to most efficiently compute this, we define the sensitivity
measure

S(t)=
Vt

V
, (5.1)

where Vt and V are defined in (4.8). It should be noted that this can be defined based on
any output function of interest or on a particular entry in a vector valued function.

Summing up all the terms S(t), |t|>0 we recover

∑
|t|>0

S(t)= ∑
|t|>0

Vt

V
=1. (5.2)

We now express this as

∑
i∈t

S(t)+∑
i/∈t

S(t)=1, (5.3)

where i = 1,··· ,p is the index of variable αi. The first term in this expression is TSI(i) of
variable αi while the second term reflect all interactions not involving αi.

The individual elements in the TSI are computable directly from the truncated ANOVA
expansion. However, this may be quite expensive to compute for a high-dimensional
case. To overcome this bottleneck, we observe that the use of the TSI is just as an indica-
tor and low accuracy of this will likely be adequate.

We therefore propose an approach in which the ANOVA expansion is first computed
for the output of interest using a low order Stroud based integration scheme. This enables
the computation of the TSI for the full parameter space at low cost and the identification
of the parameters of importance. With this information, we compress the dimensionality
of the problem, retaining only the important parameters and freezing less important ones
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at their mean value. This results in a compressed system which contain the parameters
of dynamic importance. We now proceed and recompute the ANOVA expansion of this
problem at a higher accuracy to enable the accurate modeling of the sensitivity of the
output of interests. In the following we shall illustrate in more detail the validity of this
approach on a non-trivial problem with intuitive behavior.

5.1 An intuitive example

We consider a situation with p particles, each held fixed at a random position in a two-
dimensional space [−a,a]2. Let us furthermore assume that a single particle of unit mass
is initially positioned at (0,0) and feels an acceleration through Newtonian gravitational
forces from all the other particles. This leads to a simple dynamical equation

ẍ(t)=
p

∑
i=1

mi r̂i

r2
i

, x(t0)=x0. (5.4)

Here r̂i is the distance vector between the fixed particle i and the moving particle and ri

is the Eulerian distance between the fixed particle i and the moving particle.
To endow this problem with a high-dimensional characteristic, we assume that all the

masses, mi, are uniformly distributed random variables with a mean of 1/(p+1) and a
10% variance. The goal is to predict the mean trajectory of the moving particle as well as
its sensitivity due to the variation in mass.

Intuitive understanding of the problem suggests that just a small number of fixed
masses will contribute significantly to the dynamics of the moving particle. Hence, we
expect that the parametric compression computed using the TSI approach will work well
in this case and identify particles situated close to the moving particle. As the function of
interest we consider the kinetic energy but this is not a unique choice.

5.1.1 25 dimensional problem

We first consider a small problem with p = 25. In Fig. 2 we show the first part of the
approach in which the ANOVA expansion of the kinetic energy for the full problem is
computed using the Stroud-3 integration and TSI computed based on that.

We notice in Fig. 2 that including only 2nd order terms suffice in the ANOVA expan-
sion to accurately represent the output function. Furthermore, and as expected, the TSI
clearly indicates that only a fraction of the fixed particles are of significant importance for
computing the sensitivity.

The next step is to reduce the number of parameters by freezing those of minimal
influence at their expectation and the specification of the threshold is a question of judge-
ment. Experimentation has shown that parameters with a TSI of 2% or less can typically
be frozen without any substantial effect and we shall use this in what remains. In Fig. 3
we illustrate which particles have been identified by the TSI approach based on the ki-
netic energy, confirming that it identifies those particles which are closest to the particle
track as one would intuitively expect.
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Figure 2: Gravitational problem with p = 25, (a): L2 error and L∞ error for the ANOVA expansion. (b): TSI
for the kinetic energy of the moving particle based on the parametrized masses of the fixed particles.
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Figure 3: Gravitational problem with p=25. Illustration of the 7 most important particles as identified by the
TSI approach.

In Fig. 4 we show the convergence of the ANOVA expansion based on the reduced
set of parameters as well as the computed solution and the sensitivity obtained by using
the compressed set of parameters. For comparison we also show the result based on the
full set of 25 parameters. A third order ANOVA expansion remains sufficient and the
agreement between the full problem and the compressed problem is excellent, both for
the mean and the sensitivity of the problem. The sensitivities are computed using Monte
Carlo in both cases.

To further validate the accuracy of the approach, we show in Fig. 5 a direct com-
parison between the computed results and those obtained using a direct Monte Carlo
approach. The agreement is excellent.

The value at which we choose to truncate the number of parameters based on TSI
has several implications. The most immediate one is naturally the accuracy of the re-
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Figure 4: Gravitational problem with p=25. (a): We show the accuracy of the ANOVA expansion for the com-
pressed problem based on 7 parameters. (b): Computed solution and sensitivity obtained using the compressed
set of parameters as well as the full set of 25 parameters.
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Figure 5: Gravitational problem with p = 25. We show the computed mean and sensitivity of the position (a)
and velocity (b) using different methods as marked.

duced model and for this we find that 2% is a suitable value for all test cases we have
considered. However, there may be reasons for having to include additional parame-
ters beyond what is suggested by the cut-off value. Once the parameters are chosen, we
build a full response surface following [2] by fitting a second order polynomial to avail-
able data through a least squares approximation. Higher order approximations may at
times be advantageous but we have not found strong arguments for doing so in the cases
considered here.

Once the least squares approximation is built, it can be sampled a low cost and we
use this to compute sensitivities and other statistical measures. However, if the param-
eter space is reduced too aggressively and/or the ANOVA expansion is short, the least
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Figure 6: Gravitational problem with p = 100, (a): L2 error and L∞ error for the ANOVA expansion. (b):
Sensitivity index for the kinetic energy of the moving particle based on the parametrized masses of the fixed
particles. Unmarked slices contribute less than 1%.

squares approximation may not exist. In such case, we add parameters drawn randomly
from those just below the 2% cut-off until the least squares approximation is computable.
This typically involves just adding a few additional parameters.

5.1.2 100 dimensional problem

Let us make the problem more challenging and consider a problem with p=100 particles.
In Fig. 6 we illustrate the values of the ANOVA expansion of the full problem computed
using the Stroud-3 integration and the TSI for the kinetic energy computed based on that.

We notice in Fig. 6 that including all 2nd order terms suffice in the ANOVA expansion
to accurately represent the output function. Furthermore, we see clear indications in
the TSI that only a fraction of the fixed particles are of significant importance. Using
the previously discussed thresh hold, we find that as little as 10 parameters suffice to
accurately compute the dynamics of the moving particle.

In Fig. 7 we show the convergence of the ANOVA expansion based on the reduced
set of parameters as well as the computed solution and sensitivity obtained using the
compressed set of parameters and the full set of parameters. A third order ANOVA ex-
pansion is sufficient and the agreement between the full problem and the compressed
problem is excellent, both for the mean and the sensitivity of the problem. The sensitivi-
ties are computed using Monte Carlo in both cases.

To further validate the accuracy of the approach, we show in Fig. 8 a direct com-
parison between the computed results and those obtained using a direct Monte Carlo
solution.The agreement remains excellent and supports the validity of this approach for
high-dimensional problems.
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Figure 7: Gravitational problem with p = 100. (a): We show the accuracy of the ANOVA expansion for
the compressed problem based on 10 parameters. (b): Computed solution and sensitivity obtained using the
compressed set of parameters as well as the full set of 100 parameters based on Monte Carlo.
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Figure 8: Gravitational problem with p=100. We show the computed mean and sensitivity of the position (a)
and velocity (b) using different methods as marked.

6 Numerical examples

In the following we evaluate the ANOVA expansion and the approach to parametric com-
pression on two more challenging test cases, both of which has been studied previously,
albeit using different techniques.

6.1 Genetic toggle switch

We first consider the genetic toggle switch

du

dt
=

α1

1+vβ
−u, (6.1a)
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dv

dt
=

α2

1+ωγ
−v, (6.1b)

ω =
u

(1+[IPTG]/K)η
, (6.1c)

where α1, α2, β, γ, η, K are parameters and [IPTG] is a system input that controls the
behavior of the steady state solution. This system of equations describes a genetic switch
in Escherichia coli [8, 30, 33].

We model the parameters α=(α1,··· ,α6)=(α1,α2,β,γ,η,K) as random variables on the
form α=〈α〉(1+σy), where 〈α〉=(156.25,15.6,2.5,1,2.0015,2.9618×10−5) are the expecta-
tion values. The y=(y(1),··· ,y(6)) are uniformly distributed random variables in [−1,1]6

and σ=0.1, i.e., a 10% variation. See [31, 33] for further details.
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Figure 9: Reference steady state solution of the genetic toggle problem using a 3 level Smolyak sparse grid.

We employ a 4th-order Runge-Kutta method to integrate the system and a Gauss-
Patterson based Smolyak sparse integration to obtain a reference solution. Fig. 9 shows
the steady state solution and its sensitivity as a function of IPTG. This solution is obtained
using 3 levels in the Smolyak grid with 545 function evaluations and have been verified
against a 4-level computation with 2561 function evaluations.

The sensitivity of the solution to the value of IPTG is noteworthy and suggests differ-
ent dynamic behavior away from and close to the critical value. This is clearly confirmed
when the TSI is computed for different values of IPTG. In Fig. 10 we show the TSI com-
puted for two values of IPTG with one being very close to the critical value.

The results in Fig. 10 nicely illustrate that only three of the parameters are important
for IPTG = 10−6 whereas they all enter into the dynamics in the highly sensitive range
around IPTG=10−4.5. Depending on the area of interest this provides guidance to a pos-
sible parameter reduction. An important observation is, however, that the TSI approach
is able to pick up these subtleties of the different regimes at low computational cost.

The computational expense of computing the TSI and, ultimately, evaluating the out-
put of interest depends on the efficiency of the ANOVA expansion. Indeed, one could be
concerned that the truncation dimension depends on the value of IPTG.
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Figure 10: Total sensitivity index of each random variable. (a): IPTG=10−6. (b): IPTG=10−4.5.
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Figure 11: The numerical results computed from ANOVA expansion for the first five IPTG. (a): L∞ error. (b):
L2 error.

In Fig. 11 we show the L2 and L∞ errors for the ANOVA expansion computed using
all six variables for different values of IPTG. The results confirm the efficiency of the
ANOVA expansion, requiring only 2nd order terms and a total of 21 terms, and also the
insensitivity of the truncation dimension to the value of IPTG. The combination of this
and the TSI hence provides an efficient and accurate way of dealing with this otherwise
challenging problem.

6.2 Pollution problem

We next consider a pollution problem, developed by The Dutch National Institute of
Public Health and Environmental Protection (RIVM). It is a chemical model consisting
of 25 reactions and 20 reacting compounds. We refer to [16, 27] for detailed information
regarding the identification of variables with species and the reaction scheme.

The problem is given in a 20 dimensional space u∈R
20 and with a right hand side on
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the form

f(u)=



























































































































































− ∑
j∈{1,10,14,23,24}

rj+ ∑
j∈{2,3,9,11,12,22,25}

rj,

−r2−r3−r9−r12+r1+r21,
−r15+r1+r17+r19+r22,
−r2−r16−r17−r23+r15,
−r3+2∗r4+r6+r7+r13+r20,
−r6−r8−r14−r20+r3+2∗r18,
−r4−r5−r6+r13,
r4+r5+r6+r7,
−r7−r8,
−r12+r7+r9,
−r9−r10+r8+r11,
r9,
−r11+r10,
−r13+r12,
r14,
−r18−r19+r16,
−r20,
r20,
−r21−r22−r24+r23+r25,
−r25+r24.

(6.2)

The auxiliary variables, ri, are connected to the state variables as defined in Table 1 and
the initial condition is prescribed as

u(0)=(0,0.2,0,0.04,0,0,0.1,0.3,0.01,0,0,0,0,0,0,0,0.007,0,0,0)T .

The auxiliary variables in Table 1 depends on 25 coefficients, ki, with mean values given
in Table 2.

In the following we assume that all 25 parameters are uncertain as ki = 〈ki〉(1+σyi),
where σ=0.1, and yi are uniformly distributed independent random variables in [−1,1].

Table 1: Auxiliary variables for the pollution problem.

r1=k1 ·u1 r10=k10 ·u1 ·u11 r19=k19 ·u16

r2=k2 ·u2 ·u3 r11=k11 ·u13 r20=k20 ·u6 ·u17

r3=k3 ·u2 ·u5 r12=k12 ·u2 ·u10 r21=k21 ·u19

r4=k4 ·u7 r13=k13 ·u14 r22=k22 ·u19

r5=k5 ·u7 r14=k14 ·u1 ·u6 r23=k23 ·u1 ·u4

r6=k6 ·u6 ·u7 r15=k15 ·u3 r24=k24 ·u1 ·u19

r7=k7 ·u9 r16=k16 ·u4 r25=k25 ·u20

r8=k8 ·u6 ·u9 r17=k17 ·u4

r9=k9 ·u2 ·u11 r18=k18 ·u16
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Table 2: Mean values of parameters in the pollution problem.

k1=0.350 k10=0.900·104 k19=0.444·1012

k2=0.266·102 k11=0.220·10−1 k20=0.124·104

k3=0.123·105 k12=0.120·105 k21=0.210·10
k4=0.860·10−3 k13=0.188·10 k22=0.578·10
k5=0.820·10−3 k14=0.163·105 k23=0.474·10−1

k6=0.150·105 k15=0.480·107 k24=0.178·104

k7=0.130·10−5 k16=0.350·10−3 k25=0.312·10
k8=0.240·105 k17=0.175·10−1

k9=0.165·105 k18=0.100·109

To demonstrate the efficiency of the proposed approach, we randomly select u8(t)
as the output of interest. The first step is to compute an approximation of the ANOVA
expansion in the full 25-dimensional space and use this to recover the TSI. This is illus-
trated in Fig. 12 where we observe that we can safely use a truncation dimension of only
two in the ANOVA expansion. Using this to compute the associated TSI shows that only
a small number of the random variables are important; these can be identified as be-
ing (k2,k3,k4,k6,k16,k19). We subsequently keep these as random variables and freeze the
remaining 19 variables at their expectation value.
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Figure 12: Results for the analysis of u8, (a): L2 error and L∞ error for the full ANOVA expansion. (b): The
TSI for the parameter space for u8.

We proceed by computing the ANOVA expansion for the reduced parametric func-
tion and use this to predict the output of interest. The results are shown in Fig. 13, illus-
trating the efficiency of the ANOVA expansion on the reduced parameter space, requir-
ing only a 2nd order expansion, and the accuracy of prediction of the reduced model,
obtained by using only the six parameters identified as being important.

We finally show in Fig. 14 the computational solution of u8 compared to Monte Carlo
results, confirming the accuracy of the solution for both expectation and sensitivity re-
sults.
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Figure 13: On the left we show the convergence of the ANOVA expansion of the compressed parametrized
problem, while the right shows the solution obtained using both the full system and the compressed set of
parameters.
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Figure 14: Computational solution and sensitivities of u8 computed using the reduced approach and a Monte
Carlo method.

To illustrate the importance of performing this analysis if a new output function is
chosen, we show in Fig. 15 the TSI computed for the two variables, u14 and u17. The
analysis not only highlights that the important parameters change, but also that the actual
number of parameters required may change, i.e., for u14 two parameters suffice while for
u17 at least 8 parameters are needed.

The ANOVA expansions for the reduced parameter space have truncation dimension
of two for both variables, resulting in a highly compressed approach to compute the
solutions, shown in Fig. 16 where we show the computed solutions and their sensitivities,
confirming the validity of the approach with a reduced parameter space.

To validate the accuracy of the overall approach, we show in Fig. 17 a direct compar-
ison with the computed results and those obtained with a Monte Carlo approach. The
agreement is excellent and the results in Fig. 16 are obtained at a fraction of the overall
computational time.
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Figure 15: (a): TSI for u14. (b): TSI for u17.
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Figure 16: On the left is shown the computed solution and the sensitivity of it for u14. A similar result is shown
on the right for u17.
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Figure 17: Computational solution and sensitivities of u14 (a) and u17 (b) computed using the reduced approach
and a Monte Carlo method.
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7 Concluding remarks

The goal of this paper has been to present a systematic approach to accurately and effi-
ciently model the sensitivity of parametrized differential equations with a high degree of
uncertainty associated with the parameters. While a straightforward approach is possi-
ble in principle, the curse of dimensionality requires one to explore alternative ways to
deal with problems of this nature.

We have shown, through a number of problems of increasing complexity, that a com-
bination of a low cost approximate ANOVA expansions of output functions of interest,
to evaluate importance of the individual parameters through a sensitivity index analysis,
followed by a more accurate ANOVA expansion of the reduced problems offers a viable
and accurate approach. Since the first ANOVA expansion is to understand the parametric
sensitivity, this does not have to be computed accurately and a Stroud based integration
approach suffices. We also showed that the total sensitivity index is sensitive enough to
identify important parameters even in highly sensitive and very dynamic parts of param-
eter space and that it correctly identifies the important parameters for different outputs
of interest. Once the important parameters have been identified, all other are frozen at
the mean value and the reduced system can be analyzed more accurately at reduced cost.
Numerous examples have shown the efficiency and accuracy of this general approach.

The focus in this work has been on ordinary differential equations with high-
dimensional parametric uncertainty. A natural next step is to consider the use of sim-
ilar techniques for partial differential equations where the reduction of computational
complexity is even more important and the dimensionality of the problem often much
higher. However, in a method-of-lines approach, one recovers a large coupled system
of ordinary differential equations after spatial discretization and we are optimistic that
the ideas presented here will transfer to this case. We hope to report on this in the near
future.
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