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Abstract. In this paper, we numerically investigate the effects of surfactant on drop-
drop interactions in a 2D shear flow using a coupled level-set and immersed interface
approach proposed in (Xu et al., J. Comput. Phys., 212 (2006), 590–616). We find that
surfactant plays a critical and nontrivial role in drop-drop interactions. In particular,
we find that the minimum distance between the drops is a non-monotone function of
the surfactant coverage and Capillary number. This non-monotonic behavior, which
does not occur for clean drops, is found to be due to the presence of Marangoni forces
along the drop interfaces. This suggests that there are non-monotonic conditions for
coalescence of surfactant-laden drops, as observed in recent experiments of Leal and
co-workers. Although our study is two-dimensional, we believe that drop-drop in-
teractions in three-dimensional flows should be qualitatively similar as the Maragoni
forces in the near contact region in 3D should have a similar effect.

PACS: 47.55.D-, 47.55.dk, 47.55.N-
Key words: Surfactants, drops, coalescence, surface tension, Marangoni effect, level-set method,
immersed interface method, Stokes flow.

1 Introduction

The microstructure of emulsions and polymer blends depends strongly on the coales-
cence events that occur during processing. Surfactants and compatibilizers (block co-
polymers) are often used to prevent coalescence events and stabilize drop size distribu-
tions.
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Flow induced coalescence of drops in a viscous fluid has historically been modeled
and described as taking place in three consecutive stages (see e.g., [7,12,15,19]). The first
stage is the approach and collision of drops, starting from an initially large separation.
The second stage is film drainage, which commences when the separation distance is
asymptotically small compared to the drop radii. During this stage, the relative trans-
lational motion of the drops is largely arrested, and the motion consists of rotation of
the two-drop pair in the flow, with simultaneous thinning of the thin film that separates
the two drops. As the film thins, the distance between the two drops may become small
enough for non-hydrodynamic attractive forces such as van der Waals attractive force
to trigger an instability leading to film rupture. When this occurs, this third stage leads
rapidly to coalescence. The theory of film drainage for clean drops was reviewed by
Chesters [3]. In the absence of van der Waals forces, the interacting drops reach a mini-
mum distance as a consequence of a balance of the compressional force imposed by the
flow and the repulsive lubrication force in the thin film separating the drops. The drops
then separate without coalescing. Coalescence therefore requires non-hydrodynamic
forces such as the van der Waals force to rupture the film when the film is sufficiently
thin.

The presence of surfactants introduces three main mechanisms during the drop inter-
actions: the average reduction in surface tension associated to the presence of surfactants;
nonuniform capillary pressure (normal stresses) on the drop surface due to non-uniform
distribution of surfactants; Marangoni forces associated variation of surface tension along
the interface.

The effect of surfactants on drop-drop collisions and coalescence has been investi-
gated theoretically (e.g., [4, 5, 29]) and experimentally (e.g., [7, 12, 15, 19, 26, 47]). In a
series of experiments, Leal and co-workers [12,15,19,47] found that surfactants can have
surprising and non-monotonic effects on the coalescence of two drops for a wide range
of viscosity ratios. In particular, for a small amount of surfactants, the critical Capil-
lary number below which coalescence occurs decreases significantly compared to that
for clean drops. When additional surfactant is added, the critical Capillary number in-
creases towards that for clean drops. Further, a range of Capillary numbers, with a non-
zero lower bound, is found for which coalescence occurs. When the initial offset of the
drops is above a critical threshold, no coalescence is found below or above this range.

There has been much work on simulating the motion of a single surfactant-laden drop
(or bubble) using various numerical methods including boundary integral (e.g., [2, 9, 23,
28, 33, 38]), volume of fluid (e.g., [8, 13, 20]), arbitrary Lagrangian-Eulerian (e.g., [10, 11,
46]), front tracking (e.g., [16,17,30,39,48]), level-set [25,43,44], and diffuse interface [1,40]
methods. However there are few numerical studies on surfactant-laden drop-drop inter-
actions. Recently, Dai and Leal [7] used a boundary integral method to study head-on
collisions of surfactant-laden drops in a biaxial extensional flow. In addition to find-
ing that the interface is immobilized in the near contact region, they also found that the
hydrodynamic force pushing the drops together is increased by the Marangoni immobi-
lization of the interface outside of the thin film of fluid separating the drops. This causes
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the drop to be much more deformed than it is in the absence of surfactant at the same
Capillary number, and the more dimpled drop shapes slow the rate of film drainage in
the near contact region.

In this paper, we investigate the collisions of two-dimensional surfactant-laden drops
using a coupled level-set and immersed interface approach recently proposed in [44]. The
interface evolution is captured using a level-set formulation where the interface is defined
as the zero level-set of an auxiliary (level-set) function. The immersed interface method
is used to obtain accurate solutions to the Stokes equations that govern the motion of the
fluid in the presence of an interface. The surfactant dynamics are posed using an Eulerian
formulation for solving partial differential equations on a moving interface. We focus on
shear flow which is very important in blend processing and we do not consider van der
Waals forces so that rupture of the thin film and drop coalescence do not occur. Instead,
we investigate the characteristic behavior of the drops during their interaction by study-
ing the minimum distance between them as well as the resulting hydrodynamic diffu-
sion, as an additional measure of drop separation, as functions of parameters that control
the strength of the flow and the surfactant coverage and dynamics. Interestingly, we find
that there are non-monotonic conditions for coalescence of surfactant-laden drops as in
the experiments of Leal and co-workers discussed above.

The paper is organized as follows. We first present mathematical formulation in Sec-
tion 2. The numerical methods are briefly described in Section 3. Simulation results are
presented in Section 4. Finally, conclusions and future work are given in Section 5.

2 Formulation

2.1 Dimensional equations

We consider a pair of equal-sized drops of radius a and viscosity µd placed in an matrix
fluid with viscosity µm. Let Ωi, with i = d,m, be the domains occupied by the drops
and matrix fluid respectively. Let Ω = Ωd∪Ωm, Σ be the interface separating the drops
and matrix, and ∂Ω be the fixed outside boundary of Ω. In this paper, we assume for
simplicity that the densities and viscosities for the two fluids (i.e., drop and matrix) are
matched: ρd = ρm = ρ and µd = µm = µ. We also assume that the far-field flow velocity is
a simple shear, i.e., u∞ = γ̇yex, where ex is the coordinate vector in the x-direction and γ̇
is the shear rate. We further neglect inertial effects. Consequently, the Stokes equations
govern the motion of the drop and matrix fluids:

∇·T=0, ∇·u=0, in Ω, (2.1)

where T=−pI+µ(∇u+∇uT) is the stress tensor, and p is the pressure. Across the inter-
face Σ, the velocity is continuous, and the Laplace-Young jump condition holds [18]:

[Tn]Σ ≡Tn|Σ,m−Tn|Σ,d =σκn−∇sσ, (2.2)
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where σ is the surface tension coefficient, n is the normal vector to Σ directed towards
the matrix fluid, κ =∇·n is the curvature of Σ (positive for spherical/circular interfaces)
and ∇s = (I−n⊗n)∇ is the surface gradient. ∇sσ is the Marangoni force, and −σκn is
the Capillary force.

The interface moves with velocity u:

dx

dt
=u. (2.3)

When surfactants are present, the Langmuir equation of state (EOS) [33] is often used to
describe the relation between the surfactant concentration f and the surface tension σ:

σ( f )=σ0 +RT f∞ log
(

1−
f

f∞

)

, (2.4)

where σ0 is the surface tension for a clean interface ( f =0), f∞ is the surfactant concentra-
tion at maximum packing, R is the ideal gas constant, and T is the absolute temperature.

Here, we consider insoluble surfactants. Surfactants are then convected and diffused
along the interface. The surfactant concentration, f , satisfies [13, 44]

ft+u·∇ f −
(

n·∇u·n
)

f = Ds∇
2
s f , (2.5)

where Ds is the surfactant (surface) diffusivity. See also [37, 41, 45] for other forms of
Eq. (2.5).

2.2 Nondimensionalization

Using the nondimensionalization given in [2, 13, 44], where the drop radius a is used as
the length scale and the inverse shear rate γ̇−1 for time is used as the time scale, the
nondimensional Stokes system is

∆u=∇p, ∇·u=0, in Ω, (2.6)

together with interface conditions

[u]Σ =0, [Tn]Σ =
1

Ca
(σκn−∇sσ), (2.7)

where Ca=µaγ̇/σe is the Capillary number, σe =σ( fe) is the effective surface tension, and

fe =
1

|Σ0|
∫

Σ0
f0dΣ

,

where Σ0 is the initial position of the interface and f0 is the initial surfactant concentra-
tion. The nondimensional surface tension σ is

σ( f )=
1+Eln(1−x f )

1+Eln(1−x)
, (2.8)
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where E=RT f∞/σ0 is the surfactant elasticity and x is the surfactant coverage x= fe/ f∞.
The nondimensional equation for surfactant is the same as Eq. (2.5) with Ds replaced by
1/Pe, where Pe= a2γ̇/Ds is the Peclet number.

The Stokes equations can be further written as the following Poisson equations for
the pressure [22]

∇2 p=0, in Ω, (2.9)

with jump boundary conditions on Σ

[p]Σ =−
1

Ca
σκ,

[∂p

∂n

]

Σ

=
1

Ca
∇2

s σ, (2.10)

and the Neumann boundary condition

∂p

∂n
=∇2u·n, on ∂Ω, (2.11)

and the velocity

∇2u=∇p, in Ω, (2.12)

together with the jump boundary conditions

[u]Σ =0,
[∂u

∂n

]

Σ

=−
1

Ca
∇sσ, (2.13)

and the far-field Dirichlet boundary condition

u=yex, on ∂Ω. (2.14)

2.3 Interface representation

Following [44], the level-set method, first introduced by Osher and Sethian [32], is used
to represent the interface implicitly using an auxiliary (level-set) function φ, e.g., Σ(t)=
{x|φ(x,t)=0}, such that

φt+u·∇φ=0. (2.15)

This approach has been highly successful describing interface dynamics in many appli-
cations including multiphase flows. See the recent reviews [31, 34], for example.

In practice, we use two level-set functions, one for each drop, to avoid kinks in the
level-set function in the near contact region between the two drops when a single level-
set function is used, see e.g., [27, 44]. Further, at every time step, the level-set function φ
is re-initialized to be a distance function, e.g., |∇φ| ≈ 1, by solving the Hamilton-Jacobi
equation [36]

{

φτ +S(φ0)(|∇φ|−1)=0,

φ(x,0)=φ0(x),
(2.16)
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where φ0 is the level-set function before the re-initialization, τ is the pseudo-time and
S(x) is the sign function of x defined as

S(x)=











−1, if x<0,

0, if x=0,

1, if x>0.

(2.17)

Geometrical quantities can be easily computed using level-set function. Assume that
{x : φ(x,t)<0}=Ωd , then the outward normal vector and total curvature are

n=
∇φ

|∇φ|
, κ =∇·

( ∇φ

|∇φ|

)

. (2.18)

Finally, since the surfactant equation is solved on a Cartesian mesh around the interface,
the surfactant field f is extended off Σ at every time step by solving a liner convection
equation [49]

{

fτ +S(φ)n·∇ f =0,

f (x,0)= f0(x).
(2.19)

See [44] for further details.

3 Numerical methods

In this section we briefly describe the numerical approach. The reader is referred to [44,
45] for further details. The standard third order upwinding WENO method [14] is used
for the spatial discretization and the standard third order TVD Runge-Kutta method [35]
is used for time marching for the level-set advection equation (2.15), and the Hamilton-
Jacobi equations (2.16) and (2.19) for the re-initialization of the level-set function and for
the extension of the surfactant field off Σ, respectively. Further, a smooth approximation
of the signed distance function,

Sh(φ)=
φ

√

φ2+h2
,

is used. To solve the surfactant transport equation (2.5), a second order accurate, semi-
implicit time discretization is used to allow large time steps, ∆t=O(h), following [44,45].
The key idea is to decompose

∇2
s f =∇2 f −

∂2 f

∂n2
−κ

∂ f

∂n
,

where ∇2 is the usual Cartesian Laplacian operator, and to treat ∇2 using the Crank-
Nicolson method, which can easily be inverted, and to use an explicit discretization (e.g.,
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Adams-Bashforth) for the normal derivative and nonlinear terms [42, 45]

f k− f k−1

∆t
=

1

2Pe

(

∇2 f k+∇2 f k−1
)

+
3

2

[

−
1

Pe

(

κ
∂ f

∂n
+

∂2 f

∂n2

)

−u·∇ f +n·(∇un) f
]k−1

−
1

2

[

−
1

Pe

(

κ
∂ f

∂n
+

∂2 f

∂n2

)

−u·∇ f +n·(∇un) f
]k−2

, (3.1)

where f k ≈ f (x,t) at time t = tk. Standard center difference schemes are used for space
discretization except that the third order WENO scheme [14] is used for the convection
term u·∇ f . All these equations are solved in small tubes around the drop boundaries.

The Stokes equations are solved using the Immersed Interface Method (IIM), intro-
duced by LeVeque and Li [21, 22]. This method has become an increasingly popular
choice for solving interface problems with jump discontinuities. The IIM is formally sec-
ond order accurate and uses a Cartesian grid so that fast Poisson solvers (such as the
FFT and the multigrid method) can be utilized. At time tk in the IIM, the pressure pk is
obtained by solving

∇2 pk =0, (3.2)

with jump boundary conditions on Σ
k:

[pk]
Σk =−

( 1

Ca
σκ

)k
,

[∂p

∂n

]

Σk
=

( 1

Ca
∇2

s σ
)k

, (3.3)

and Neumann boundary conditions on ∂Ω:

(∂p

∂n

)k
=

{

2(∇2u·n)k−1−(∇2u·n)k−2, k≥2,

(∇2u·n)k−1, k=1.
(3.4)

The velocity uk is then obtained by solving

∇2uk =∇pk, (3.5)

together with the jump boundary conditions on Σ
k:

[uk]
Σk =0,

[∂uk

∂n

]

Σk
=−

( 1

Ca
∇sσ

)k
, (3.6)

and the far-field Dirichlet boundary condition

uk =yex, on ∂Ω. (3.7)

In the IIM, the grid points are then divided into two groups. All grid points that are
adjacent to the interface classified as irregular grid points, while the remaining points
are termed regular. At the regular grid points, the standard central difference scheme



460 J. Xu, Z. Li, J. Lowengrub and H. Zhao / Commun. Comput. Phys., 10 (2011), pp. 453-473

is used to discretize the above Poisson equations. At the irregular grid points, the stan-
dard central difference scheme is modified by adding a correction term to account for
the jumps. The interface position is obtained by an orthogonal projection of the irregular
grid points to the interface. In order to approximate the jump conditions at the interface,
the surfactant concentration (and surface tension) and its derivatives are computed at
grid points in a local tube around the interface and are interpolated to the approximate
interface position.

Finally, at each time step a small correction αn is added to the velocity ũh computed
by the IIM to enforce that the net mass flux across each drop interface is zero:

∫

Σ

(ũh+αn)·nds=0,

where Ω is the region enclosed by the interface Σ. This yields the explicit expression

α=−

∫

Σ
ũh ·nds
∫

Σ
ds

=−

∫

ũh ·nδΣ(φ)dx
∫

δΣ(φ)dx
, (3.8)

where δΣ is the surface delta function. This is performed for each drop and is an approach
frequently used in boundary integral simulations (see e.g., [6]). The modified velocity is
then used to evolve the level-set function and the surfactant concentration. We also mul-
tiply the surfactant concentration on each interface by a constant factor β to ensure that
total surfactant mass is conserved. Let f̃h be the solution of Eq. (3.1), then β is determined
by

∫

Σ

β f̃h dΣ=
∫

Σ0

f0dΣ0, (3.9)

which yields

β=

∫

Σ0
f0 dΣ0

∫

Σ
f̃h dΣ

=

∫

Ω
f0δΣ0

dx
∫

Ω
f̃hδΣdx

. (3.10)

The surfactant concentration is then reset to be fh =β f̃h . Finally, we note that other, more
sophisticated area and surfactant concentration corrections can be derived that take into
account the interface curvature and the surfactant concentration gradients. Nevertheless,
we found it sufficient to use the simpler corrections described above. We refer the reader
to [44,45] for numerical approximations of the delta function in the above integrals noting
that δΣ =δ(φ)|∇φ|, where δ is the usual one-dimensional delta function.

4 Numerical results

In all our numerical simulations, the initial condition consists of two circular drops of
unit radius centered at (−1.7,0.25) and (1.7,−0.25) respectively. The initial surfactant
concentration is uniform along the interface, i.e., f (x,0)= 1. Unless specified otherwise,
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the computational domain is [−7,7]×[−5,5] and the number of grid points is Nx =1400
and Ny = 1000 (correspondingly the grid size is h = 0.01) and the time step ∆t = h/8.
Further, the Peclet number is taken to be Pe=10 and the surface elasticity is E=0.2.

4.1 Convergence study

To assess the accuracy of the algorithm, we perform a convergence study for several
cases of drop interactions with surfactant. We use the minimum distance, dmin(Ca,x,h),
between the two drops during the interaction to measure the convergence rate. The quan-
tity dmin(Ca,x,h) is defined as follows. Let Σ1,Σ2 be the interfaces of two drops respec-
tively, and t be time, then

dmin(Ca,x,h)=min
t

min
x1∈Σ1(t)
x2∈Σ2(t)

|x1−x2|. (4.1)

In Table 1, the minimum distance dmin(Ca,x,h) is shown for several values of Ca and x,
and for three mesh sizes. The minimum distance converges as the mesh is refined. The
convergence rate shown in the table is estimated by solving

dmin(Ca,x,h2)−dmin(Ca,x,h1)

dmin(Ca,x,h3)−dmin(Ca,x,h2)
=

hr
1−hr

2

hr
2−hr

3

, (4.2)

for r, given the three mesh sizes h1, h2, h3.

Table 1: Minimum distances between drops and predicted convergence rate.

x =0.3,Ca=0.06 x =0.2,Ca=0.04
700×500 0.0765 0.0558

1400×1000 0.0804 0.0597
2100×1500 0.0807 0.0599

convergence rate 3.23 4.31

In Fig. 1, the relative errors in enclosed area (a) and surfactant mass (b) for one of the
drops are plotted when Ca=0.06, x=0.3 using Nx =1400 and Ny =1000. The results for
the other drop are analogous due to symmetry. The relative errors are seen to be less than
0.01% (10−4) in each case. The corresponding corrections for the enclosed area α are less
than 8% while those for the surfactant mass β are on the order of 0.01% (not shown).

Next, the pressure and surfactant concentration fields are shown in Fig. 2 at the critical
time t = 7.66 when the minimum distance achieved for the case with Ca = 0.06, x = 0.3.
Observe in (a), (c), and (d) that the numerical pressure given by the immersed interface
method is indeed discontinuous with the higher pressure being inside the drop. Also,
note that the pressure has a local maximum in the near contact region of the matrix fluid
due to lubrication forces. Observe in (b) that although the surfactant has accumulated at
the drop tips, there is still some surfactant in the near contact region between the drops.
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Figure 1: The relative change in area enclosed by the drop (a) and in the surfactant mass (b) for the case
Ca=0.06, x=0.3 using Nx =1400 and Ny =1000.
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Figure 2: (a) The pressure contours for the case Ca = 0.06, x = 0.3 at time t = 7.66; (b) The corresponding
surfactant field at this time; (c) The x=0 slice of the pressure; (d) The y=0 slice of the pressure.

As can also be seen in the figure, gradients in pressure are associated with regions with
rapidly varying surfactant distribution.

4.2 Examples of evolution with surfactant

We next consider drop-drop interactions with surfactant in further detail. In Figs. 3-
5, three evolution sequences of the surfactant-laden drop-drop interactions are shown.
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Figure 3: Contour plots of surfactant concentration. x=0.3, Ca=0.5.

Figure 4: Contour plots of surfactant concentration. x=0.3, Ca=0.06.

Figure 5: Contour plots of surfactant concentration. x=0.3, Ca=0.04.



464 J. Xu, Z. Li, J. Lowengrub and H. Zhao / Commun. Comput. Phys., 10 (2011), pp. 453-473

Here, x = 0.3 and Ca is varied. The contours of the surfactant concentration are plotted
on the drop interfaces.

In Fig. 3, Ca = 0.5 and the drops deform significantly due to the strength of the flow
as they approach one another. Surfactant is initially swept to the drop tips. As the drops
interact and rotate about one another, characteristic dimples form in the near contact
region due to lubrication forces. The presence of the dimples makes it difficult to drain
the fluid from the near contact region and the drops remain well-separated through the
interaction process. In addition, during the interaction, surfactant at the leading edges of
the drops is swept back to the trailing edges with a significant portion passing through
the near contact region. As the drops separate, surfactant accumulates at the trailing
edges of the drops resulting in a locally decreased surface tension. As a consequence of
this and the development of a local straining flow in the separation region, the curvature
at the trailing edges increases and the trailing edges elongate toward one another.

In Fig. 4, the Capillary number is decreased to Ca=0.06, simulating a weaker applied
shear flow. In this case, the drops deform much less compared to the Ca=0.5 case shown
in Fig. 3 and correspondingly, the drops approach one another more closely during their
interaction. This is consistent with the case for clean drops where the minimum separa-
tion distance between drops is a monotonically increasing function of Ca [3] (e.g., smaller
Ca yields smaller minimum distances).

In Fig. 5, the Capillary number is decreased even further to Ca = 0.04. The drops
deform only slightly as they interact and compared to the previous Ca=0.5 and Ca=0.06
cases, the surfactant distribution is more uniform with a significant amount of surfactant
being present in the near contact region. This reflects the comparatively larger strength of
the Marangoni forces. The Marangoni forces slow the rate of drainage of fluid out of the
near contact region. Interestingly, this keeps the drops farther apart than the case with
Ca = 0.06. This is in stark contrast to the monotonic behavior observed for clean drops.
This is investigated in more detail in next section.

4.3 Non-monotonic behavior of the minimum distance between drops

As indicated in Figs. 3-5, the minimum distance between interacting droplets may be a
non-monotonic function of Ca. Here, we explore this behavior in more detail and deter-
mine the dependence of the minimum distance between drops dmin(Ca,x,h) on both Ca
and x.

In Fig. 6, dmin(Ca,x,h) is plotted as a function of Ca for x = 0.3 (solid with circles)
and for x=0 (dashed with ∗) together with the drop morphologies at the point of closest
approach. The figure indicates that for clean drops (x =0), dmin(Ca,x,h) is an increasing
function of Ca. However, in the presence of surfactant, dmin(Ca,x,h) is non-monotonic
in Ca when x = 0.3. In particular, there is a critical value of Ca = Ca∗ ≈ 0.08 for which
the near contact distance is minimized. Thus, the same distance between the drops can
be achieved using two non-zero Capillary numbers (one lower and one higher). Assum-
ing that this behavior persists for very small Capillary numbers where the film thick-
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Figure 6: Minimum distances as functions of Ca. dashed-star line: clean drops (x=0); line with o: drops with
surfactant coverage x = 0.3. Mesh size = 1400×1000. Results for x = 0.3 and Ca = 0.04, 0.06 and 0.08 are
shown for two additional mesh sizes 2100×1500 (dash-dot with ∗) and 700×500 (dotted with +). The drop
morphologies at the critical times when dmin(Ca,x,h) is achieved are shown as insets.

ness reaches the scale at which van der Waals forces induce rupture, this suggests that
coalescence can be achieved within a range of Capillary numbers. Note that when Ca
is small, it is difficult to maintain adequate resolution in the near contact region as the
drops approach one another very closely. To efficiently simulate the interaction at small
Ca, adaptive mesh refinement or hybrid asymptotic/numerical methods should be used.

To validate our results around Ca∗, we have performed simulations using Nx =2100,
Ny =1500 (dashed-dot with stars) as well as Nx =700 and Ny =500 (dotted with +). The
development of a minimum is a direct consequence of the Marangoni forces. As indicated
earlier, the Marangoni force resists surfactant redistribution and decreases the strength of
the draining flow as the drops approach one another. When the Ca is large, this effect is
dominated by the compressional force imposed by the flow and the repulsive lubrication
force in the near contact region. The drops deform, dimple and remain well-separated
with a distance that depends on Ca. As Ca is decreased, the strength of the Marangoni
and Capillary forces increase, as shown in Fig. 10 which is described below. This results
in less deformed drops with a decreased ability to drain the matrix fluid from the near
contact region. At small Ca, the Marangoni flow begins to dominate in the near contact
region and significantly hampers drainage which leads to larger distances between the
drops. Around Ca=Ca∗, these effects balance and a minimum in the drop-drop distance
is obtained.

To illustrate the effect of the Marangoni force, we plot in Fig. 7 the curves for the
minimum distances as functions of time for three different cases: with full effect of sur-
factant (solid), without surfactant (clean drops, dashed) and with surfactant but without
the Marangoni force (dotted). The last is accomplished by removing the Marangoni force
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Figure 7: Distance between drops as functions of time for with full effect of surfactant(solid), with surfactant
without Maragoni force (dotted) and clean drops (dashed). x=0.3. (a) Ca=0.50, (b) Ca=0.06.

term in the Laplace-Young boundary condition (2.2) but keeping the non-uniform cap-
illary force. When Ca = 0.5 (a), there is little difference between the curves because the
capillary force and the Marangoni force are small compared to the strength of the flow.
When Ca = 0.06 (b), there is a much bigger difference between the curves and it is clear
that the Marangoni forces are responsible for the increase in the separation distance be-
tween the drops.

To gain further insight, the velocity fields induced by the Marangoni forces are plot-
ted in Fig. 8. In particular, the velocity field with the full effect of surfactant minus the
velocity field with variable Capillary force but no Marangoni force is plotted for times
6+∆t and 7+∆t.

The velocity fields are obtained by using the data with full effect of surfactant at t =
6 (or 7) as the initial data and marching one time step ∆t. It can be seen that when
the drops are farther apart, there is a rotational flow in the near contact region. As the
drops approach one another more closely, there is a Marangoni-induced flow into the
near contact region that strengthens as the drops approach one another and keeps the
drops apart. As an additional point of comparison, in Fig. 9, the velocity with the full
effect of surfactant minus the velocity with no surfactant is shown. From this figure, the
surfactant-induced flow of fluid into the near contact region is clearly observed.

In Fig. 10, the signed magnitudes of the Marangoni ∇sσ·τ/Ca and Capillary −κσ/Ca
forces are plotted at time t = 6,8 for different Ca as functions of arclength s for the drop
initially centered at (1.7,−0.25). Here τ is the unit tangent vector. Taking the normal
vector to be n = (cosθ,sinθ), then the tangent vector τ = (−sinθ,cosθ). The forces are
interpolated to the interface positions (see Section 3) from the underlying Cartesian mesh
using a cubic polynomial [44]. The location s = 0 corresponds to the rightmost intersec-
tion of the drop interface with a horizontal line through the drop center; s increases in
the counterclockwise direction. Both the Marangoni and Capillary forces are decreasing
functions (in magnitude) of Ca.
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Figure 8: Velocity field with full effect of surfactant minus velocity field with surfactant without Marangoni
force at times t=6+∆t (left) and t=7+∆t (right). Ca=0.06,x=0.3. Mesh size = 1400×1000.
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Figure 9: Velocity field with full effect of surfactant minus velocity field without surfactant at times t=6+∆t
(left) and t=7+∆t (right). Ca=0.06,x=0.3. Mesh size = 1400×1000.
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Figure 11: Marangoni force as a vector field at time t=8. Same setting as in Fig. 5.
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Figure 12: Minimum distances as functions of x at different Ca with mesh size 1400×1000.

The Marangoni force as a vector field is plotted at t = 8 in Fig. 11. From Fig. 5, there
are two local maximums of surfactant concentration for each drop, and correspondingly
two local minimums of surface tension. In a neighborhood of each extremum point on
the drop the Marangoni force is generated and points away from the extremum point.
In particular, Fig. 11 clearly shows that in the near contact region the Marangoni force
points to the center of the thin film and induces a flow that resists drop coalescence.

Next, consider the effect of surfactant coverage x. In Fig. 12, the minimum distance
dmin(Ca,x,h) is plotted as a function of x for different Ca. Observe that for large Ca (e.g.,
Ca = 0.2), dmin(Ca,x,h) is an increasing function of x. However, when Ca is decreased
below a critical threshold, dmin(Ca,x,h) becomes a non-monotonic function of x. In par-
ticular, for small x, the minimum distance increases with increasing coverage. However,
at a critical value x∗, a maximum is reached and thereafter, dmin(Ca,x,h) decreases as x
increases. The critical coverage x∗ is an increasing function of Ca.
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Similar behavior was also observed experimentally by Leal and co-workers [12,15,19,
47]. For small Ca, as x increases, the drops are less deformed, their interfaces are more
immobilized by the high concentration of surfactant, and it becomes easier to drain the
fluid out of the near contact region thereby enabling the drops to become closer to one
another. At x∗, these effects balance creating the maximum.

Remark 4.1. When both Ca and x are small, the drops approach one another very closely
and large gradients may develop. This makes simulations using a uniform mesh, such as
used here, very expensive and thus effectively limited the parameters we were feasibly
able to simulate. Further work should use alternative approaches such as adaptive mesh
refinement or asymptotic methods to overcome this difficulty.

4.4 Non-monotonic behavior of hydrodynamic diffusion

Another measure of the drop separation is the difference δy in the y-coordinates of the
drop centroids. Let (x1,y1) and (x2,y2) be the centroids of two drops initially centered at
(−1.7,0.25) and (1.7,−0.25) respectively. Define δx = x1−x2 and δy= y1−y2. The differ-
ence between the initial δy and the final δy after interaction and separation is a measure
of the so-called hydrodynamic diffusion (e.g., [24]). That is, through hydrodynamic inter-
actions, drops become more widely spaced than they were initially, mimicking the effects
of diffusion.

In Fig. 13(a) and (b), δy is plotted versus δx for Ca = 0.06 and different surfactant
coverages x. When x≤0.4, δy is an increasing function of x for each fixed δx. For larger
x(> 0.4), there is a transition in behavior when drops are near contact and δy becomes
a decreasing function of x (e.g., see the behavior near δx ≈ 0). Thus, more surfactants
tend to increase the hydrodynamic diffusion for x≤0.4. This is because in this regime the
addition of surfactant keeps the drops farther apart (recall Fig. 12), making them rotate
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Figure 13: Hydrodynamic diffusion δy versus δx for Ca=0.06 and various coverages x. (a) x≤0.4; (b) x>0.4.
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more around each other and more susceptible to transport away from each other by the
shear flow.

When x>0.4, the opposite occurs and hydrodynamic diffusion is reduced. This non-
monotonicity is made more clear in Fig. 14 where the maximum δy is plotted as a function
of x for different Ca. The corresponding values of δx are also shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

x

δ 
y

Ca=0.04, ∆ x = 0.400697
Ca=0.06, ∆ x = 0.499344
Ca=0.08, ∆ x = 0.600367
Ca=0.10, ∆ x = 0.639416
Ca=0.12,∆ x = 0.799253
Ca=0.20,∆ x = 1.000817

Figure 14: Hydrodynamic diffusion for Ca=0.06. Maximum δy as a function of x for various Ca.

5 Conclusions and future work

In this paper, we have investigated the interaction of two, equally-sized surfactant-laden
drops in shear flow in 2D. The surfactant is immiscible with the bulk fluids and the vis-
cosity of the matrix and drop fluids are matched. The numerical algorithm is highly
accurate and does not smear out the jump in the normal stress.

We have found that surfactant plays a critical and nontrivial role in drop-drop in-
teractions. In particular, we observed non-monotonic behavior, which does not occur
for clean drops, due to the presence of Marangoni forces along the interface. For exam-
ple, when the Capillary number Ca was large (strong shear flow), the drops deformed
significantly and the minimum distance between the drops was an increasing function
of the surfactant coverage x. As Ca was decreased, a critical value of Ca emerged such
that the minimum distance is a non-monotonic function of x for Ca less than this critical
value. For small x, the minimum distance between the drops increased with increasing
x. However, at a critical value of coverage x∗, a maximum was reached and for x>x∗, the
minimum distance decreases with increasing x. The critical coverage x∗ was found to be
an increasing function of Ca. In addition, at a given surfactant coverage, the minimum
distance between drops itself has a minimum at a critical Capillary number. Thus, the
same distance between the drops can be achieved using two non-zero Capillary numbers
(one lower and one higher). Assuming that this behavior persists for very small Capillary
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numbers where the film thickness reaches the scale at which van der Waals forces induce
rupture, this suggests that coalescence can be achieved within a range of Capillary num-
bers. A similar behavior was observed in recent experiments of drop-drop interactions
by Leal and co-workers [12, 15, 19, 47].

The results presented herein have important implications for flow processing as sur-
factants are often used to generate desired drop size distributions in emulsions. Al-
though our study is two-dimensional, we believe that drop-drop interactions in three-
dimensional flows should be qualitatively similar as the Maragoni forces in the near con-
tact region in 3D should have a similar effect, although the fluid in the near contact region
has another dimension through which it can drain.

In the future we will generalize our algorithm to simulate drop and matrix fluids with
different viscosities, three-dimensional flows and soluble surfactants.
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