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Abstract. We present a novel adaptive finite element method (AFEM) for elliptic equa-
tions which is based upon the Centroidal Voronoi Tessellation (CVT) and supercon-
vergent gradient recovery. The constructions of CVT and its dual Centroidal Voronoi
Delaunay Triangulation (CVDT) are facilitated by a localized Lloyd iteration to pro-
duce almost equilateral two dimensional meshes. Working with finite element solu-
tions on such high quality triangulations, superconvergent recovery methods become
particularly effective so that asymptotically exact a posteriori error estimations can be
obtained. Through a seamless integration of these techniques, a convergent adaptive
procedure is developed. As demonstrated by the numerical examples, the new AFEM
is capable of solving a variety of model problems and has great potential in practical
applications.
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1 Introduction

Adaptive finite element methods (AFEM) have been widely studied for over two decades
and are now standard tools in numerical simulations of scientific and engineering prob-
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lems [1, 2, 28, 35, 45]. AFEMs are especially attractive for problems with solutions which
are of singular or multi-scale nature [1, 3, 8, 10, 38]. A standard adaptive finite element
method for solving a partial differential equation (PDE) consists of iterations between
several key components: SOLVE → ERROR ESTIMATE → SIZING MODIFY → RE-
FINE/COARSEN. More specifically, the procedure SOLVE solves for the discrete finite
element solution of the PDE on the current mesh; the procedure ERROR ESTIMATE
performs a posteriori error estimation over the computed finite element solution; with
the computed a posteriori estimate, the procedure SIZING MODIFY introduces the new
mesh sizing based on an error equal distribution principle; and the procedure REFINE
/COARSEN changes the mesh through moving and/or inserting/removing vertices to-
gether with other compatible element modifications. The convergence of an adaptive
finite element algorithm implies that, starting from a given coarse mesh, the adaptation
loop converges within a prescribed error tolerance in a finite number of iterations.

To develop a robust and convergent adaptive finite element method for elliptic prob-
lems on a complicated geometry, it is necessary to construct reliable a posteriori error es-
timates and effective element marking (for refinement/coarsening) strategy, along with
suitable mesh sizing modification and effective mesh refinement and optimization. While
various techniques have been developed to address each of the above issues, we present
a new approach in this work for the adaptive finite element solution of two dimensional
elliptic equations. The main ideas underneath our method consist of the use of supercon-
vergence properties of the finite element solutions based on Centroidal Voronoi Delaunay
triangulations [14–18,27] for the derivation of asymptotically exact a posteriori error esti-
mations, and the use of localized Lloyd iterations [34] for efficient high quality meshing.
Moreover, we show that these ideas can be seamlessly and systematically integrated into
a successful and convergent adaptive finite element algorithm.

Let us first provide some brief discussions on several key components of AFEM and
review some existing works. We note that given the large literature on the subject, our
discussion is very limited and only some most relevant works to our approach are men-
tioned.

First, among the various a posteriori error estimation approaches, the residual-based
and recovery-type methods have been widely accepted [1, 4, 36, 43, 45]. A particularly
popular method is the ZZ-SPR approach, which is based on a local least squares fit-
ting and has been widely used in numerical engineering practices, especially in com-
mercial softwares, due to its robustness in effective a posteriori error estimates and its
efficiency in computer implementation [45]. It is a common belief that the robustness of
the Z-Z technique is rooted in its superconvergence property under structured or mildly
structured meshes [4, 36, 43], which can be generated using many existing mesh genera-
tors [14, 15, 23, 41]. In [43], the effectiveness of the ZZ-SPR technique for linear triangular
elements was established provided that the mesh satisfies the strong regularity or the
quadrilateral parallelogram property. The construction of a triangular mesh with such a
property and a given sizing specification has also been well documented. If such super-
convergence properties hold for meshes in an adaptive procedure, one can then expect to
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get asymptotically exact a posteriori error estimators based on the superconvergent gra-
dient recovery, which in turn leads to the convergence of the adaptive method. A series
of works have been given by Bank et al. on recovery type a posteriori error estimates and
improvement on mesh qualities. In [5], the mesh quality is improved using a posterior
error estimator and in [6], the recovery type (by the global L2 projection) a posteriori er-
ror estimator was proved to be asymptotically exact on the improved mesh. Extensive
numerical examples can be found in [7].

As for high quality two dimensional mesh generation, among many available tech-
niques, the Centroidal Voronoi Tessellations (CVT) [13], whose generating points are also
the mass centroids of the corresponding Voronoi regions with respect to a given density
function, and their dual Centroidal Voronoi Delaunay Triangulations (CVDT) [14] have
been developed for mesh generation and optimization with much success [14–18]. The
construction of CVDT through the Lloyd iteration [34], which iteratively moves genera-
tors to the mass centres (of the Voronoi regions), provides effective reduction of the global
distortion of element shape and sizing [18]. The converged CVDT has minimal distortion
and shares good element quality with respect to the given sizing distribution. It possess
mildly structured regularity which results in nice properties for superconvergent recov-
ery [19, 21, 27]. Indeed, in [27], superconvergence was found for the finite element so-
lution on a general two dimensional domain due to the nice quality of the CVDT mesh.
While the use of CVDT in the AFEM context has been previously explored in [14, 28],
none of those works have adopted the superconvergence based a posteriori error estima-
tion. Motivated by the work in [27], we develop a convergent adaptive finite element
method for two dimensional elliptic problems through a natural integration of the CVT
based meshing and superconvergent gradient recovery based error estimation.

We now give a brief outline of our new method. Initially, a coarse CVT-based triangu-
lar mesh with either a uniform or a pre-determined sizing is constructed by performing
the Lloyd iteration. Then, the iterative loops of finite element solution, error estimation
and mesh refinement are executed. Three kinds of gradient recovery methods, namely,
the weighted averaging, SPR and PPR techniques [24–26, 32, 36, 44] are tested. Based on
the obtained error estimation, a new mesh sizing function is defined on each vertex by
applying an error equal distribution principle proposed in [45]. The mesh sizing distri-
bution is smoothed by performing gradation operated on edges [40]. As for the local
refinement/coarsening required for making the current mesh consistent with the mod-
ified mesh sizing, a robust procedure proposed in [40] for surface remeshing is applied
here. The mesh refined through local mesh operations needs to be improved further,
with respect to the vertex distribution and the mesh topology, which is of paramount im-
portance for the superconvergent gradient recovery. A localized and accelerated version
of the popular Lloyd iteration [34] is developed in this work. The updated CVT-based
triangular mesh is of high quality and can be readily used for the new loop of adaptation.

In the newly developed AFEM procedure described here, after each mesh REFINE,
due to the nice properties of CVT-based optimization, the updated triangular mesh is of
high quality which assures the superconvergence property of the recovered gradients and
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the asymptotical exactness of the a posteriori error estimate. Based on the equal distri-
bution principle employed in the mesh sizing modification, the effectiveness of the error
estimation leads to the convergence of the whole adaptation procedure. The convergence
is verified through extensive numerical experiments.

The remainder of the paper is organized as follows: first in Section 2, we discuss finite
element superconvergent gradient recovery based on the Centroidal Voronoi Delaunay
meshing and a posteriori error estimation. In Section 3, the details of the adaptive finite
element method are presented. In Section 4, several numerical experiments are described.
Finally, conclusions and future working directions are given in Section 5.

2 CVT-based superconvergent gradient recovery and error

estimation

Let Ω be a two dimensional bounded domain, we consider the following boundary value
problem

{ −∇·(a∇u)= f , in Ω,
u= g, on ∂Ω,

(2.1)

where a, f and g are functions defined on Ω. For the case g=0, the weak formulation for
the above model problem is: find u∈H1

0(Ω), such that

∫

Ω
a∇u∇v=

∫

Ω
f v

for all v∈H1
0 (Ω). The finite element method for Eq. (2.1) is to find uh∈Sh, such that

∫

Ω
a∇uh∇v=

∫

Ω
f v, ∀v∈Sh, (2.2)

where the linear finite element space Sh can be defined as

Sh =
{

v|v∈H1
0 (Ω), v|t ∈P1(t), ∀t∈T

}

,

where T is a triangulation of Ω, P1 denotes the linear function space, and h is the mesh
parameter. The case of inhomogeneous boundary conditions can be considered simi-
larly [9, 11].

For effective and robust adaptation of the finite element solution procedure, it is re-
quired to derive a reliable error estimate in terms of the computed finite element so-
lution uh. There are many techniques for error estimations such as explicit estimator,
hierarchical method, residual-type and recovery-type methods [1, 2, 35, 44]. The resid-
ual based error estimators were first introduced in 1978 by Babus̆ka-Rheinboldt [2] and
have been studied by many others. Zienkiewicz-Zhu (Z-Z) introduced, in 1987, the first
recovery based error estimator, then in 1992, the Superconvergent Patch Recovery (SPR)
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using local discrete least-squares fitting [4, 43, 45]. Further improvement can be found
in [1, 26, 32, 33]. Recently, Zhang introduced the PPR technique which is also recovery
based [36]. In this work, we apply the recovery-type technique to derive a posteriori
error estimation. A few typical approaches are briefly reviewed in the next subsection.

2.1 Superconvergent gradient recovery and a posteriori error estimation

Let Nh be the set of mesh nodes. For a given vertex z ∈Nh, ωz is used to denote the
patch which consists of the triangles connecting z. Let Gh be a gradient recovery operator
for the finite element solution uh and Ghuh be the recovered gradient. To facilitate the
computation, local coordinates are employed within each patch, and cτj

is defined as the
barycenter of the triangle τj ⊂ωz, j =1,2,··· ,m, where m is the number of triangles in the
patch.

The simplest way to recover the gradient is by weighted averaging (WAV for short).
The recovered gradient Ghuh at node z has the form of

Ghuh(z)=
m

∑
j=1

|τj|
|ωz|

∇(u
j
h), (2.3)

which is a weighted linear combination of the gradients within each triangle of the el-

ement patch. ∇(u
j
h) denotes the gradient, |τj| is the weight and |ωz| = ∑

m
j=1 |τj|. The

weights can be the areas of element, or other kind of quantities. A very popular choice
is the so called ZZ-SPR technique. For a given vertex z, the ZZ Superpatch Recovery
(ZZ-SPR) method assumes that the gradient function to be recovered is linear within the

patch ω̃z. The gradient ∇(u
j
h) is sampled at the centroid cτj

of each element τj in the

patch ωz. The centroids and the gradients ∇(u
j
h), j=1,m, are used to conduct least square

fitting for the two linear gradient functions, i.e., the x- and y-component of the gradi-
ent. Special care is required for handling the boundary points. The readers are referred
to [44,46] for the details of the recovery procedure. Different from the ZZ-SPR technique,
the recently developed PPR method first applies least square fitting to reconstruct the
function uh as a quadratic function p(z) within the patch ωz. At least six mesh nodes
connecting or around z (including z itself) are chosen and their finite element function
values are utilized as the sampling values for the least square approximation. Similarly,
special treatment is conducted for the boundary points. When the expression of p(z) is
obtained, the PPR-recovered gradient at z is defined to be Ghuh(z)=∇p(z), see [36] for
details. In this paper, the ZZ-SPR technique is adopted for the gradient recovery, but the
superconvergent properties of the CVDT meshes are shown to be valid for other recovery
techniques as well.

Let {vz : z∈Nh} be the Lagrange basis of Sh, then the recovered gradient Ghuh on Ω̄

can be defined to be

Ghuh = ∑
z∈Nh

Ghuh(z)vz.
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And the a posteriori error estimate can be conducted as

η2
Ω = ∑

τ∈T h

η2
τ =‖∇uh−Ghuh‖2

0,Ω, (2.4)

where

ητ =‖∇uh−Ghuh‖0,τ

stands for the error estimate on each element τ. Asymptotic exactness of the error esti-
mation can be obtained, provided that the recovered gradient Ghuh shares the supercon-
vergent property [26, 32, 33, 44], which often requires certain topological and structural
regularities of the finite element mesh possesses [43]. For instance, in [43], it was proved
that ηΩ is asymptotically exact if the mesh is mildly structured (such as satisfying the
O(h1+α)(α>0) parallelogram property), superconvergence results can be established for
WAV, ZZ-SPR recovery and PPR. A natural question is how to generate a superconvergent
mesh for a complicated domain, especially in the case of an adaptively updated nonuni-
form mesh sizing. We demonstrate here the CVT and CVDT based meshes can serve the
purpose.

2.2 CVT-based high quality meshing for superconvergence

The centroidal Voronoi tessellation (CVT) and its wide applications have been studied
in [13]. It provides optimal points placement with respect to a given density function
as well as optimal spatial tessellation. With the density function properly related to a
giving sizing field, its dual Centroidal Voronoi Delaunay triangulation (CVDT) results
in a high-quality Delaunay mesh. Such techniques have been applied to isotropic mesh
generation and optimization both in 2D and 3D [14–16,18]. Generalizations to anisotropic
cases and surface quality mesh have also been made in [17]. We now recall some of the
main concepts and properties of CVTs given in [13,18], and present the Lloyd method for
the CVDT construction as an approach to optimize a Delaunay mesh [34].

2.2.1 Basic concepts and properties

Given a density function ρ defined on a region V, the mass centroid z∗ of V is defined by

z∗=

∫

vyρ(y)dy
∫

v ρ(y)dy
.

Given a set of points {zi}k
i=1 in the domain Ω and a positive density function ρ defined on

Ω, a Voronoi tessellation is a Centroidal Voronoi Tessellation (CVT) if zi =z∗i , i=1,··· ,k, i.e.,
the generators of the Voronoi regions Vi, zi, are themselves the mass centroids of those
regions. The dual Delaunay triangulation is referred to as the Centroidal Voronoi-Delaunay
Triangulation (CVDT).
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For any tessellation {Vi}k
i=1 of the domain Ω and a set of points {zi}k

i=1 (independent
of {Vi}k

i=1 ) in Ω, we define the following cost or energy functional:

F
(

{Vi}k
i=1,{zi}k

i=1

)

=
k

∑
i=1

∫

Vi

ρ(x)‖x−zi‖2dx.

The standard CVTs along with their generators are critical points of this cost functional.
The definitions of Constrained CVT (CCVT) and its dual constrained CVDT (CCVDT)
can also be defined similarly; see [14] for details. Also, in [17], these concepts were gen-
eralized to anisotropic cases with a Riemannian metric and surface meshing.

CVT and CVDT’s can be constructed by both probabilistic and deterministic meth-
ods [13, 14]. Here, we apply a deterministic algorithm based on the popular Lloyd’s
method [13, 14, 34], which is an iteration between constructing Voronoi tessellations
and centroids. It enjoys the property that the functional F is monotonically decreasing
throughout the iteration.

Given a bounded domain and a prescribed element sizing, suppose a Delaunay tri-
angular mesh is constructed by a procedure that includes boundary discretization, con-
strained boundary Delaunay triangulation, interior points generation and Delaunay in-
sertion of them, and also suppose that the constrained boundary Delaunay triangulation
of the domain with respect to the sizing is provided [14, 15], the Lloyd iteration for the
construction of CVT (and CVDT) can be briefly described as follows:

Algorithm 2.1. The Lloyd Iteration

1. Construct the Voronoi region for each of the interior points that are allowed to change their
positions, and construct the mass center of the Voronoi region with a properly defined density
function ρ(p) derived from the sizing field H(p) (with ρ(p) = 1/H(p)2+d up to a constant
scaling, where d=2 for two dimensions [14]).

2. Insert the computed mass centers into the constrained boundary Delaunay triangulation through
a constrained Delaunay insertion procedure [23, 41].

3. Compute the difference D=∑
k
i=1‖Pi−Pimc‖2, {Pi} is the set of interior points allowed to change,

{Pimc} is the set of corresponding computed mass centers. If D is less than a given tolerance,
terminate; otherwise, return to Step 1.

The construction of CVDT (or CCVDT) through the above Lloyd iteration can be also
viewed as a smoothing process of an initial mesh. The CVDT concept provides a good
theoretical explanation to the effectiveness: by successively moving generators to the
mass centers (of the Voronoi regions), the cost functional is reduced. Here, smoothing
means both node-movement and node reconnection. As the density function is chosen
according to the sizing function, the cost functional may be related to the distortion of the
mesh shape and quality with respect to the mesh sizing. Thus, the process of iteratively
constructing CVDTs, like the Lloyd’s algorithm, leads to a reduction of the global distor-
tion of element shape and sizing. The final CVDT would have the minimal distortion,
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and hence shares good element quality with respect to the sizing distribution [14, 15].
The optimized triangular mesh is almost equilateral for much of the domain, and the
mesh satisfies the requirement of the so-called O(h1+α) parallelogram property [43], see
also [12] (pp. 285), as demonstrated numerically in the following subsection.

2.2.2 Numerical demonstration of superconvergent meshing

Superconvergent gradient recovery requires nice geometric properties of meshes, such as
O(h1+α) parallelogram property proposed in [12] for two dimensional geometry. Here,
we introduce a parameter θ(h) to depict the geometric property of meshes

θ(h) :=
[

∑
e∈E

(

(θe1′−θe1)
2+(θe2′−θe2)

2
)

(Sτ +Sτ′)
]

1
2
,

where E is the set of interior edges in the triangulation Th. θe1′ , θe1 and θe2′ , θe2 are the
alternate interior angles of the common side e of adjacent elements. Sτ and Sτ′ denote the
areas of the two neighboring elements, respectively (see Fig. 1). We say the triangulation
Th is α-superconvergent if θ(h)=O(N−α/2), with N being the total number of degrees of
freedom (element nodes).

e

θ
e1

θ
e2

θ
 e1′

θ
 e2 ′

τ

τ′

Figure 1: Alternate interior angles of the common side e of the neighboring elements τ, τ′.

To study the geometric properties of a mesh, the average element quality is also com-
puted. Here, the element quality Qτ of a triangle τ is defined as

Qτ =
4
√

3Sτ

∑
3
i=1(Li)2

,

where Li(i =1,2,3) denote the element edge lengths. The bigger the Qτ is, the better the
quality is. For an equilateral triangle τ, Qτ is equal to 1. And the average quality of
a triangular mesh T can be defined as Qavg = M−1∑

M
i=1 Qτi

, where M is the number of
elements.

Initially, CVT-based meshing and optimization are conducted for three domains with
five scales of uniform mesh sizings, of which the coarsest scale meshes are shown in
Fig. 2(a), (b), and (c) respectively. The mesh geometric statistics data involving average
quality and the superconvergence parameters are included in Tables 1, 2, and 3 for each
domain. For the three domains, all the meshes have average qualities up to 0.99 which
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(a) (b) (c)

Figure 2: CVDT meshes of a domain with a complicated boundary (a) and a domain with three holes (b).

(a) (b) (c)

Figure 3: CVDT nonuniform meshes of a circular domain using sizing function h = h0 = 0.1
√

x2+y2+0.01,
h=h0/2 and h=h0/4 for (a), (b), (c) respectively.

demonstrate that the triangular meshes are almost equilateral, and accordingly the pa-
rameter α is about 0.5, corresponding to the domain shown in Figs. 2(a), (b), and (c)
respectively. This shows that the meshes generated via CVT-based optimization are of
nice parallelogram property. Moreover, it indicates that a better average element quality
also leads to a better fit with the parallelogram property.

For CVT-meshing with non-uniform sizings, a unit disk is first meshed with refine-
ment around its center, with the global mesh sizing function defined as h = h0(x,y) =
0.1

√

x2+y2+0.01. Then, h is reduced to be h0/2.0, h0/3.0 and so on for global refinement.
Three CVT-meshes are shown in Figs. 3(a), (b), and (c) respectively and the parallelogram
property parameters are contained in Table 4 from which it is clear that superconvergent
meshes are constructed.

Table 1: Mesh data including the mesh sizing, element average quality and the order of convergence α in the
case where the mesh is shown in Fig. 2(a).

Sizing h 0.05 0.025 0.0125 0.009 0.00625
Qavg 0.991 0.996 0.998 0.999 0.999

N 499 1923 7566 14510 29960
θ(h) 0.298 0.233 0.133 0.122 0.105

α — 0.535 0.498 0.493 0.498
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Table 2: Mesh data including the mesh sizing, element average quality and the order of convergence α in the
case where the mesh is shown in Fig. 2(b).

Sizing h 0.05 0.025 0.015 0.009 0.0065
Qavg 0.985 0.992 0.995 0.997 0.998

N 450 1703 4619 12632 24074
θ(h) 0.320 0.241 0.194 0.154 0.131

α — 0.42 0.43 0.46 0.50

Table 3: Mesh data including the mesh sizing, element average quality and the order of convergence α in the
case where the mesh is shown in Fig. 2(c).

Sizing h 0.08 0.06 0.04 0.02 0.01
Qavg 0.989 0.993 0.996 0.998 0.999

N 631 1085 2375 9267 23503
θ(h) 0.539 0.402 0.326 0.226 0.160

α — 1.09 0.534 0.536 0.503

Table 4: Mesh data including the total mesh nodes, element average quality and the order of convergence α in
the case where the mesh is nonuniform in Fig. 3.

N 1189 4678 10485 18550 23503
Qavg 0.988 0.994 0.995 0.995 0.995
θ(h) 0.378 0.237 0.190 0.163 0.150

α — 0.678 0.551 0.536 0.688

Table 5: Mesh data including the total mesh nodes, element average quality Qavg and Qavg(loc) (the element

average quality within the red circular domain) for the nonuniform mesh in Fig. 4.

N 412 1375 2349 3288
Qavg 0.980 0.991 0.995 0.994

Qavg(loc) 0.980 0.988 0.991 0.991

Next, the unit disk is chosen again and the mesh sizing h(x,y) is defined in the fol-
lowing way. The sizings for the boundary is fixed to be hb=0.1, the sizing for the center
is fixed to be hc = 0.1 first, and for the other parts of the domain, linear interpolation
between hb and hc is applied. The first CVT-mesh is shown in Fig. 4(a). Then, hc is re-
duced to be 0.05, 0.025 and so on, and linear interpolation is again conducted for mesh
sizings. A sequence of CVT-meshes are generated and they are shown in Figs. 4(b), (c),
and (d). High-quality meshes are constructed which is demonstrated by the local views
of the mesh around the disk center shown in Fig. 5 and it is also clearly shown by the
average qualities contained in Table 5. This substantiates that CVT-based mesh optimiza-
tion technique is suitable for superconvergent gradient recovery, which shall be further
demonstrated in the following.

Three complicated domains are chosen as examples for CVT-based meshing and
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(a) (b) (c) (d)

Figure 4: Nonuniform CVDT meshes of the unit disk (the radii of the red circles are 1/2, 1/4, 1/8, and 1/16,
respectively).

(a) (b)

Figure 5: Local views of the mesh near the singular point in Fig. 4(c) and (d).
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Figure 6: CVDT meshes for superconvergent gradient recovery.

among which, two domains are meshed with uniform sizings of four different scales (lev-
els) with the third being meshed with a point refinement, as illustrated in the Figs. 6(a),
(b), and (c), respectively. Eq. (2.2) (with a=1) is solved on these meshes by finite element
method with conforming linear elements. Also, gradient recovery is conducted via the
WAV, ZZ-SPR and PPR methods.

For a two dimensional problem, the standard optimal convergence rate for linear fi-
nite elements is: ||∇(u−uh)||L2(Ω) ≤ CN−1/2. And the recovered gradient Ghuh is said
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Table 6: Mesh data including the mesh quality, error estimate ‖·‖ = ‖Ghuh−∇u‖L2(Ω) and the order of

convergence for the recovered gradients for the mesh shown in Fig. 6(a) and the exact solution u= e(x2+y2).

Sizing h 0.16 0.08 0.04 0.02
Qavg 0.974 0.981 0.988 0.992

N 190 739 2829 11051
‖·‖WAV 2.584e-1 8.024e-2 2.372e-2 6.617e-3
CRWAV — 1.722 1.816 1.874
‖·‖PPR 2.418e-1 7.689e-2 2.244e-2 6.064e-3
CRPPR — 1.687 1.835 1.920
‖·‖ZZ 2.371e-1 7.598e-2 2.198e-2 5.919e-3
CRZZ — 1.676 1.848 1.926

Table 7: Mesh data including the mesh quality, error estimate ‖·‖= ‖Ghuh−∇u‖L2(Ω) and the order of con-

vergence for the recovered gradients for the mesh shown in Fig. 6(b) and the exact solution u=sin(6x)sin(6y).

Sizing h 0.2 0.1 0.05 0.025
Qavg 0.967 0.981 0.988 0.991

N 366 1325 5099 19898
‖·‖WAV 4.578 1.648 4.517e-1 1.193e-1
CRWAV — 1.648 1.920 1.956
‖·‖PPR 4.703 1.636 4.481e-1 1.167e-1
CRPPR — 1.642 1.922 1.979
‖·‖ZZ 4.730 1.641 4.487e-1 1.164e-1
CRZZ — 1.646 1.924 1.982

to be superconvergent in the sense that ||∇u−Ghuh||L2(Ω) ≤CN−1/2−ρ, where ρ > 0 is a
constant and Gh : P1×P1 is the recovery operator. Then, the convergence rate CR with
respect to the norm ‖·‖ at the refinement level l is computed by

CR=
2log

(‖el‖/‖el−1‖
)

log
(

Nl−1/Nl

) , (2.5)

where Nl and el are the number of degrees of freedom and ∇u−Ghuh in the lth refinement
level, respectively.

For the computed finite element solutions, several kinds of data are computed and
they include the mesh size h, the average mesh quality Qavg, the number of the nodal
freedoms N, the error estimate ‖Ghuh−∇u‖ of the recovered gradient, and the CR of the
order of convergence determined by the expression (2.5). Table 6 and Table 7 contain
the data corresponding to the use of WAV, PPR and ZZ-SPR respectively, which clearly
demonstrate that superconvergence property are obtained. Also, it is found that the three
recovery methods are comparable on the constructed CVDT meshes. Table 8 contains the
data corresponding to the case where the solution is singular at the center of the domain
and the gradient recovery is conducted only by ZZ-SPR. It further demonstrates that tri-



Y. Huang, H. Qin, D. Wang and Q. Du / Commun. Comput. Phys., 10 (2011), pp. 339-370 351

Table 8: Mesh data including the number of nodal freedoms N, the mesh quality, error estimate ‖·‖=‖Ghuh−
∇u‖L2(Ω) and the order of convergence for the recovered gradients for the mesh shown in Fig. 6(c) and the

exact solution u=1.0/(x2+y2+0.01). Only ZZ-SPR is shown here.

N Qavg ‖·‖ CRZZ

463 0.985 67.403 —
980 0.979 2.727 8.607

1557 0.979 1.831 1.726
4204 0.980 0.643 2.111
9603 0.981 0.279 2.023

14754 0.982 0.181 2.016

angular meshes with nice parallelogram property can be generated based on CVT opti-
mization and this leads to guaranteed superconvergent gradient recovery, which would
be exploited for the development of convergent adaptive finite element method in the
following sections.

3 Convergent adaptive FEM for elliptic problems

In the AFEM considered here that consists of the loops of

SOLVE→ERROR ESTIMATE→REFINE/COARSEN,

the procedure SOLVE is carried out to solve the elliptic PDE, say Eq. (2.2), for the finite
element solution on the current mesh. With the computed finite element solution, the
superconvergent gradient recovery using ZZ-SPR is performed for the a posteriori error
estimation. Then, based on the principle of equal error distribution, the mesh sizing of
each vertex is modified. The procedure REFINE/COARSEN modifies the current triangu-
lar mesh by inserting points or contracting edges iteratively so that the refined mesh is
consistent with the new mesh sizing distribution. The refined mesh is further optimized
via a modified Lloyd iteration to construct an almost equilateral CVDT mesh. The proce-
dures SOLVE and ERROR ESTIMATE were discussed before in Section 2, and mesh sizing
modification and remeshing will be discussed next, followed by a summary of the whole
adaptive finite element algorithm.

3.1 Mesh sizing modification

The sizing function defined on each vertex is computed as the average length of the mesh
edges connecting the vertex. Based on the principle of equal distribution of errors over
each triangle, the sizing function of the current triangular mesh is modified in the method
proposed in [46], where the readers are referred to for details.

The average length of the edges of a triangle is defined as the sizing of the triangle
denoted by hold in the current mesh, based on which a new sizing denoted by hnew can be
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derived. First, we define the Permissable Error Ep by

Ep =µ

√

|||uh|||2E(Ω)
+||eh||2L2(Ω)

M
,

where M is the number of elements in the mesh and µ is a pre-assigned positive constant
usually with a value less than 1. A smaller µ leads to a smaller permissable error which
requires a finer mesh. Here, |||uh |||2E(Ω) is the energy norm of the finite solution uh over the

domain, and eh is defined as Ghuh−∇uh. Then,

hnew =
hold

Eτ/Ep
,

where Eτ is the error on each element τ in the form of ||Ghuh−∇uh||L2(τ) and Emelm is the
maximum of Eτ over all elements. The sizing of each vertex is defined as the average of
the new sizings of the elements sharing the vertex.

The mesh sizing modification will be followed by sizing gradation which is realized
by applying the H-correction procedure proposed in [40], which will reduce the magni-
tude of ratio of neighboring edge lengths and smooth the sizing distribution as a result.
The smoothed sizing function will be used for the refinement or coarsening of the current
mesh next.

3.2 Remeshing through edge splitting/contraction

The refinement of a given triangular mesh is composed of several local mesh operations
involving edge splitting/contraction, edge swapping and point smoothing [40]. Edge
splitting and contraction are based on the computation of normalized edge lengths [40],
which is utilized as a criterion for the refinement or coarsening of the given edge. Usually,
the value Cs =

√
2 is assigned to the splitting parameter, and the value Cc = 1/

√
2 is set

to be the coarsening parameter. If an edge has a normalized length larger than Cs then
a splitting operation is performed, while a contraction is applied if the edge length is
less than Cc. We outline next the four elementary mesh modification operators, which
is followed by a complete description of the mesh refinement and coarsening procedure.
The readers are referred to [40] for details.

Edge Splitting. For any edge which has a normalized edge length larger than the
given splitting criterion Cs, the midpoint of the edge is introduced as a new point and the
edge is then halved with the two triangles adjacent to the edge being replaced by four
new triangles.

Edge Contraction. When the normalized edge length of an edge is less than the col-
lapse criterion Cc, the edge will be contracted in the way that either the two end points
are merged into their midpoint or one of them is remove while keeping the other, which
is illustrated Fig. 7. The merging technique shown in Fig. 7(b) is applied in this paper.
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A

B B

(a) (b)

Figure 7: Two edge contraction schemes can be used: (a) AB is to be contracted; (b) B is chosen to be kept
unchanged.

Edge Swapping. Given a non-boundary edge, swapping is allowed if the quad
formed by the two adjacent triangles is a convex polygon. Let triangles K1 and K2 share
a common edge e, and p1, p2 be the vertices of the triangles K1 and K2, which are oppo-
site to the edge e. If p1 is enclosed in the circumscribed triangle K2 or equivalently p2

is enclosed in the circumscribed triangle K1, then edge swapping is performed through
the replacement e by p1 p2, of which the objective is to make the new edge satisfy the
Delaunay property locally and also globally due to the Delaunay lemma [23]. In the two
dimensional setting, the Delaunay property refers to that the interior of the open disc
circumscribing a triangle K encloses no other vertex.

Point Smoothing. Point relocation or smoothing, modifies the position of a vertex
without changing the topology of the triangles meeting at the vertex. The objective is to
seek an optimal position on the mesh for the vertex, in the sense that any alternative con-
figuration should have better quality, according to criterion such as minimal angle, shape
quality, size conformity or others. Here, only the element shape quality is considered and
various smoothing methods can be used [40].

Refinement/Coarsening Procedure. The refinement/coarsening procedure modifies,
iteratively, an existing triangulation through edge splitting or contraction. The objective
is to ensure that elements are in better conformity with the size distribution. Edge lengths
computed (or normalized) with respect to vertex sizing function are compared with the
given splitting parameter Cs and contraction parameter Cc. After the edge splitting and
contraction, the triangulation is finally enhanced via a combination of edge swapping,
point smoothing, node connectivity optimization. The combined application of these
postprocessing techniques is found to be very effective in improving the regularity and
smoothness of the mesh, which will function as a nice initialization for the following
CVT-based optimization.

3.3 Localized Delaunay insertion for CVT-based mesh optimization

The convergence characteristics of the Lloyd iteration was investigated in [16] and [17].
The most effective part of the Lloyd iteration is the first few steps which reduces the
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convergence error and modify the mesh significantly. After that, the mesh changes very
slowly.

In the Lloyd iteration, the total computation time equals to the number of iterations
multiplied by the time for the calculation of the mass centers plus their Delaunay inser-
tion. The mass center computation takes far less time than the Delaunay insertion. And
in each Lloyd iteration, all the computed mass centers are inserted into the constrained
boundary Delaunay triangular mesh in the Delaunay insertion kernel [14, 15] whatever
the difference between an interior point and its corresponding mass center is. The origi-
nal uniform treatment of Delaunay insertion of the mass centers does not fit well with the
convergence characteristics of the Lloyd iteration. Hence, the Delaunay insertion should
be modified and the new algorithm goes as follows.

Algorithm 3.1. (Modified Delaunay Insertion)

Given a Delaunay mesh and the computed mass centers for its interior points.

1. For each interior point, perform the following loop:

2. Replace the point with its corresponding mass center and check the validity of the Ball of the
new interior point, defined as the union of all its connecting triangles, by computing all the signed
areas of the connected triangles. If all such areas are positive, the check is passed; otherwise,
the midpoint of the interior point and the mass center is used as a replacement and the check is
continued recursively until termination.

3. Check the connecting edges of the new point and perform appropriate edges swapping on them
to maintain their Delaunay property.

4. Perform the Lawson-swapping of edges recursively for the edges of the connecting triangles that
are opposite to the new point, until the Delaunay property is satisfied for all triangles.

Fig. 8 depicts the complete procedure of the above modified Delaunay insertion of an
updated interior point (i.e., the mass center), based on which the original Lloyd iteration
is modified in the following manner:

Algorithm 3.2. (Modified Lloyd Iteration)

Given a Delaunay triangular mesh and its interior vertices.

1. Construct the Voronoi region for each of the interior points that are allowed to change their
positions, and construct the mass center of the Voronoi region with a properly defined density
function ρ(p) derived from the sizing field H(p) (here, ρ(p)=1/H(p)4 up to a constant scaling).

2. Insert the computed mass centers into the current Delaunay triangulation through the Modified
Delaunay insertion procedure presented in Algorithm 2.

3. Compute the difference D=∑
k
i=1‖Pi−Pimc‖2, where {Pi} is the set of interior points allowed to

change, and {Pimc} is the set of corresponding computed mass center. If D is less than a given
tolerance, terminate; otherwise, return to Step 1.

The above modified Lloyd iteration has two properties. One is that during the Lloyd
iteration, more interior points can be replaced by their updated mass centers without
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Figure 8: Modified Delaunay insertion of an updated interior point by replacement and edges swapping: (a) Q
is to be inserted and to replace P; (b) replace P; (c) neighboring edges swapping: AQ is swapped; (d) recursive
Lawson-type edge swapping: MN is swapped.

conducting edge swapping in order to keep the Delaunay property. It reduces the com-
putation in each Lloyd iteration to the mass center computation, which speeds up the
Lloyd iteration significantly. The other is that in the above procedure, it is no longer nec-
essary to construct and store a constrained boundary triangular mesh as in the previous
works [14, 15, 17], which makes it possible to optimize any initial Delaunay triangular
mesh in the modified Lloyd iteration. These two properties are essential to the develop-
ment of the following algorithm for adaptive finite element method based on CVT.

3.4 Adaptive finite element method based on CVT

Let {zi}k(l)

i=1 denote the set of points of the l-th level triangulation M
(l)
h and u

(l)
h is the

corresponding finite element solution on M
(l)
h . The following summarizes the flow chart

of the adaptive finite element method based on CVT.

Algorithm 3.3. (Adaptive FEM based on CVT)

Let Ω denote the given domain, Lmax is the allowable maximal levels of mesh refinements, Nmax >0

is the allowable maximal number of mesh vertices, and δ :=
(|||u(l)

h −u
(l−1)
h |||E

)

/|||u(l)
h |||E denotes the

relative difference of two consecutive finite element solutions in the energy norm.

1. Initialization: set l =0 and generate an initial coarse triangulation M
(0)
h of Ω. n(0) denotes the

number of vertices of M
(0)
h . Solve Eq. (2.2) by finite element method (FEM) on M

(0)
h .

2. Conduct gradient recovery in ZZ-SPR technique and calculate the error estimator ητ for each

element τ∈M
(l)
h , and compute the new sizing hnew of each point followed by gradation.

3. Refinement/Coarsening: Compute the normal lengthes of all the edges on M
(l)
h , perform split-

ting/contraction edge and other operation involving edge swapping, smoothing and combined
optimization.

4. CVT-based Optimization: apply Algorithm 3 to optimize M
(l)
h and obtain M

(l+1)
h .

5. Solve the Eq. (2.2) by FEM on M
(l+1)
h . If l > Lmax, or n(l)

> Nmax, or δ is less than the given
criterion, terminate; otherwise, go to Step 2.
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4 Numerical experiments

In this section, the proposed CVT-based finite element method will be applied to the so-
lution of Eq. (2.2). To demonstrate the generality and versatility of the proposed method,
five experiments are conducted on different spatial domains that possess various geo-
metric features; in addition, the exact solutions are pre-determined in all the experiments
and for several instances, they contain different forms of singularities that are frequently
encountered in practical applications. In Fig. 9, the domains used for Experiments 1 to 4
are shown, while the last experiment is performed on a square Ω=[−1,1]2. Statistics data
related to the finite element mesh, solution and error estimation are presented for each
experiment. The collected data include degree of freedoms N, average mesh quality Qavg,
permissible error Ep, maximal element error Emelm, the L2 norm of the error ‖u−uh‖, the
energy norm |||uh−u|||, and another important parameter effectiveness index Ψ, which is
defined as

Ψ :=
‖a−

1
2 (Ghuh−a∇uh)‖0

‖a
1
2 (∇u−∇uh)‖0

.

In the following Experiments 1 to 4, a = 1, so the exact gradient is to be recovered. For
the very last experiment, a represents a discontinuous coefficient, so Ghuh approximately
recovers the flux.

Experiment 1: With a smooth exact solution. The first experiment is to solve Eq. (2.2)
with a = 1.0 on a complicated domain denoted by Ω which is shown in Fig. 9(a), and
the exact solution is u = x2y2. The functions f and g are determined accordingly. The
proposed CVT-based adaptive finite element method is applied to obtain a convergent
solution.

The adaptive meshes are shown in Fig. 10, where the initial CVDT mesh and three
other meshes corresponding to the 2nd, 3rd and 5th level of adaptive refinement are
shown. The mesh is refined around the four corners in a modest manner, which is in
good consistence with the characteristics of the solution. The finite element solution uh

on the final adaptive mesh (5th level) is presented in Fig. 11(a). The error distributions
corresponding to the 2nd, 3rd and 5th adaptive meshes are shown in Figs. 11(b), (c), and
(d) respectively, where it can be clearly seen that the error is almost equally distributed on
the elements. This can also be well observed from the experimental data contained in Ta-
ble 9. The maximal element error is 4.263e−5 which is only two times of the permissible

Table 9: Statistics of the mesh, finite element solution and error of the Experiment 1 where the exact solution
u= x2y2.

level N Qavg Ψ Ep Emelm ‖u−uh‖ |||uh−u|||
0 208 0.953 1.061 — 2.130e-3 1.795e-4 1.290e-2
2 1318 0.964 1.011 1.466e-4 2.267e-4 3.386e-5 4.114e-3
3 2495 0.972 1.006 7.507e-5 1.166e-4 1.849e-5 2.898e-3
5 5681 0.976 1.003 2.726e-5 4.263e-5 6.450e-6 1.862e-3
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Figure 9: (a) A domain with several holes for the Experiment 1; (b) a curved domain for Experiment 2; (c) a
domain for the Experiment 3 and (d) a concave domain with cracks for Experiment 4.
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(c) (d)

Figure 10: Adaptive CVDT meshes for the Experiment 1: (a) initial one; (b), (c), and (d) after 2, 3 and 5
refinements.
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Figure 11: Finite element solution and error distribution for the Experiment 1: (a) uh on the fifth adaptive CVDT
mesh; (b), (c), and (d) eh corresponding to the adaptive CVDT mesh after 2, 3, 5 refinements, respectively.
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Figure 12: Quasi-optimality of the convergence rate of the adaptive FE procedure for the Experiment 1, where
optimal decay is indicated by the line of slope -0.5.

error 2.726e−5 on the final adaptive mesh. The effectiveness of the adaptive procedure
can be further demonstrated by other statistics data in Table 9. The averaging mesh qual-
ity Qavg of each mesh is up to 0.970, which leads to very good effectiveness indices. On all
meshes, Ψ is very close to 1.0 and the fifth Ψ is up to 1.003, which shows that the a poste-
riori error estimation is asymptotically exact. The exactness results in the convergence of
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the whole adaptation procedure, which is further demonstrated in Fig. 12. From the dot-
ted line, which is used to relate the error energy norm to the total degree of freedoms, it
can be concluded that quasi-optimal convergence is achieved [10,28], compared with op-
timal convergence which is shown by the straight line with slope 0.5 contained in Fig. 12.
This means that |||u−uh |||Ω = CN−1/2 is valid asymptotically and the superconvergence
property of ‖a−1/2(Ghuh−a∇u)‖0 is also obtained.

Experiment 2: With three point singularities. In this experiment, the same PDE as
in Experiment 1 is solved, with its domain Ω shown in Fig. 9(b). The exact solution u
assumes the following form:

u(x,y)=
1.0

x2+(y−0.5)2+0.01
+

1.0

(x+0.4330)2 +(y+0.25)2+0.01

+
1.0

(x−0.4330)2+(y+0.25)2 +0.01
,

which reaches its maximal values at three points (0,0.5), (-0.4330,-0.250) and (0.4330,-
0.250), but decreases rapidly away from these maximums and thus has large gradients
close to the three points.

Applying the CVT-based adaptive FEM method, in total 11 adaptive meshes are gen-
erated for the convergence of the whole procedure. Four meshes at different refinement
level are chosen and shown in Fig. 13, which clearly shows the successive refinement

(a) (b)

(c) (d)

Figure 13: Adaptive CVDT meshes for the Experiment 2: (a) initial one; (b), (c), and (d) after 4, 8 and 11
refinements.
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(a) (b)

Figure 14: Adaptive CVDT meshes for the Experiment 2: (a) the local view near the singularity point at the
refinement level 8; (b) the local view near the singularity point at the refinement level 11.

around the three singular points. Also, the CVT-based optimized meshes assume very
high qualities, which can be well demonstrated by the data contained in Table 10. The
average mesh quality is up to 0.98 in the final mesh and all are above 0.971. To further
demonstrate the high quality of the adaptive meshes, local views of the mesh around the
singular area is shown in Fig. 14 and the quality data of the local meshes are contained
in Table 11. From the local views and the quality data, it can be drawn that high quality
adaptive meshes are generated for superconvergent gradient recovery.

Table 10: Statistics of the mesh, finite element solution and error of the Experiment 2 with three point
singularities.

level N Qavg Ψ Ep Emelm ‖u−uh‖ |||uh−u|||
0 282 0.982 0.562 — 22.320 4.915 102.0
4 1206 0.971 1.020 0.7712 1.3210 0.2990 26.9920
8 3047 0.976 1.009 0.2606 0.4155 0.1196 16.3318

11 14176 0.980 1.001 0.0758 0.1148 0.02916 7.7176

Table 11: Mesh data including the number of mesh nodes, element average quality Qavg and Qavg(loc) (the

element average quality within the red circular domain) for the Experiment 2 (see Fig. 13).

Level N Qavg Qavg(loc) Level N Qavg Qavg(loc)

0 282 0.982 0.985 6 2019 0.970 0.980
1 636 0.957 0.961 7 2952 0.974 0.980
2 728 0.965 0.973 8 3047 0.976 0.981
3 909 0.967 0.977 9 5260 0.975 0.980
4 1206 0.971 0.979 10 8675 0.976 0.981
5 1747 0.973 0.979 11 14176 0.980 0.981

As in the Experiment 1, the nice quality of the mesh leads to the superconvergence
property even when the simplest method WAV is applied. And the superconvergent
gradient recovery results in an asymptotical exactness in the error estimation which can
be proved numerically from the effectiveness index Ψ values contained in Table 10. Ac-
cordingly, the max element error is very close to the permissible error Ep. It shows that
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Figure 15: Finite element solution and error distribution for the Experiment 2: (a) uh on the 11th adaptive CVDT
mesh; (b), (c), and (d) eh corresponding to the adaptive CVDT mesh after 4, 8, 11 refinements, respectively.
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Figure 16: Quasi-optimality of the convergence rate of the adaptive FE procedure for the Experiment 2, where
optimal decay is indicated by the line of slope -0.5.

the element errors are asymptotically equal-distributed, which can also be clearly seen
from Fig. 15. Moreover, the adaptation procedure achieves quasi-optimality in conver-
gence order, which is well demonstrated in Fig. 16 and the superconvergence property of
‖a−1/2(Ghuh−a∇u)‖0 is also obtained.
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(a) (b)

(c) (d)

Figure 17: Adaptive CVDT meshes for the Experiment 3: (a) initial one; (b), (c), and (d) after 2, 5 and 8
refinements.

Experiment 3: With layer singularity. To test the capability of the adaptive FEM
method to handle boundary layer singularities, the same equation is used, but with its
exact solution u assuming the form of

u(x,y)=
1.0

x2+0.01
+

1.0

y2+0.01
,

which has strong singularities occurring on the boundary x=0 and y=0.
The domain is shown in Fig. 9(c), the adaptive meshes are shown in Fig. 17, the

statistics are included in Table 12. Both the mesh refinement and the data demonstrate
that the CVT-based meshing and superconvergent gradient recovery lead to a very ef-
fective convergent finite element adaptation procedure. This can further be substanti-
ated by the error distributions illustrated in Fig. 18 and the achieved asymptotical quasi-

Table 12: Statistics of the mesh, finite element solution and error of the Experiment 3 with layer singularities.

level N Qavg Ψ Ep Emelm ‖uh−u‖ |||u−uh|||
0 407 0.982 0.95 — 24.29 33.050 221.4
2 4125 0.967 1.010 1.153 1.801 0.4955 53.11
5 7782 0.974 1.032 0.4156 0.6877 0.2320 34.60
8 22303 0.980 1.010 0.1413 0.2087 0.09463 19.47
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Figure 18: Finite element solution and error distribution for the Experiment 2: (a) uh on the 8th adaptive CVDT
mesh; (b), (c), and (d) eh corresponding to the adaptive CVDT mesh after 2, 5, 8 refinements, respectively.
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Figure 19: Quasi-optimality of the convergence rate of the adaptive FE procedure for the Experiment 3, where
optimal decay is indicated by the line of slope -0.5.

optimality of the convergence order demonstrated in Fig. 19. The recovered energy error
(‖a−1/2(Ghuh−a∇u)‖0

)

is given by the dotted line which also demonstrates the super-
convergence property.

Experiment 4: Concave geometry with crack and corners. In order to test the robust-
ness and the capability of the method to deal with complicated geometries, a concave
domain with a crack and many corners is used in this experiment, see Fig. 9(d). Eq. (2.2)
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(a) (b) (c)

(d) (e) (f)

Figure 20: Adaptive CVDT meshes for the Experiment 4: (a) initial one; (b), (c), and (d) after 2, 6 and 10
refinements; (e), and (f) local views near the singularity region at the refinement level 6 and 10, respectively.

is solved with a=1.0, f and g are appropriately chosen such that the exact solution

u(x,y)=exp
[

−
(
√

x2+y2−0.5
)2

0.012

]

,

from which it is clear that strong singularity occurs in the vicinity of the circle x2+y2 =
0.25.

Four adaptive meshes area shown in Fig. 20(a), (b), (c) and (d), respectively, and
the statistics are contained in Table 13. The average mesh quality is up to 0.980, which
demonstrates that the CVT-based meshing and optimization is robust in handling com-
plicated geometry. This is also clearly shown in Fig. 20(e) and (f) which illustrate the
high quality triangles of a zoomed portion of the final adaptive mesh around the singu-
lar area. The other data contained in Table 13 and the error distribution shown in Fig. 21

Table 13: Statistics of the mesh, finite element solution and error of Experiment 4.

level N Qavg Ψ Ep Emelm ‖uh−u‖ |||uh−u|||
0 459 0.981 0.627 — 1.9180 0.9732 16.53
2 3328 0.973 1.111 0.6224e-1 0.1407 0.2715e-2 1.8250
6 8981 0.978 1.059 0.1195e-1 0.2700e-1 0.7280e-3 0.9137

10 15285 0.981 1.038 0.5731e-2 0.1293e-1 0.4108e-3 0.6413
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Figure 21: Finite element solution and error distribution for the Experiment 4: (a) uh on the 6th adaptive CVDT
mesh; (b), (c), and (d) eh corresponding to the adaptive CVDT mesh after 2, 6, 10 refinements, respectively.
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Figure 22: Quasi-optimality of the convergence rate of the adaptive FE procedure for the Experiment 4, where
optimal decay is indicated by the line of slope -0.5.

clearly demonstrate that the adaptive FEM method is robust in handling singular prob-
lems with complicated geometries and curve singularity, which is further proved by the
quasi-optimality indicated by the solid line shown in Fig. 22. The recovered energy error
(

‖a−1/2(Ghuh−a∇u)‖0

)

is presented as well by the dotted line which shown clearly the
superconvergence property.



366 Y. Huang, H. Qin, D. Wang and Q. Du / Commun. Comput. Phys., 10 (2011), pp. 339-370

Experiment 5: With discontinuous coefficients. The final experiment is to solve
Eq. (2.2) with a discontinuous coefficient a. Let Ω=[−1,1]. a(x,y)=1, when (x,y)∈Ω1∪
Ω3, and a(x,y)=161.447, when (x,y)∈Ω2∪Ω4. Here Ω1=(−1,0)×(0,1), Ω2=(0,1)×(0,1),
Ω3 =(0,1)×(−1,0), and Ω4 =(−1,0)×(−1,0). The coefficient a is discontinuous across
the x and y-axis. The problem was proposed by Kellogg in [30]. Let f (x,y)=0, then the
exact solution u can be given (in polar coordinates) by u(r,θ)= rγφ(θ), where

φ(θ)=







































cos
(( π

2
−σ

)

γ
)

·cos
((

θ− π

2
+ρ

)

γ
)

, if 0≤θ≤ π

2
,

cos(ργ) ·cos((θ−π+σ)γ), if
π

2
≤θ≤π,

cos(σγ) ·cos((θ−π−ρ)γ), if π≤θ≤ 3π

2
,

cos
(( π

2
−ρ

)

γ
)

·cos
((

θ− 3π

2
−σ

)

γ
)

, if
3π

2
≤θ≤2π.

(4.1)

Here, γ=0.1, ρ=π/4, and σ=−14.922.
The problem was considered by many authors [1, 10, 28]. To solve the problem via

finite element method, the mesh is required to have no triangles violating the interface
lines x = 0 and y = 0, in the sense that an edge-constrained triangular mesh should be
constructed, so that the discontinuity of a only occurs across mesh edges. This can be eas-
ily realized via constrained boundary recovery [22] and constrained Delaunay insertion
when points are added for mesh refinement and also it is easily built into the modified
CVT-based meshing procedure discussed in Section 3.3.
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Figure 23: Adaptive mesh for the Experiment 5 (left) and two zoomed views.

Fig. 23 displays the adaptive meshes corresponding to the finest refinement level and
the local zoomed views. The mesh is of high quality as in the previous examples. Sim-
ilarly, the high quality results in superconvergent gradient recovery. It should be noted
that the gradient recovery at an interface point should be done independently in each
sub-domain and the minimal mesh size is taken as the sizing for the vertex. Accordingly,
the effectiveness index of the a posteriori error estimation is also asymptotically close to
1.0, which leads to the convergence of the adaptive finite element solution procedure for
the interface problem. The data are reported in Table 14. Fig. 24 shows the error distri-
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Figure 24: Finite element solution and error distribution for the Experiment 5: (a) uh on the 40th adaptive
CVDT mesh; (b), (c), and (d) eh corresponding to the adaptive CVDT mesh after 9, 22, 40 refinements,
respectively.
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Figure 25: Quasi-optimality of the convergence rate of the adaptive FE procedure for the Experiment 5, where
optimal decay is indicated by the line of slope -0.5.

bution which is almost equal over each element except that around the origin where the
gradient is infinity. And quasi-optimality of the convergence order of the adaptation and
the recovered energy error

(

‖a−1/2(Ghuh−a∇u)‖0

)

are obtained (see Fig. 25) as well.
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Table 14: Statistics of the mesh, finite element solution and error of the Experiment 5 with extreme singularity.

level N Qavg Ψ Ep Emelm ‖u−uh‖ |||uh−u|||
0 393 0.978 0.413 — 0.175e-0 0.212e-3 0.922e-0
2 852 0.953 0.387 0.135e-1 0.387e-1 0.116e-4 0.356e-0
5 1373 0.954 0.507 0.566e-2 0.191e-1 0.111e-5 0.186e-0
10 2032 0.954 0.822 0.330e-2 0.115e-1 0.338e-7 0.884e-1
20 7592 0.964 0.956 0.670e-3 0.296e-2 0.572e-8 0.374e-1

5 Conclusions and future works

Various numerical experiments presented here demonstrate that the proposed CVT-
based adaptive finite element method is robust and effective for the numerical solutions
of elliptic equations with Dirichlet boundary conditions. Due to high quality mesh gener-
ation based on CVT, the classical gradient recovery ZZ-SPR enjoys nice superconvergence
property which guarantees the asymptotical exactness of the a posteriori error estimation,
as numerically substantiated by the effectiveness indices in all the conducted examples.
The exactness guarantees the convergence of the whole adaptive procedure, which has
been demonstrated by the quasi-optimality achieved in all the examples including the
interface problem with discontinuous coefficients. The proposed adaptive FEM method
has also been shown to be capable of handling complicated geometries.

For future works, the very first work is naturally that of conducting comparisons
with methods proposed in [5–7, 28]. Other future working directions include the theo-
retical studies of the convergence of the adaptation procedure and the extension to three
dimensional problems where a robust procedure for superconvergent gradient recovery
on tetrahedral meshes may be developed, which has been under much recent investiga-
tions [37,42]. The applications of the method to time dependent and anisotropic problems
are also interesting topics to be considered in the future.
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