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Abstract. The aim of the present work is to develop a general formalism to derive
staggered discretizations for Lagrangian hydrodynamics on two-dimensional unstruc-
tured grids. To this end, we make use of the compatible discretization that has been ini-
tially introduced by E. J. Caramana et al., in J. Comput. Phys., 146 (1998). Namely, mo-
mentum equation is discretized by means of subcell forces and specific internal energy
equation is obtained using total energy conservation. The main contribution of this
work lies in the fact that the subcell force is derived invoking Galilean invariance and
thermodynamic consistency. That is, we deduce a general form of the sub-cell force so
that a cell entropy inequality is satisfied. The subcell force writes as a pressure con-
tribution plus a tensorial viscous contribution which is proportional to the difference
between the nodal velocity and the cell-centered velocity. This cell-centered velocity is
a supplementary degree of freedom that is solved by means of a cell-centered approx-
imate Riemann solver. To satisfy the second law of thermodynamics, the local subcell
tensor involved in the viscous part of the subcell force must be symmetric positive
definite. This subcell tensor is the cornerstone of the scheme. One particular expres-
sion of this tensor is given. A high-order extension of this discretization is provided.
Numerical tests are presented in order to assess the efficiency of this approach. The
results obtained for various representative configurations of one and two-dimensional
compressible fluid flows show the robustness and the accuracy of this scheme.
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1 Introduction

In Lagrangian hydrodynamics methods, a computational cell moves with the flow veloc-
ity. In practice, this means that the cell vertices move with a computed velocity, the cell
faces being uniquely specified by the vertex positions. Thus, Lagrangian methods can
capture contact discontinuity sharply in multi-material fluid flows. However, in the La-
grangian framework, one has to discretize not only the gas dynamics equations but also
the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the phys-
ical conservation laws must be determined in a compatible way with the vertex velocity
so that the geometric conservation law (GCL) is satisfied, namely the rate of change of a
Lagrangian volume has to be computed coherently with the node motion. This critical
requirement is the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in
which position, velocity and kinetic energy are centered at points, while thermodynamic
variables (density, pressure and specific internal energy) are defined within cells. The
dissipation of kinetic energy into internal energy through shock waves is ensured by an
artificial viscosity term. Since the seminal works of von Neumann and Richtmyer [33],
and Wilkins [34], many developments have been made in order to improve the accuracy
and the robustness of staggered hydrodynamics [8, 11, 12]. More specifically, the con-
struction of a compatible staggered discretization leads to a scheme that conserves total
energy in a rigorous manner [9, 10].

An alternative to the previous discretizations is to derive a Lagrangian scheme based
on the Godunov method [18]. In the Godunov-type method approach, all conserved
quantities, including momentum, and hence cell velocity, are cell-centered. The cell-
face quantities, including a face-normal component of the velocity, are available from
the solution of an approximate Riemann problem at each cell face. However, it remains
to determine the vertex velocity in order to move the mesh. In the early work [1] the
flux computation was not compatible with the node displacement, and hence the GCL
was not satisfied. This incompatibility generated additional spurious components in the
vertex velocity field whose correction required expensive treatment [17]. An important
achievement concerning the compatibility between flux discretization and vertex velocity
computation has been introduced in [15,27]. In these papers, the authors present schemes
in which the interface fluxes and the node velocity are computed coherently thanks to an
approximate Riemann solver located at the nodes. This original approach leads to first-
order conservative schemes which satisfy a local semi-discrete entropy inequality. The
multi-dimensional high-order extension of these schemes are developed in [13,25,26,28].

The staggered discretization of variables (kinematic variables located at nodes, ther-
modynamic ones at cell centers) allows the scheme to fulfill naturally the GCL compati-
bility requirement and at the same time to construct a discrete divergence operator. The
discretizations of momentum and specific internal energy are derived from each other
by use of the important concepts of subcell mass, subcell force and total energy con-
servation [10]. This compatible hydrodynamics algorithm is thus designed to conserve
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momentum and total energy exactly in discrete form by using the adjointness property
of the discrete gradient and divergence operators. The dissipation of kinetic energy into
internal energy through shock waves is ensured by means of an artificial viscosity which
can be edge based [12] or tensorial [8]. This mechanism leads to a dissipation that is
coherent with the second law of thermodynamics. The subcell pressure method is also
used for control of hourglass type motion [11]. Finally, the time integration method is
a predictor-corrector technique which is detailed in [10]. The extension of this compat-
ible Lagrangian hydrodynamics algorithm to unstructured grids, where each zone is a
polygon with an arbitrary number of sides, has been presented in [9].

Adopting the important concept of the subcells, we are proceeding in the opposite
direction than designers of the staggered methods: instead of postulating a form of the
artificial viscosity force and the anti-hourglass force, the force is derived from first princi-
ples by requiring Galilean invariance and thermodynamic consistency. In other words, if
staggered and cell-centered approaches are two paths to the same objective, then the arti-
ficial viscosity term (explicit or implicit) should result as a difference of the cell-centered
approach (which naturally contains dissipation on shocks) and the staggered approach
with the artificial viscosity turned off. The hope is that such artificial viscosity term (if
it exists) will be closely related to physical viscosity and thus will improve the method’s
performance (for example in [8], the authors blame the jets along Cartesian axes in Noh
problem on the insufficiency of edge-based artificial viscosity model).

In Godunov methods, the dissipation of kinetic energy into internal energy is pro-
vided by solution of a Riemann problem. Our aim here is to use the same mechanism in
the framework of a staggered scheme. The solution of the cell-centered Riemann prob-
lem provides an approximation of the cell-centered velocity Uc, which will then be used
to define the viscous part of the subcell force. This formulation allows a straightforward
extension to second order in space by constructing linear velocity vector field approxima-
tion with frame invariant limitation, applicable on any mesh structure. At this point let
us stress that careful and sensitive vector limitation is a key issue to effective exploitation
of the improvement gained by frame invariant higher order extension, which is however
a fact not always reflected in the design of existing methods. For example, dimensionally
split limiters depend on Cartesian framework and thus fail to preserve rotational sym-
metry. As for temporal integration, we achieve second order in time by employing the
predictor-corrector approach.

In the simplest case the resulting viscosity force can be expressed with the help of a
symmetric positive definite matrix Mcp, so that the thermodynamic consistency is satis-
fied automatically by the viscous term Mcp

(
Uc−Up

)
. In particular, we are adopting the

approximate Riemann solver by Dukowicz [16], which is based on the two-shock approx-
imation and gives a viscous term not far from the classical formula by Kuropatenko [20,
34]. It turns out that a similar term (differing only in particular form of tensor Mcp) is
implicitly contained in some cell-centered schemes such as [15].

Our method can be viewed as an extension of the work by Christensen [14], who
noticed that under certain assumptions the staggered Lagrangian schemes with artificial
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viscosity can be written in the same form as Godunov’s scheme with HLL approximate
Riemann solver and stressed the potential synergy of both approaches (e.g., higher-order
extension of simple staggered scheme by techniques typically used in the Godunov com-
munity, such as TVD limiters). At this point let us remark, that the relationship between
staggered Lagrangian and cell-centered Godunov methods from the viewpoint of shock-
capturing mechanism has been discussed already in earlier works, e.g., by Wilkins [35]
or Dukowicz [16]. Another step towards ”bridging the Lagrange-Godunov conceptual
gap” was done by Luttwak and Falcovitz [24], who also use a Riemann solver to provide
necessary dissipation at shocks in the staggered scheme. The suggested SMG/Q method
computes cell-centered velocity gradient to define a principal direction for limiter and
shock detector in one. This approach is claimed to be superior to Christensen’s split
Q in multiple dimensions while being similar to it in the one-dimensional case. More-
over it can be used on structured as well as unstructured meshes. However, the authors
themselves are still not happy with the uniaxial formulation of viscosity. Finally let us
mention that since linking Godunov with staggered methods is an active research area,
this topic was recently also investigated by Burbeau-Augoula [6], who introduced an ad-
ditional degree of freedom by piecewise constant interpolation of selected variables on
primary resp. dual cells. This establishes a connection between cell-centered and stag-
gered formulation. The extra degree of freedom is then coupled to the nodal velocity
by defining two half-Riemann problems per edge, which are subsequently treated by the
HLL approximate Riemann solver. Assigning each half of the edge the velocity of its
corresponding node (endpoint) provides a first order scheme. Besides other issues, on
the way to frame invariant higher order extension of this method the strategy of proper
limitation must be addressed.

The paper is organized as follows. First the governing equations and notations are
stated. The compatible discretization is then derived from first principles. The fourth
section deals with the definition of the fundamental object named subcell force. This
previous derivation shows the necessity of the introduction of a cell-centered velocity as
a new degree of freedom. This velocity is then determined in the fifth section through the
use of a cell-centered approximate Riemann solver. High-order extension in space is also
provided. The sixth section presents the high-order time discretization. In the last section,
numerical results are proposed to assess the validity of this approach. Conclusions and
perspectives are finally drawn.

2 Governing equations and notations

2.1 Governing equations

In Lagrangian framework, the two-dimensional gas dynamics equations write

ρ
d

dt

(1

ρ

)
−∇·U =0, (2.1a)
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ρ
d

dt
U+∇P=0, (2.1b)

ρ
d

dt
E+∇·(PU)=0, (2.1c)

where ρ is the density, U the velocity, E the specific total energy and d
dt denotes the mate-

rial derivative. The first equation expresses the volume conservation equation, whereas
the second and third ones are the momentum and total energy conservation equations.
Volume conservation equation is often referred to as the Geometric Conservation Law
(GCL). The previous system is equipped with a thermodynamics closure, Equation of
State (EOS), P= P(ρ,ε), where the specific internal energy is given by ε= E−U

2/2. Note
that for smooth solutions energy equation can be rewritten as

ρ
d

dt
ε+P∇·U =0, (2.2)

and, substituting volume equation yields

ρ
d

dt
ε+Pρ

d

dt

(1

ρ

)
=0. (2.3)

Recalling Gibbs relation for temperature T and specific entropy S: TdS=dε+Pd( 1
ρ ), and

the second law of thermodynamics, namely T dS
dt ≥ 0, implies that for non-smooth flows

the following relation holds:

ρ
d

dt
ε+P∇·U ≥0. (2.4)

As a consequence, internal energy equation can be viewed as an entropy evolution equa-
tion since

ρ
d

dt
ε+Pρ

d

dt

(1

ρ

)
≥0. (2.5)

The previous System (2.1a)-(2.1c) can therefore be rewritten as a non-conservative system
by replacing the energy equation by (2.4). The last equations are the trajectory equations

dX

dt
=U(X(t),t), X(0)= x, (2.6)

expressing the Lagrangian motion of any point initially located at position x.

2.2 Notations

We use a staggered placement of variables in which position and velocity are defined at
grid points while thermodynamic variables are located at cell centers, refer to Fig. 1. An
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Figure 1: Fragment of a polygonal grid. Position and velocity are defined at grid points while thermodynamic
variables are located at cell centers. A polygonal cell, Ωc, is subdivided into subcells Ωcp. Points are denoted

by subscript p and ordered counterclockwise: p−, p, p+.

unstructured grid consisting of a collection of non-overlapping polygons is considered.
Each polygonal cell is assigned a unique index c and is denoted Ωc. Each vertex/point
of the mesh is assigned a unique index p and we denote C(p) the set of cells sharing a
particular vertex p. Each polygonal cell is subdivided into a set of subcells; each being
uniquely defined by a pair of indices c and p and denoted Ωcp. This subcell is constructed
by connecting the cell center of Ωc to the mid-points of cell edges impinging at point p.
The union of subcells Ωcp that share a particular vertex p allows to define the dual vertex-
centered cell Ωp related to point p with Ωp=

⋃
c∈C(p)Ωcp. Using the previous notation, we

can define the primary grid
⋃

c Ωc and the dual grid
⋃

p Ωp. The volumes of the primary
and dual cells are functions of time t. Here, following [10], we make the fundamental
assumption that the subcells are Lagrangian volumes. This means that the subcell mass
mcp is constant in time. Therefore, being given the initial density field ρ0(x) one deduces
the initial mean density in cell c

ρ0
c =

∫

Ωc(0)

ρ0(x)

V0
c

dx, (2.7)

where V0
c is the volume of cell Ωc at time t = 0. Subcell mass is defined as mcp = ρ0

c V0
cp,

where V0
cp is the initial volume of subcell Ωcp. By summation of Lagrangian subcell

masses one defines Lagrangian cell/point masses as

mc = ∑
p∈P(c)

mcp, mp = ∑
c∈C(p)

mcp, (2.8)

where P(c) is the set of counterclockwise ordered vertices of cell c. For a vertex p of cell
Ωc we denote its previous and next vertices by p− and p+.
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3 Compatible discretization

We construct staggered Lagrangian schemes using the well known methodology of com-
patible discretization which has been presented in [4, 7, 10]. The cornerstone of this type
of discretization is the subcell force that acts from subcell cp onto point p. In this ap-
proach, the discretization of the internal energy equation in terms of subcell forces is
deduced from total energy conservation. Here, we fully derive a generic abstract form
of the subcell force so that an entropy inequality is satisfied, which ensures that kinetic
energy is dissipated into internal energy through shock waves. The subcell force writes
as a pressure contribution plus a tensorial viscous contribution which is proportional to
the difference between the vertex-centered and cell-centered velocities. The cell-centered
velocity is a supplementary degree of freedom which is determined invoking the funda-
mental principle of Galilean invariance. To satisfy the second law of thermodynamics,
the local subcell matrix involved in the viscous part of the subcell force must be sym-
metric positive definite. This matrix is the fundamental object that allows to properly
define an artificial viscosity required to stabilize the scheme. We remark, that this new
framework leads to a new form of artificial viscosity which is derived using first principle
arguments.

3.1 Geometric conservation law (GCL)

Here, we use a discretization of the volume Eq. (2.1a) that is compatible with the GCL. By
GCL compatibility we mean that we are deriving a discrete divergence operator for the
volume equation by requiring consistency of the divergence of the velocity field with the
time rate of change of volume of the cell, refer to [29]. By noticing that mc = ρcVc, where
ρc =ρc(t) and Vc =Vc(t) are the cell density and volume, we can write

mc
d

dt

( 1

ρc

)
=

d

dt
Vc,

using the fact that the cell mass is constant in time. Moreover, remarking that the cell
volume can be expressed as a function of the position vectors of its vertices as follows

Vc(t)= ∑
p∈P(c)

1

2

(
Xp×Xp+

)
·ez,

where ez is the unit vector of the canonical basis in z direction, we deduce that the time
rate of change of the cell volume writes

d

dt
Vc = ∑

p∈P(c)

∇XpVc ·
d

dt
Xp.

Here, we have simply applied the chain rule differentiation. Setting

d

dt
Xp =Up,
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where Up is the vertex velocity, we rewrite this last equation as

d

dt
Vc− ∑

p∈P(c)

LcpNcp ·Up =0, (3.1)

where LcpNcp, with N
2
cp =1, stands for the corner vector defined by LcpNcp =∇XpVc. This

corner vector is a fundamental geometric object which is nothing but the gradient of the
cell volume at point p. Its explicit expression in terms of points coordinates writes

LcpNcp =
1

2

(
Yp+−Yp−

−(Xp+−Xp−)

)
,

where (Xp,Yp) denote the coordinate of the position vector Xp. This kind of formalism is
well known and has been used in staggered and cell-centered (free Lagrange) discretiza-
tions long time ago [29, 32]. We note that (3.1) is compatible with the discrete version of
the trajectory equation (2.6)

d

dt
Xp =Up, Xp(0)= xp.

This leads to a compatible definition of the discrete divergence operator over cell c as

(∇·U)c =
1

Vc
∑

p∈P(c)

LcpNcp ·Up. (3.2)

We also emphasize that the corner vector LcpNcp satisfies the fundamental geometric
identity

∑
p∈P(c)

LcpNcp =0, (3.3)

which is equivalent to the well known result that the summation of the outward normals
to a closed polygonal contour is equal to zero.

Finally, we have obtained a compatible discretization of the volume equation (2.1a),
which writes

mc
d

dt

( 1

ρc

)
− ∑

p∈P(c)

LcpNcp ·Up =0. (3.4)

3.2 Momentum equation

The semi-discrete momentum equation over the dual cell Ωp writes

mp
d

dt
Up+ ∑

c∈C(p)

Fcp =0. (3.5)
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Here, Fcp is the subcell force from cell c that acts on point p, which is defined by

Fcp =
∫

∂Ωp(t)∩Ωc(t)
PNdl. (3.6)

Momentum equation (3.5) is nothing but the Newton law applied to particle of mass mp

moving with velocity Up.

3.3 Specific internal energy equation

Here we derive a semi-discrete internal energy equation that ensures total energy con-
servation using the concept of subcell force, following the approach initially described
in [10]. Let us introduce total kinetic energy and total internal energy

K(t)=∑
p

1

2
mpU

2
p(t), E(t)=∑

c

mcεc(t),

where εc is the cell-averaged specific internal energy. Total energy is then defined as
E(t)=K(t)+E(t). The conservation of total energy without taking into account boundary
conditions simply writes

d

dt
E=

d

dt
K+

d

dt
E =0.

The substitution of kinetic and internal energies recalling that cell/point masses are La-
grangian objects, i.e., they not depend on time, yields

d

dt
K+

d

dt
E =∑

c

mc
d

dt
εc+∑

p

mp
d

dt
Up ·Up.

Using the semi-discrete momentum equation (3.5) yields

∑
c

mc
d

dt
εc−∑

p
∑

c∈C(p)

Fcp ·Up =0,

interchanging the order in the double sum one finally gets

∑
c

(
mc

d

dt
εc− ∑

p∈P(c)

Fcp ·Up

)
=0. (3.7)

A sufficient condition for total energy conservation is obtained by requiring the previous
equation to hold in each cell c

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·Up =0. (3.8)

Once the subcell force is known, then momentum and internal energy can be updated
using Eqs. (3.5) and (3.8).
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3.4 Summary of the compatible discretization

We summarize the semi-discrete equations that govern the time rate of change of the
primary variables ( 1

ρc
,Up,εc):

mc
d

dt

( 1

ρc

)
− ∑

p∈P(c)

LcpNcp ·Up =0,

mp
d

dt
Up+ ∑

c∈C(p)

Fcp =0,

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·Up =0.

We point out that the mesh motion is given by the trajectory equations

d

dt
Xp =Up(Xp(t),t), Xp(0)= xp,

which is compatible with the GCL. The thermodynamic closure is given by the equation
of state which writes Pc = P(ρc,εc). We emphasize that this subcell-based compatible dis-
cretization ensures total energy conservation regardless of the subcell force form. Now,
it remains to determine the general form of this force so that our semi-discrete scheme
fulfills, first, the principle of being Galilean invariant, second, the principle of being con-
sistent with the second law of thermodynamics.

4 Definition of the subcell force

Here we provide a definition of the subcell force using Galilean invariance and thermo-
dynamic consistency.

4.1 Galilean invariance

Galilean invariance is a principle of relativity which states that the fundamental laws of
physics are the same in all inertial frames. It is one of the key requirements of many
physical models adopted in theoretical and computational mechanics. To fulfill Galilean
invariance, the previously derived specific internal energy equation (3.8) must remain
unchanged under a uniform translation of frame. Let A denote the uniform translation
velocity. Then Eq. (3.8) transforms into

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·(Up+A)=0.
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By substituting (3.8) into this last equation leads to

∑
p∈P(c)

Fcp ·A=0,

which must hold for all vectors A. Therefore, specific internal energy equation remains
invariant under uniform translation if and only if

∑
p∈P(c)

Fcp =0. (4.1)

We note that this result has been already quoted in [4] page 576. This condition also
implies total momentum conservation without taking into account boundary conditions.
To demonstrate this, it suffices to time-differentiate the global momentum defined as
Q=∑p mpUp:

d

dt
Q=∑

p

mp
d

dt
Up

=−∑
p

∑
c∈C(p)

Fcp (thanks to momentum equation)

=−∑
c

∑
p∈P(c)

Fcp (by interchanging the double sums).

Thus, d
dtQ=0 due to condition (4.1), which completes the proof.

A corollary of the Galilean invariance condition is that specific internal energy equa-
tion (3.8) can also be rewritten into

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·(Up−Uc)=0, (4.2)

where Uc is a piecewise constant cell-centered velocity that remains to be determined.

4.2 Thermodynamic consistency

We investigate the thermodynamic consistency of our semi-discrete scheme by comput-
ing the time rate of change of entropy in cell c. Using Gibbs formula, one gets

mcTc
d

dt
Sc =mc

[ d

dt
εc+Pc

d

dt

( 1

ρc

)]
, (4.3)

where Sc and Tc are the specific entropy and temperature of cell c. Substituting into (4.3)
the specific internal energy equation (4.2) and the volume equation (3.4) yields

mcTc
d

dt
Sc = ∑

p∈P(c)

Fcp ·(Up−Uc)+Pc

(
∑

p∈P(c)

LcpNcp ·Up

)

= ∑
p∈P(c)

(Fcp+LcpPcNcp)·(Up−Uc).
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Here, we have used the geometric identity ∑p∈P(c) LcpNcp = 0. To satisfy the second law
of thermodynamics the right-hand side of the last equation must be positive. A sufficient
condition to obtain this consists in setting

Fcp =−LcpPcNcp+Mcp(Up−Uc), (4.4)

where Mcp is a subcell-based matrix.
Given this form, several features of Mcp can be drawn:

1. Dimensionality. Mcp has dimension of density times velocity times length.

2. Entropy inequality satisfaction. Mcp is positive semidefinite, i.e., McpU ·U≥0, ∀U∈R
2.

By substituting (4.4) into (4.3), we obtain the entropy inequality satisfied by our
semi-discrete scheme

mcTc
d

dt
Sc = ∑

p∈P(c)

Mcp

(
Up−Uc

)
·(Up−Uc)≥0, (4.5)

as the right-hand side is a positive semidefinite quadratic form.

3. Galilean invariance. Mcp is compatible with the principle of Galilean invariance: in
a nutshell, Mcp must be invariant w.r.t. translation and transform as RMcpRt for a
rigid rotation R.

4. Symmetry. Mcp is symmetric, i.e., Mt
cp =Mcp.

5. Locality. Mcp is a locally defined matrix: the physical and geometric quantities in-
volved in Mcp must be local in a neighborhood of the current subcell.

We remark that entropy production (4.5) within cell c is directly governed by the subcell
matrix Mcp and the velocity jump between the nodal and the cell-centered velocity which
still remains to be determined. This is the main topic of next section.

5 Cell-centered velocity computation

Using the previously derived generic form of the subcell force and the Galilean invariance
condition, we develop a cell-centered solver to compute the cell-centered velocity.

5.1 Abstract formulation

Substituting the subcell force expression,

Fcp =−LcpPcNcp+Mcp(Up−Uc),

into the Galilean invariance condition, ∑p∈P(c)Fcp =0, leads to the following system sat-
isfied by the cell-centered velocity Uc,

McUc = ∑
p∈P(c)

McpUp, (5.1)
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where Mc=∑p∈P(c)Mcp is a symmetric positive definite matrix. Once the definition of the
subcell matrix Mcp is known, one can solve the previous system to get a unique expression
of the cell-centered velocity. We shall see in the next paragraph one example of such a
solver.

5.2 Cell-centered approximate Riemann solver

By analogy with the node-centered approximate Riemann solver introduced in the con-
text of cell-centered Lagrangian discretization [26], we present one cell-centered approx-
imate Riemann solver. This solver allows to determine one particular form of the subcell
matrix Mcp. To this end, let us introduce two pressures at the cell center per subcell de-
noted by Π−

cp, Π+
cp. These pressures are related to the normals N

+
cp, N

−
cp which are the

unit outward normals to the subcell boundaries inside the cell, refer to Fig. 2. The subcell
force is then defined as

Fcp = L−
cpΠ−

cpN
−
cp+L+

cpΠ+
cpN

+
cp. (5.2)

The cell-centered pressures are obtained by means of the half-Riemann problems

Pc−Π−
cp =Z−

cp

(
Uc−Up

)
·N−

cp, (5.3a)

Pc−Π+
cp =Z+

cp

(
Uc−Up

)
·N+

cp, (5.3b)

where Z−
cp, Z+

cp denote the swept mass fluxes, and Uc is the cell-centered velocity which

remains to be computed. The swept mass fluxes, Z−
cp, Z+

cp, are defined following Dukow-
icz [16] as

Z−
cp =ρc

[
σc+cQΓc|(Uc−Up)·N

−
cp|
]
, Z+

cp =ρc

[
σc+cQΓc|(Uc−Up)·N

+
cp|
]
. (5.4)

L−
cpN−

cp

L+
cpN+

cp

cp
+Π

cp
−Π

p

p −

p+

L cp cpN

c

Figure 2: Notation used in the cell-centered Riemann solver. Two pressures per subcell (�) are introduced at
the cell center: Π+

cp, Π−
cp. They are related to the outward normal vectors L+

cpN
+
cp, L−

cpN
−
cp. In total, 2|P(c)|

pressures are introduced within cell Ωc.
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Here, σc is the isentropic sound speed, cQ a user-defined parameter (set to 1 in our simu-
lations) and Γc a material dependent coefficient, which for a γ gas law is defined by

Γc =






γ+1

2
, if (∇·U)cp <0,

0, if (∇·U)cp≥0,
(5.5)

where

(∇·U)cp =−
1

Vcp
LcpNcp ·(Uc−Up)

is the subcell contribution to the velocity divergence. In case of rarefaction wave, we
recover the acoustic approximation whereas in case of shock wave we get the well known
two-shock approximation.

Using (5.3) the subcell force is rewritten

Fcp =
(

L−
cpN

−
cp+L+

cpN
+
cp

)
Pc+Mcp

(
Up−Uc

)
, (5.6)

where
Mcp =Z−

cpL−
cp(N

−
cp⊗N

−
cp)+Z+

cpL+
cp(N

+
cp⊗N

+
cp) (5.7)

is a 2×2 symmetric positive definite matrix. Noticing that the subcell contour is closed,
we deduce that L−

cpN
−
cp+L+

cpN
+
cp =−LcpNcp. Finally, the subcell force writes

Fcp =−LcpPcNcp+Mcp

(
Up−Uc

)
,

where the subcell matrix is given by (5.7). We emphasize that we have recovered the
generic form of the subcell force which has been previously derived. Moreover, we have
given a particular expression of the subcell matrix which is directly linked to the half-
Riemann invariants (5.3). Finally, the cell-centered velocity Uc is obtained by solving the
system McUc = ∑p∈P(c)McpUp, recalling that Mc = ∑p∈P(c)Mcp and that Mcp is given by
(5.7). We note that Mc is symmetric positive definite which ensures its invertibility. We
remark that this system is non-linear due to the dependency of the swept mass flux on
the cell-centered velocity. This non-linear system can be solved using an iterative proce-
dure such as fixed point or Newton algorithms. In practice, few iterations are needed to
reach convergence. Once the cell-centered velocity is known, the subcell force is deduced
from Eq. (4.4). The present cell-centered approximate Riemann solver can be viewed as
a two-dimensional extension of the work initiated by Christensen in one-dimensional
framework [14].

5.3 High-order extension

The previously defined cell-centered approximate Riemann solver utilizes piecewise con-
stant nodal velocities defined over the subcells of a given cell. In this sense, this leads to
a first-order approximation of the cell-centered velocity. To get a more accurate approxi-
mation, we construct a piecewise linear representation of the nodal velocity field to feed
the cell-centered solver with the extrapolated velocity at the cell center.
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5.3.1 Piecewise linear reconstruction of the velocity field

First, we introduce a piecewise linear representation of the velocity field over the dual
grid by setting

Up(X)=Up+∇Up ·
(
X−Xp

)
, (5.8)

where ∇Up is the constant velocity tensor gradient over the dual cell Ωp. To compute it
we use a classical least squares approach by solving the following minimization problem

∇Up =argmin ∑
q∈N (p)

[(
Uq−Up

)
−∇Up

(
Xq−Xp

)]2
, (5.9)

where N (p) is the set of neighbor vertices of vertex p. The solution of this minimization
problem reads

∇Up =M−1
p ∑

q∈N (p)

(Uq−Up)⊗(Xq−Xp), (5.10)

where matrix Mp is the symmetric positive definite matrix

Mp = ∑
q∈N (p)

(Xq−Xp)⊗(Xq−Xp). (5.11)

We emphasize that this least squares approach is valid for any type of unstructured grid
and preserves linear velocity field.

5.3.2 Frame invariant tensorial limitation for a vector field

Monotonicity is achieved thanks to a modification of the classical Barth-Jespersen slope
limiter [2,3]. For vectors, limiting is usually applied separately to each component. How-
ever, such a procedure is frame dependent and thus leads to rotational symmetry dis-
tortion. Namely, component limiters do not preserve symmetry since a rotation of the
coordinate axis produces different results. This drawback is crucial in the framework
of Lagrangian hydrodynamics since we are dealing with moving mesh discretizations
which are particularly sensitive about symmetry loss. To correct this flaw, we have to
construct a limiting procedure which is frame invariant for vectors. One possible choice
is to use the Vector Image Polygon (VIP) methodology derived in [23]. This method con-
sists in constructing the VIP as the convex hull of the vector-space points corresponding
to the neighbor vectors. If a slope-extrapolated vector lies inside the VIP, the slope is
monotonicity preserving, otherwise slope limiting is required. On the other hand, the
slope is set to zero by analogy with the scalar limitation. Here we develop an original
procedure to perform a limitation of vector field which preserves rotational symmetry.
To define a limiter for the velocity tensor gradient, we define in each dual cell Ωp a local
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orthonormal basis (ξ
‖
p,ξ⊥

p ) which is assumed to be frame independent. Let us define the

coordinates of the vectors ξ
‖
p and ξ⊥

p in the canonical basis by setting

ξ
‖
p =

(
ξx

ξy

)
, ξ⊥

p =

(
−ξy

ξx

)
,

where ξ2
x+ξ2

y = 1 so that (ξ
‖
p,ξ⊥

p ) is a direct orthonormal basis. Thus the transformation
matrix from the canonical basis to the local basis reads

Ap =

(
ξx ξy

−ξy ξx

)
.

The transformation of the nodal velocity Up to the local coordinates is

Wp =

(
W

‖
p

W⊥
p

)
=ApUp =

(
ξ
‖
p ·Up

ξ⊥
p ·Up

)
. (5.12)

Then we find the minimum and maximum value from projections of neighboring nodes’
velocities into new directions:

W
‖,max
p = max

k∈N (p)

(
ξ
‖
p ·Uk

)
, W⊥,max

p = max
k∈N (p)

(
ξ⊥

p ·Uk

)
, (5.13a)

W
‖,min
p = min

k∈N (p)

(
ξ
‖
p ·Uk

)
, W⊥,min

p = min
k∈N (p)

(
ξ⊥

p ·Uk

)
, (5.13b)

where N (p) is the set of neighbor points of current point p. Now consider cell c∈C(p)
centered at Xc. Using the unlimited piecewise linear representation of the velocity field,
the extrapolated values of the velocity at point Xc are given by

Up,c≡U p(Xc)=Up+∇Up ·
(

Xc−Xp

)
, (5.14)

and its transformation into the local basis (ξ
‖
p,ξ⊥

p ) produces

Wp,c =

(
W

‖
p,c

W⊥
p,c

)
=ApUp,c. (5.15)

From these values we define

φ
‖
p,c =






L
(

W
‖,max
p −W

‖
p

W
‖
p,c−W

‖
p

)
, if

(
W

‖
p,c−W

‖
p

)
>0,

L
(

W
‖,min
p −W

‖
p

W
‖
p,c−W

‖
p

)
, if

(
W

‖
p,c−W

‖
p

)
<0,

1, if
(
W

‖
p,c−W

‖
p

)
=0,

φ⊥
p,c =





L
(

W⊥,max
p −W⊥

p

W⊥
p,c−W⊥

p

)
, if

(
W⊥

p,c−W⊥
p

)
>0,

L
(

W⊥,min
p −W⊥

p

W⊥
p,c−W⊥

p

)
, if

(
W⊥

p,c−W⊥
p

)
<0,

1, if
(
W⊥

p,c−W⊥
p

)
=0,
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where L(α) is a suitable limiting functional such as

L(α)=min(α,1) or L(α)=(α2+2α)(α2+α+2)−1.

The slope limiters for node p are finally defined by φ
‖
p and φ⊥

p as

φ
‖
p = min

c∈C(p)
φ
‖
p,c, φ⊥

p = min
c∈C(p)

φ⊥
p,c.

This pair of limiters is transformed back into the Cartesian coordinates:

Φp =A−1
p

(
φ
‖
p 0

0 φ⊥
p

)
Ap =


 ξ2

x φ
‖
p+ξ2

y φ⊥
p ξx ξy φ

‖
p−ξx ξy φ⊥

p

ξx ξy φ
‖
p−ξx ξy φ⊥

p ξ2
y φ

‖
p+ξ2

x φ⊥
p


.

The limited tensor gradient is finally given by formula

∇U
lim
p =Φp∇Up

and thus the limited velocity field reconstruction in the vicinity of node p is

Up(X)=Up+∇U
lim
p

(
X−Xp

)
. (5.16)

We claim that we have defined a tensorial limitation procedure for the velocity vector
which is frame invariant and thus preserves rotational symmetry. In practice, we define
the local basis utilizing the point velocity direction.

5.3.3 High-order cell-centered approximate Riemann solver

It consists in replacing the point velocity by its extrapolated value at cell center using the
piecewise linear monotonic reconstruction. Namely, the system that solves Uc becomes

McUc = ∑
p∈N (c)

McpUp(Xc),

where the swept mass fluxes entering the definition of the subcell matrices are also com-
puted using the extrapolated velocity as

Z±
cp =ρc

[
σc+cQΓc|(Uc−Up(Xc))·N

±
cp|
]
.

The subcell force is modified accordingly:

Fcp =−LcpPcNcp+Mcp

(
Up(Xc)−Uc

)
. (5.17)
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5.4 Subcell pressure based cell-centered Riemann solver

In Section 5.2, the cell-centered Riemann solver has been derived by considering a piece-
wise constant pressure inside the cell. Here we present a modification that takes into
account the subcell pressures as in [11]. Indeed, the main assumption of the compati-
ble formalism that has been used relies on the fact that subcells are Lagrangian volumes;
namely subcell mass mcp is constant in time. This main assumption leads to the following
definition of subcell density

ρcp(t)=
mcp

Vcp(t)
, (5.18)

where Vcp(t) is the subcell volume. To define the subcell pressure, Pcp(t), we assume that
the cell-centered specific internal energy is constant over the cell. Therefore, using the
EOS, subcell pressure reads

Pcp(t)= P(ρcp(t),εc(t)). (5.19)

To incorporate subcell pressure effects one substitutes Pcp into the half-Riemann problems
that allow to define the subcell force. In other words, one replaces Pc in (5.3a)-(5.3b) by
Pcp as follows

Pcp−Π−
cp =Z−

cp

(
Uc−Up

)
·N−

cp, (5.20a)

Pcp−Π+
cp =Z+

cp

(
Uc−Up

)
·N+

cp. (5.20b)

The swept mass fluxes are also modified by making use of the subcell density ρcp and
sound speed σcp as

Z±
cp =ρcp

[
σcp+cQΓc|(Uc−Up)·N

±
cp|
]
.

The corresponding subcell force is modified accordingly

Fcp =−LcpPcpNcp+Mcp

(
Up−Uc

)
. (5.21)

Then, the system that solves the cell-centered velocity rewrites as

Uc =M−1
c ∑

p∈P(c)

(
McpUp−LcpPcpNcp

)
. (5.22)

Let us a give an interpretation of the two terms that determine the cell-centered velocity.
The first term at the right-hand side is simply a weighted interpolation of nodal velocities
at cell center, whereas the second corresponds to a discretization of the pressure gradient
at cell center. This interpretation is easy to obtain by computing the pressure gradient
integral over the cell as

(
∇P

)
c
=

1

Vc

∫

∂Ωc

PNdS. (5.23)
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Using the subcell decomposition, (5.23) rewrites

(
∇P

)
c
=

1

Vc
∑

p∈P(c)

∫

∂Ωcp∩∂Ωc

PNdS=
1

Vc
∑

p∈P(c)

LcpPcpNcp.

With this result the cell-centered velocity reads

Uc = ∑
p∈P(c)

M−1
c McpUp−VcM

−1
c

(
∇P

)
c
. (5.24)

This formula degenerates to the previous formula (5.1) in case of uniform subcell pres-
sure over the cell. The extra pressure gradient term induced by the subcell pressures
acts as a supplementary viscous term that is usually present in approximate Riemann
solver. Namely, (5.24) can be viewed as a two-dimensional generalization of an acoustic
Riemann solver. Indeed, in the case of a one-dimensional flow aligned with a rectangular
grid, for cQ =0, one can show that the cell-centered velocity reduces to

Uc =
(Zlul +Zrur

Zl +Zr
−

Pr−Pl

Zl +Zr

)
ex,

where the subscripts l and r denote the left and right states of the one-dimensional Rie-
mann problem on both sides of the interface.

We want to quote that the subcell pressure has been initially introduced in classical
staggered discretization by Caramana and Shashkov [11] to control artificial grid distor-
tions, such as the hourglass modes. Let us recall, that in the case of a logically rectangular
grid, a quadrilateral cell has eight degrees of freedom. All but the two hourglass modes
are physical, only for the hourglass modes does the subcell density differ from the cell
density to which it belongs. The subcell pressure method uses this to calculate subcell
forces that are proportional between the subcell and the cell pressures, and oppose the
hourglass motion. In this approach, the subcell pressure force is defined as

F
∆P
cp = Lcp(Pcp−Pc)Ncp+

1

2

[(
Pcp−Pcp−

)
L−

cpN
−
cp+

(
Pcp−Pcp+

)
L+

cpN
+
cp

]
, (5.25)

where Pcp− and Pcp+ are the previous and next neighbor subcell pressures with respect to
subcell cp.

6 Time discretization

The time discretization is performed with a classical two-step predictor-corrector scheme
to gain second-order accuracy. Being given geometric quantities and physical variables
at time tn, we first predict the pressures that are later used in the corrector step to update
physical and geometric variables. The full discretization in space and time is displayed
in the following algorithm:
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Predictor step

1. Piecewise monotonic linear reconstruction of the velocity field over the dual grid

U
n
p (X)=U

n
p +∇U

lim
p

(
X−X

n
p

)
.

2. Compute U
n
c with the high-order cell-centered Riemann solver

U
n
c =

(
Mn

c

)−1
∑

p∈P(c)

[
−
(

LcpNcp
)n

Pn
cp+Mn

cpU
n
p (X

n
c )
]
.

3. Compute subcell forces

F
n
cp =−

(
Lcp Ncp

)n
Pn

cp+Mn
cp

(
U

n
p (X

n
c )−U

n
c

)
.

4. Update internal energy

mc
(
ε

n+ 1
2

c −εn
c

)
−

∆t

2 ∑
p∈P(c)

F
n
cp ·U

n
p =0.

5. Update vertex position

X
n+ 1

2
p =X

n
p +

∆t

2
U

n
p .

6. Update volume and density

ρ
n+ 1

2
c =

mc

V
n+ 1

2
c

, ρ
n+ 1

2
cp =

mcp

V
n+ 1

2
cp

.

7. Compute predicted pressures

P
n+ 1

2
c = P

(
ρ

n+ 1
2

c ,ε
n+ 1

2
c

)
, P

n+ 1
2

cp = P
(
ρ

n+ 1
2

cp ,ε
n+ 1

2
cp

)
.

Corrector step

1. Piecewise monotonic linear reconstruction of the velocity field over the dual grid

U
n+ 1

2
p (X)=U

n
p +∇U

lim
p

(
X−X

n+ 1
2

p

)
.

2. Compute U
n+1/2
c with the high-order cell-centered Riemann solver

U
n+ 1

2
c =

(
M

n+ 1
2

c

)−1
∑

p∈P(c)

[
−
(

LcpNcp

)n+ 1
2 P

n+ 1
2

cp +M
n+ 1

2
cp U

n+ 1
2

p (X
n+ 1

2
c )

]
.

3. Compute subcell forces

F
n+ 1

2
cp =−

(
Lcp Ncp

)n+ 1
2 P

n+ 1
2

cp +M
n+ 1

2
cp

[
U

n+ 1
2

p

(
X

n+ 1
2

c

)
−U

n+ 1
2

c

]
.
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4. Update momentum

mp

(
U

n+1
p −U

n
p

)
+∆t ∑

c∈C(p)

F
n+ 1

2
cp =0.

5. Update internal energy

mc
(
εn+1

c −εn
c

)
−∆t ∑

p∈P(c)

F
n+ 1

2
cp ·U

n+ 1
2

p =0,

with U
n+1/2
p =(U

n+1
p +U

n
p )/2.

6. Update vertex position

X
n+1
p =X

n
p +∆tU

n+ 1
2

p .

7. Update volume and density

ρn+1
c =

mc

Vn+1
c

, ρn+1
cp =

mcp

Vn+1
cp

.

8. Compute pressures

Pn+1
c = P

(
ρn+1

c ,εn+1
c

)
, Pn+1

cp = P
(
ρn+1

cp ,εn+1
cp

)
.

We point out that in the corrector step, internal energy has been discretized using the
time centered nodal velocity U

n+1/2
p . This choice is required to ensure total energy con-

servation up to machine precision.

7 Numerical results

The 2D Cartesian geometry is chosen for all test cases which are mono-material simula-
tions. Only the ideal gas EOS is employed even though the framework accepts any type
of EOS. We provide results of the following test cases: the Sod shock tube, the Carte-
sian Sedov problem, the Saltzman piston problem, the Noh problem and a Richtmyer-
Meshkov instability. The high-order scheme is used for every test except the Sod shock
tube for which a comparison between first and high-order is provided.

7.1 Sod shock tube

The Sod problem is a 1D Riemann shock tube with a relatively mild discontinuity. Its
solution consists of a left moving rarefaction fan, a right moving contact discontinuity
and a right moving shock wave. The domain is filled with an ideal gas at rest with
γ = 1.4. The density/pressure values on the left side of the discontinuity are 1.0/1.0,
while those on the right side are 0.125/0.1. The discontinuity is initially located at 0.5.
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Figure 3: Sod problem at tfinal =0.2 for 200 cells in x-direction. Top: first order scheme. Bottom: high order
scheme. From left to right: Cell-centered density, nodal velocity in x-direction as a function of x.

We simulate this problem up to the final time tfinal = 0.2. In our numerical experiments,
the computational domain is Ω = [0,1]×[0,ymax ], where ymax is chosen so that the cells
are initially squares. We are enforcing zero normal velocity at left and right of Ω and
slip boundary at top and bottom. The run is made with nx =200 computational cells in x
direction and ny =10 cells in y direction leading to ymax =0.2.

In Fig. 3 is presented the first order (top) and high order extension (bottom). We
display the cell density for all cells and the nodal velocity for all nodes vs the exact solu-
tion shown by solid line. The symmetry of the scheme is perfect and the quality of the
high order results is close to the cell-centered Lagrangian scheme [26]. The first order
scheme presents classical associated behavior-three-to-five cell shock spreading-whereas
the shock wave is spread only on one or two cells for the second-order extension. In
the compatible staggered Lagrangian scheme with classical artificial viscosity the shock
is generally spread over three to five cells. Moreover the tail of the rarefaction does not
suffer from the classical undershoot that can usually be seen on classical compatible stag-
gered Lagrangian scheme.

7.2 Sedov blast wave problem

In this subsection we present the Sedov blast wave problem [31], which describes the
evolution of a blast wave in a point-symmetric explosion. It is an example of a diverging
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shock wave. We consider the cylindrically symmetric Sedov problem in Cartesian geom-
etry. The total energy of the explosion is concentrated at the origin and has magnitude
Etotal =0.244816 similar to [22]. The material is an ideal gas with γ=1.4 and initially is at
rest with an initial density equal to 1.0.

At final time tfinal=1.0 the exact solution is a cylindrically symmetric diverging shock
whose front is at radius r=

√
x2+y2 =1 and has a density peak ρ=6.0. An exact solution

is available as instance in [19]. In our numerical experiments Etotal is concentrated in one
cell located at the origin (that is, containing the vertex (x,y)=(0,0)). The specific internal
energy of this cell, c, is defined as εc =Etotal/Vc. Therefore the initial pressure for this cell
is p=(γ−1)ρε=0.4Etotal/Vc.

The high-order scheme is used. First we use a Cartesian grid of 30×30 cells on domain
Ω=[0,1.2]×[0,1.2] (see Fig. 4(a)). Next we use a polygonal grid (Voronoi tessellation) of a
quarter of the disk of radius 1.2 (see Fig. 4(c)), this mesh has 775 cells being various poly-
gons. In Fig. 4(a) are shown the mesh and the density colormap. The general geometric
mesh quality is good. Moreover the symmetry of the shock wave is nicely preserved on
both these meshes. Indeed the good symmetry preservation is shown on Fig. 4(b), (d)
where the cell density as a function of cell radius is displayed for all cells in the domain
together with the exact solution; not only the shock wave is very sharp but the cells are
well distributed onto the exact curve.

7.3 Noh problem

In a quarter of the unit disk a gas (γ=5/3) is initiated with

ρ0 =1, ε0 =10−6 and U(x,y)=
( −x√

x2+y2
,

−y√
x2+y2

)
.

A cylindrical shock wave is generated at the origin and further diverges. The final time
is chosen at tfinal =0.6. The exact solution at radius r and time t is given by the following
relations, in which d identifies the geometry of the problem (1 for 1D Cartesian, 2 for 1D
cylindrical, 3 for 1D spherical), ρ0 is the uniform initial density, and u0 is the uniform
radial velocity (u0 =‖U‖=1):

{
ρ,ε,ur

}
=






{
ρ0

(γ+1

γ−1

)d
,
1

2
(u0)

2,0
}

, if r< rs ,

{
ρ0

(
1−

u0t

r

)d
,0,u0

}
, if r> rs ,

(7.1)

where the position of the shock rs is given by

rs =Ust, with the shock speed Us =
1

2
(γ−1)|u0|. (7.2)

The exact solution is given by (rs =0.2, Us =1/3)

{
ρ,ε,ur

}
=





{
16,

1

2
,0
}

, if r<0.2,
{(

1+
3

5

1

r

)
,0,1

}
, if r>0.2.

(7.3)
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Figure 4: Sedov problem at tfinal =1. (a) Density map and mesh on a 30×30 Cartesian grid. (b) Cell density
as a function of cell center radius vs exact solution on a 30×30 Cartesian grid. (c) Density map and mesh on
a polygonal grid. (d) Cell density as a function of cell center radius vs exact solution on a polygonal grid.
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Figure 5: Noh problem at tfinal =0.6 on a 100×9 polar grid. (a) Density map and mesh. (b) Cell density as a
function of cell center radius vs exact solution.
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This problem is simulated in its Cartesian version. First a polar mesh with 100 cells in
radial direction and 9 cells in angular direction is considered. Fig. 5 shows the final mesh
and density colormap on panel (a) and the cell density as a function of cell center radius
compared to exact solution on panel (b). The symmetry of the shock wave and the mesh is
almost perfect. Moreover the accuracy of the plateau is good and one observes a classical
wall heating effect close to the origin. A slight overshoot can be noticed just after the
shock wave which is, however, very sharp.

One classical issue of using polar mesh is the fact that to get a cell aspect ratio close
to one on the external border of the disk we have to mesh the region close to the origin
with triangles that have tremendously small internal angle. This leads not only to very
big number of cells, but also to inaccuracy and sensitivity while discretizing equations
on such long and a thin triangles, and last but not least, a small time step. A solution
consists in using a non-conformal mesh as depicted in Fig. 6 panel (a); the mesh is made
of quadrangles and every second angular line is stopped at a given radius (r = 0.3 in
the figure), leading to pentagonal cells. Such lines and associated cells are elsewhere re-
ferred as to termination lines [21] or dendritic cells. The extra nodes that are created on
these pentagons by the termination lines are usually enslaved to their edge. A special
treatment is set-up for these pentagonal cells [21] in classical compatible Lagrangian hy-
drodynamics scheme. This treatment is based on distribution of masses and forces on
surrounding zones. In our approach, as for the cell-centered Lagrangian scheme [26], no
special treatment is needed. The Riemann solver is naturally producing the correct point
velocity (see Fig. 6(b)) contrary to the classical approach with no special treatment (see
Fig. 9(a) on page 11 of [21]). Although some mesh imprint can be seen, the cell density as
a function of cell center radius in Fig. 6(c) is still very well reproduced.

7.4 Saltzman piston

The domain Ω = [0,1]×[0,0.1] is filled with a gas (γ = 5/3) at rest ρ = 1, ε = 10−6. The
right boundary is a perfect wall, the left boundary is a right-moving piston with velocity
U = (1,0)t. This piston sends a straight shock wave into the rectangular domain. This
shock wave ultimately bounces onto the fixed right wall and onto the piston back and
forth. At time t=1.0 the piston reaches the right wall.

An exact solution is defined by the value of the plateaus behind the shock. The ana-
lytical solution is characterized by a post-shock density plateau of 4 and a shock velocity
of 4/3 before the time t = 0.75. This problem usually tests the robustness of Lagrangian
numerical methods by using the Saltzman mesh defined by nx = 100 cells in x-direction
and ny =10 in y-direction and a deformation in x-direction as

xdeformed = x+(0.1−y)sin(πx),

as can be seen in Fig. 7. In Fig. 8 is presented the mesh and the density colormap at
time tfinal = 0.6. Unfortunately, our approach is not able to perform up to time t > 0.925
as the top left corner cells are pinched and become tangled soon after this time. This
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Figure 6: Noh problem at tfinal = 0.6 on a non-conformal grid. (a) Initial mesh. (b) Zoom on the final mesh.
(c) Cell density as a function of cell center radius vs exact solution.
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quite disappointing result asks for more investigation on robustness issue and also on
boundary condition treatment using staggered discretization.

7.5 Linear phase of Richtmyer-Meshkov instability

This test case is devoted to the study of the linear phase of the Richtmyer-Meshkov insta-
bility [30] for a piston-driven flow. This hydrodynamic instability occurs when a shock
wave hits a perturbed interface separating two different fluids. For sufficiently small per-
turbations, analytical solutions can be derived using linear perturbation theory [36]. In
this framework, the theory shows that the amplitude of the perturbation grows linearly
as a function of time. We first study the unperturbed fluid configuration in the RMI prob-
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lem, which is a collision of a shock wave with a flat contact discontinuity. Such collision
produces a transmitted shock wave and a reflected wave that can be either a shock or a
rarefaction. This shock-contact interaction defines a one-dimensional Riemann problem,
which can be solved analytically.

In what follows, we will employ the configuration displayed in Fig. 9. The interface is
located at x=0 and the computational domain corresponding to the shock tube is defined
by (x,y)∈[−5,4.2]×[0,0.5], since the y=0 line is a symmetry axis for this problem. For the
initial and boundary conditions described in Fig. 9, the incident piston-driven shock hits
the interface at time t = 3.015. This interaction leads to transmitted and reflected shock
waves, which also later interact with the piston and the right boundary wall. The time
history of the shock-contact interaction is displayed in Fig. 10(a) using a classical (t−x)
diagram. We run a computation for the unperturbed configuration with our high-order
scheme using 460 equally spaced cells in the x-direction and one cell in the y-direction.
The density as function of x-coordinate is plotted in Fig. 10(b) together with analytical
solution at time t = 5. We point out the very good agreement between numerical and
analytical solutions. Moreover, we note that transmitted and reflected shocks are sharply
resolved. In order to study the perturbed configuration, we initialize a cosinusoidal per-
turbation of the interface with a small amplitude α0. Thus, the equation of the interface
is written

x(y)= a0 cos
(2π

λ
y
)

, for y∈
[
−

λ

2
,
λ

2

]
, (7.4)

where λ is the wavelength of the perturbation. The shape of the perturbed interface is
displayed in Fig. 9. For a small enough initial amplitude, linear theory predicts that the
perturbation amplitude, α(t), grows linearly as a function of time, after the shock has
interacted with the interface. Using direct two-dimensional simulation of the perturbed
configuration, we shall recover this important result and compare the numerical pertur-
bation amplitude with the one coming from the linear theory. The numerical simulations
are made by meshing the computational domain, (x,y)∈ [−5,4.2]×[0,0.5], with 460×25
equally spaced cells. Hence, we have set λ = 1 and meshed only a half wavelength due
to the symmetry of the problem w.r.t. x-axis. We set α0 =10−4 and performed a compu-
tation utilizing our high-order scheme. The perturbed interface is prescribed by moving
the vertices initially located on the line x = 0 onto the curve defined by Eq. (7.4). The
perturbation amplitude, α(t), is computed using the following formula

α(t)=
Xpert(t)−Xunpert(t)

α0
, (7.5)

where Xpert(t) (resp. Xunpert(t)) is the abscissa of a point located on the perturbed (resp.
unperturbed) interface. Using this formula for the previous computations, we compute
the corresponding perturbation amplitude and compare it to the reference one coming
from the linear theory [36]. We have plotted in Fig. 11 the numerical perturbation am-
plitude as a function of time compared to the one coming from the linear theory. We
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remark that the high-order computation recovers quite well the linear theory. These re-
sults show the ability of our high-order Lagrangian scheme to simulate very accurately
complex phenomena such as hydrodynamic instabilities.
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8 Conclusions

This work suggests a general formalism to derive staggered discretizations for La-
grangian hydrodynamics on general unstructured meshes in two dimensions. The frame-
work uses fundamental objects of compatible discretizations like Lagrangian subcell
mass and subcell forces. Artificial viscosity form is formulated invoking Galilean in-
variance and thermodynamic consistency. The satisfaction of entropy inequality is en-
sured by using a subcell-based symmetric positive definite tensor, a particular example
of which is given in this work. An extension to high order in space and time is demon-
strated, including a vector limitation procedure which is frame independent and thus
preserves desirable properties like rotational symmetry. Performance of the new method
is demonstrated on a set of classical and demanding numerical tests, using various struc-
tured and unstructured computational meshes.

An important potential link between staggered and cell-centered Lagrangian schemes
is the viscous part of subcell force. While some of the existing artificial viscosity imple-
mentations can be easily reformulated by means of the proposed symmetric positive defi-
nite tensor, others still seem to resist this simple interpretation. From this viewpoint there
remains enough space for deeper investigation with the prospect of finding important
similarities and differences between the Godunov-based and Lagrange-based methods.

Another promising idea to be explored is the use of a generalized Riemann prob-
lem [5] for simultaneous discretization in space and time, which would replace predictor-
corrector temporal integration by a more elegant one-step scheme.

Last but not least, the plan is to extend all pieces of the existing machinery to two-
dimensional axisymmetric [25] and further to three-dimensional geometry and thus open
it for new practical applications.
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Appendix: 1D staggered Lagrangian scheme based on

cell-centered Riemann solver

In this appendix we detail the 1D version of the numerical scheme proposed in this paper.
In order to be complete we fully describe its derivation. The governing equations are
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written in 1D as

ρ
d

dt

(1

ρ

)
−

∂

∂X
u=0, ρ

d

dt
u+

∂

∂X
P=0, ρ

d

dt
E+

∂

∂X
(Pu)=0. (A.1)

Physical variables are expressed as functions of X(t), which is the coordinate of a fluid
particle at time t whose initial position is denoted by x. The trajectory equation then
writes

d

dt
X =u(X(t),t), X(0)= x. (A.2)

A cell is labeled with an integer index as Ii and is the segment Ii(t)=[Xi−1/2(t);Xi+1/2(t)]
constituted of two consecutive points labeled with half-integers, see Fig. 12. I =

⋃
i Ii is

a partition of the 1D computational domain. We denote Vi(t)= Xi+1/2(t)−Xi−1/2(t) the
volume of cell Ii. The displacement of the vertex Xi+1/2(t) is given by the semi-discrete
trajectory equation

d

dt
Xi+ 1

2
=ui+ 1

2
, Xi+ 1

2
(0)= xi+ 1

2
, (A.3)

where ui+1/2 = u(Xi+1/2(t),t) is the trajectory of the vertex, namely the fluid velocity at
point Xi+1/2. Since cell Ii moves with the fluid velocity it may deform but can neither
gain nor lose mass, thus the mass of cell Ii writes

mi(t)=
∫

Ii(t)
ρ(X(t),t)dX =

∫

Ii(0)
ρ(x,0)dx=mi(0), (A.4)

where Ii(0)= [xi−1/2,xi+1/2] is the initial cell and ρ(x,0) the initial density. Let

Xi(t)=
1

2

(
Xi− 1

2
(t)+Xi+ 1

2
(t)
)

be the center of cell Ii. The median mesh is defined by the introduction of the dual cell
Ii+1/2(t) = [Xi(t),Xi+1(t)]. Knowing that the cell center is computed in a Lagrangian
manner we deduce that the mass of the dual cell, mi+1/2, is constant and writes mi+1/2 =
(mi+mi+1)/2.
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Volume conservation equation. Let ρi(t) be the cell-averaged density

ρi(t)=
1

Vi(t)

∫

Ii(t)
ρ(X(t),t)dX. (A.5)

It can also be written ρi(t)=mi/Vi(t) and therefore

mi
d

dt

( 1

ρi

)
=

d

dt
Vi =ui+ 1

2
−ui− 1

2
, (A.6)

which is the semi-discrete version of the volume conservation equation (A.1).

Momentum conservation equation. The semi-discrete momentum equation over the
dual cell writes

mi+ 1
2

d

dt
ui+ 1

2
+
(

P∗
i+1−P∗

i

)
=0, (A.7)

where P∗
i = P(Xi(t),t) represents the pressure at zone center Xi that remains to be deter-

mined.

Total energy conservation. Without taking into account boundary terms we introduce
the total kinetic energy at time t>0 as

K= ∑
i+ 1

2

1

2
mi+ 1

2
u2

i+ 1
2
,

where the sum is performed over the dual cells Ii+1/2. We also introduce the total internal
energy at t as E = ∑i miε i, where the sum is taken over the primal cells Ii and ε i denotes
the cell-averaged internal energy. Conservation of total energy writes

d

dt
K+

d

dt
E =0. (A.8)

Recalling that masses are Lagrangian objects, the previous equation rewrites

∑
i+ 1

2

1

2
mi+ 1

2
ui+ 1

2

d

dt
ui+ 1

2
=−∑

i

mi
d

dt
ε i. (A.9)

Substituting the semi-discrete momentum equation previously derived we get

∑
i+ 1

2

ui+ 1
2
(P∗

i+1−P∗
i )=∑

i

mi
d

dt
ε i, (A.10)

which yields after shifting the index of the first sum

∑
i

P∗
i

(
ui+ 1

2
−ui− 1

2

)
=∑

i

mi
d

dt
ε i. (A.11)
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Without taking into account the boundary terms, the total energy conservation writes

∑
i

mi
d

dt
ε i+P∗

i

(
ui+ 1

2
−ui− 1

2

)
=0. (A.12)

A sufficient condition to ensure total energy conservation is obtained by writing the fol-
lowing evolution equation for the internal energy within cell Ii

mi
d

dt
ε i+P∗

i

(
ui+ 1

2
−ui− 1

2

)
=0. (A.13)

The only unknown to determine is the pressure P∗
i . Let us note that using the volume

conservation equation this last equation can be recast into the form

mi
d

dt
ε i+miP

∗
i

d

dt

( 1

ρi

)
=0, (A.14)

which, recalling the Gibbs formula TdS=dε+Pd( 1
ρ ), rewrites

miTi
d

dt
Si =−mi(P∗

i −Pi)
d

dt

( 1

ρi

)
, (A.15)

where Si and Ti are the specific entropy and temperature in cell Ii. The right-hand side
of this equation is nothing but the time rate of change of specific entropy dissipation.
According to the second law of thermodynamics Ti

d
dt Si ≥0, thus we should have

(P∗
i −Pi)

d

dt

( 1

ρi

)
≤0.

Consequently for smooth flows, characterized by reversible thermodynamical process,
such as rarefaction wave or isentropic compression, we should have P∗

i =Pi since d
dt (

1
ρi

)<

0. The difference P∗
i −Pi is the artificial viscosity first introduced by von Neumann and

Richtmyer [33]. Let us now describe how to compute this term by solving a staggered
Riemann problem. First the interfacial pressure P∗

i is computed at each cell center Xi by
solving the Riemann problem characterized by the left state (ρi,ui−1/2,Pi) and the right
one (ρi,ui+1/2,Pi). Note that only the velocity is discontinuous with a jump

∆u=ui+ 1
2
−ui− 1

2
.

In order to simplify the notation let us denote with subscript L the left state (ρ,uL,P).
Accordingly the right state is (ρ,uR,P) with subscript R and the jump in velocity is
∆u = uR−uL. We note that the equation of state is the same both sides of the interface.
The solution of the Riemann problem is a two-shock solution in the case that ∆u<0 (see
Fig. 13 top-right panel) and a two-rarefaction solution if ∆u>0 (see Fig. 13 bottom-right
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Figure 13: Left: States for the Riemann problem at cell center. Top-right: Two-shock Riemann solution.
Bottom-right: Two-rarefaction Riemann solution.

panel). The solution is denoted (ρ∗,u∗,P∗). Since thermodynamical variables are contin-
uous across the interface, there is no contact discontinuity.

Two-shock case. The Rankine-Hugoniot relations allow to compute the post-shock pres-
sure and velocity. They write for the right-facing shock

M
( 1

ρ∗
−

1

ρ

)
=−(u∗−uR), (A.16a)

M(u∗−uR)= P∗−P, (A.16b)

ε∗−ε+
P∗+P

2

( 1

ρ∗
−

1

ρ

)
=0, (A.16c)

where M>0 denotes the mass swept by the wave per unit time. For the left-facing shock
we only write

M
( 1

ρ∗
−

1

ρ

)
=−(u∗−uL), (A.17a)

M(u∗−uL)=−(P∗−P), (A.17b)

recalling that the third equation is exactly the same as (A.16c) since it is independent on
the direction of propagation. Adding (A.16b) and (A.17b) yields u∗=(uR+uL)/2, hence
using (A.16b) and the definition of ∆u we get

P∗= P−
1

2
M∆u. (A.18)

Using cell notation we deduce

P∗
i = Pi−

1

2
M
(
ui+ 1

2
−ui− 1

2

)
, (A.19)
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thus the internal energy equation reads

mi
d

dt
ε i+Pi

(
ui+ 1

2
−ui− 1

2

)
=

1

2
Mi

(
ui+ 1

2
−ui− 1

2

)2
. (A.20)

This discretization is compatible with the second principle of thermodynamics.
The swept mass flux can be expressed as function of the physical variables by com-

bining (A.16a) and (A.16b)

M2 =−(P∗−P)
( 1

ρ∗
−

1

ρ

)−1
. (A.21)

In the limit of the weak shock wave P∗→ P and ρ∗ → ρ and one can show that M→ ρc
where c2=( ∂P

∂ρ )s is the isentropic sound speed. In the general case for a γ gas law one can

compute the analytical solution of the Riemann problem. Knowing that P=(γ−1)ρε and
using (A.16c) one gets

1

ρ∗
=

1

ρ

(γ+1)P+(γ−1)P∗

(γ+1)P∗+(γ−1)P
. (A.22)

After substitution in the equation for M2 we obtain

M2 =ρ
(γ+1

2
P∗+

γ−1

2
P
)

, (A.23)

thus using (A.16b) we show that P∗ satisfies a quadratic equation whose physical solution
is

P∗= P+ρ

(
γ+1

4

∆u

2
−

√(γ+1

4

)2(∆u

2

)2
+c2

)
∆u

2
. (A.24)

This last equation allows to write

M=ρ

(
−

γ+1

4

∆u

2
+

√(γ+1

4

)2(∆u

2

)2
+c2

)
. (A.25)

Let us remark that this last equation recovers the Kuropatenko artificial viscosity [20]
up to a factor one half in front of the velocity jump. Kuropatenko has in fact derived
his formula computing the pressure jump produced by only one shock wave created
by a velocity jump ∆u. Here we are considering the solution of the Riemann problem
corresponding to an initial velocity jump ∆u. This initial discontinuity breaks up into two
shock waves, each being characterized by a velocity jump of ∆u/2. The same conclusion
has been given by Luttwak and Falcovitz [24].

In the case of real material we propose the following ansatz for the swept mass flux

M=ρ
(
−c0

∆u

2
+c1c

)
, (A.26)
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where c0 and c1 are constants depending on material properties. This amounts to pretend
that the velocity of the shock wave is an affine function of the fluid velocity. This assump-
tion is satisfied for many materials as it has been noticed by Dukowicz [16]. Returning to
cell notation we finally get

P∗
i = Pi−

1

2
Mi

(
ui+ 1

2
−ui− 1

2

)
, (A.27)

where

Mi =ρi

(
−c0

1

2

(
ui+ 1

2
−ui− 1

2

)
+c1ci

)
. (A.28)

Let us remark that this form of swept mass flux is the one used in (5.4) in 2D. Moreover,
in 1D, the subcell matrix (5.7) is a 1×1 matrix that indeed coincides with the swept mass
flux, hence the notation Mi in the equation above. Finally this procedure can be viewed
as the solution of the Riemann problem using an approximate solver.

Two-rarefaction case. In the case ∆u ≥ 0 we simply can set P∗
i = Pi in order to satisfy

entropy conservation. It consists in canceling the entropy production in the case of rar-
efaction wave. This is the usual way of proceeding when dealing with classical artificial
viscosity. However it is possible also to solve the Riemann problem in this case. Since
∆u≥0, the initial discontinuity breaks up into two rarefaction waves (see Fig. 13 bottom-
right panel). The Riemann problem is solved using Riemann invariants:

• for the right-facing wave u∗−uR =
∫ ρ∗

ρ
dP

ρ(P)c(P)
,

• for the left-facing wave u∗−uL =−
∫ ρ∗

ρ
dP

ρ(P)c(P)
,

and by adding these last equations we get u∗=(uR+uL)/2. In the case of a γ gas law one
can integrate the Riemann invariants to get

P∗= P
(

1−
γ−1

2

∆u

2c

) 2γ
γ−1

, (A.29)

that is valid for
∆u

2
≤

2

γ−1
c.

We can rewrite the last equation as

P∗= P+P
[(

1−
γ−1

2

∆u

2c

) 2γ
γ−1

−1
]
= P−

1

2
M∆u, (A.30)

where

M= P
[
−
(

1−
γ−1

2

∆u

2c

) 2γ
γ−1

+1
](1

2
∆u
)−1

>0. (A.31)
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In the limit of weak shock wave ∆u → 0 and thus M → ρc. For real materials one can
derive an approximate solution using the following quadrature for the integrals for the
Riemann invariants

∫ ρ∗

ρ

dP

ρ(P)c(P)
=

P∗−P

ρc
, (A.32)

hence u∗ and P∗ are solution of the 2×2 linear system

ρc(u∗−uR)= P∗−P, ρc(u∗−uL)=−(P∗−P), (A.33)

in particular u∗=(uL+uR)/2 and P∗=P−ρc ∆u
2 . This corresponds to the acoustic approx-

imation.

Time discretization. A two-step Runge-Kutta discretization is used. Knowing all physi-
cal quantities at time tn, we advance them up to time tn+1 = tn+∆t.

• Predictor step. One computes

P∗,n
i = Pn

i −
1

2
Mn

i ∆un
i ,

and solves the internal energy equation

mi

(
ε

n+ 1
2

i −εn
i

)
+

∆t

2
P∗,n

i

(
un

i+ 1
2
−un

i− 1
2

)
=0. (A.34)

Then the mesh nodes are displaced:

X
n+ 1

2

i+ 1
2

=Xn
i+ 1

2
+

∆t

2
un

i+ 1
2
.

The density is then computed:

ρ
n+ 1

2

i+ 1
2

=mi

(
V

n+ 1
2

i

)−1
,

where

V
n+ 1

2
i =X

n+ 1
2

i+ 1
2

−X
n+ 1

2

i− 1
2

.

Finally the predicted pressure is computed

P
n+ 1

2
i = P(ρ

n+ 1
2

i ,ε
n+ 1

2
i ).

• Corrector step. One computes

P
∗,n+ 1

2
i = P

n+ 1
2

i −
1

2
M

n+ 1
2

i ∆un
i ,

and solves momentum equation

mi+ 1
2

(
un+1

i+ 1
2

−un
i+ 1

2

)
+∆t

(
P
∗,n+ 1

2
i+1 −P

∗,n+ 1
2

i

)
=0, (A.35)
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and computes

u
n+ 1

2

i+ 1
2

=
1

2

(
un+1

i+ 1
2

−un
i+ 1

2

)
.

The internal energy is solved

mi

(
εn+1

i −εn
i

)
+∆tP

∗,n+ 1
2

i

(
u

n+ 1
2

i+ 1
2

−u
n+ 1

2

i− 1
2

)
=0. (A.36)

Then the mesh nodes are displaced:

Xn+1
i+ 1

2

=Xn
i+ 1

2
+∆tu

n+ 1
2

i+ 1
2

.

The density is then computed:

ρn+1
i+ 1

2

=mi

(
Vn+1

i

)−1
,

where

Vn+1
i =Xn+1

i+ 1
2

−Xn+1
i− 1

2

.

High-order extension of this scheme is obtained using a piecewise linear conservative
reconstruction of the velocity on each dual cell.

∀X∈ [Xi,Xi+1], ui+ 1
2
(X)=ui+ 1

2
+δui+ 1

2

(
X−X̃i+ 1

2

)
, (A.37)

where X̃i+1/2 =(Xi+Xi+1)/2 and we note that generally X̃i+1/2 6= Xi+1/2 since the mesh
may be non-uniform. The reconstruction is conservative in the sense that

1

Xi+1−Xi

∫ Xi+1

Xi

ui+ 1
2
(X)dX =ui+ 1

2
. (A.38)

As instance a least squares approach is utilized to compute the slope δui+1/2. Monotonic-
ity is ensured by the use of any classical slope limiter. High-order reconstructed velocities

uL =ui− 1
2
(Xi)=ui− 1

2
+δui− 1

2

(
Xi−X̃i− 1

2

)

and

uR =ui+ 1
2
(Xi)=ui+ 1

2
+δui+ 1

2

(
Xi−X̃i+ 1

2

)

are further used in the Riemann solver as left and right states.
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