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Abstract. Thermochronometer data offer a powerful tool for quantifying a wide range
of geologic processes, such as the deformation and erosion of mountain ranges, topo-
graphic evolution, and hydrocarbon maturation. With increasing interest to quantify
a wider range of complicated geologic processes, more sophisticated techniques are
needed. This paper is concerned with an inverse problem method for interpreting the
thermochronometer data quantitatively. Two novel models are proposed to simulate
the crustal thermal fields and paleo mountain topography as a function of tectonic and
surface processes. One is a heat transport model that describes the change of temper-
ature of rocks; while the other is surface process model which explains the change of
mountain topography. New computational algorithms are presented for solving the
inverse problem of the coupled system of these two models. The model successfully
provides a new tool for reconstructing the kinematic and the topographic history of
mountains.

AMS subject classifications: 86A22, 35R37, 35Q80, 86A60
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1 Introduction

In recent year, there has been growing interest in developing suitable numerical meth-
ods for studying geologic processes. A number of studies have been conducted demon-
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strating how numerical modeling can improve the interpretation of geologic data, for
example [3, 9, 13, 14, 17, 21]. Apatite (U-Th)/He thermochronometry has emerged as an
important tool for quantifying the cooling history of rocks as they pass through the up-
per 1-3 km of the crust. The low closure temperature (∼60◦C) of this thermochronometer
system has attracted interdisciplinary studies in the Earth science, such as for landform
evolution, structural geology, geomorphology, geochemistry, petrology, and geodynam-
ics [2, 7, 8, 22]. In general, thermochronometer data may be interpreted by measuring an
age (or other related observables such as fission track lengths or noble gas release) from
minerals extracted from rocks at or near the earth’s surface. A thermonometer cooling age
represents the time since a rock cooled below some effective closure temperature. These
ages are influenced by either some events or geologic processes (e.g., erosion, faulting,
topographic change, cooling of igneous rocks). In the latter case, which is closely related
to our work in this paper, efforts are made to interpret the thermochronometer data to
quantify the deformation, erosion, and topographic history of active mountain ranges.
More specifically, we present in this paper a novel coupling of topographic evolution
and 3D thermal models with inverse problem theory to reconstruct geologic processes.
For thermal convection, the physical process is governed by

ρc

(

∂T

∂t
+v·∇T

)

=∇·(k1∇T)+ρH. (1.1)

Explanation of each of the terms and parameters will be given later. This equation is
a classic heat equation defined on the three dimensional region with moving bound-
ary, considering heat advection, diffusion and radiogenic effect. We also impose suitable
boundary conditions based on the underlying physics and geologic setting. For surface
process, we have another classic heat type equation, considering transportation by a sur-
face velocity field, diffusivity of hillslope materials, and fluvial processes,

∂S

∂t
=∇·(k2∇S)+u·∇S+u3+a

√

Qd·∇S. (1.2)

In this study, we do not include glacier erosion in the model because the governing equa-
tions are highly nonlinear problem and the evolution of mountain topography in many
places can be described to a first order by Eq. (1.2). Our future work will focus on address-
ing glacial erosion. In Eq. (1.2), v=(vx,vy,vz) is the velocity, u=(vx,vy) and u3 = vz. For
the inverse problem, the velocity v and surface S(t,x,y) are the unknowns, which need to
be reconstructed. The solution of the surface model serves as the moving boundary of the
heat process. In our algorithm, we restore the velocity field by solving the inverse heat
process model, and apply it as known to the surface model to obtain the initial surface
by solving another inverse problem. This is carried out in an iterative fashion. To deal
with the inverse problem entangled with a moving boundary, we freeze the boundary
for a relatively short time period, by assuming that the mountain range does not change
significantly in one thousand years.
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A fundamental and yet often unquantified problem associated with thermochronome-
ter data is that interpretations of geologic processes influencing their thermal history are
not unique. The non-uniqueness of interpretations stems from two typical sources: mul-
tiple thermal histories (e.g., slow protracted vs. rapid cooling) can produce the same ther-
mochronometer age [20]; trade-offs between different physical processes (e.g., heat flow
into the base of the crust and erosion rate) can produce similar thermal histories thereby
adding uncertainty to interpretations [11]. Fortunately, in many cases, these uncertain-
ties can be reduced by appropriate sampling and analysis of multiple thermochronome-
ter systems on the same sample. To quantify the geological process, we need to solve
Eqs. (1.1) and (1.2) in a backward way. However the inverse problems of both the ther-
mal convection and surface process are severely ill-posed, that is, small changes in the
present temperature and surface may lead to a large deviation in the predicted velocity
field and mountain surface in the past. The problem gets more serious in simulations
of mountain evolution over millions of years. Several studies have investigated the nu-
merical solution of the backward heat equations (1.1) and (1.2), for example [5, 10]. Also,
as well documented, the inverse problem to determine the coefficients of the lowest or
leading terms for parabolic type equations is conditionally well-posed problem. Recent
related results about the uniqueness and stability of recovery of certain coefficients of
parabolic partial differential equations may be found in [4,6,15]. We refer to [19] and [23]
for numerical reconstructions where the Tikhonov regularization is used and [16] for the
quasi-solution method.

Our goal of this work is to numerically solve the inverse problem of the coupled sys-
tem with the finite element method, assuming that one measurement of the temperature
is available at every point and the current model topography is known. Our numerical
results indicate that when the direction of the velocity field is known, (in practice, a priori
guess of the direction of velocity field can be obtained from structural geology studies)
the reconstruction of the velocity field can be accurate. However, the reconstruction of
the initial surface is accurate when the simulation time is short and less so for a long time
simulation due to its ill-posed nature. We also run the simulation for the coupled system,
which incurs large computational cost.

The rest of the paper is outlined as follows. We introduce the formulation of the prob-
lems in Section 2 and the algorithm for solving inverse problem in Section 3. In Section 4,
our initial numerical results for the coefficient inverse heat transport problem and the in-
verse surface process problem are presented. We also demonstrate the numerical results
for the coupled system.

2 Formulation

We refer to [12] on modeling thermal dynamics in the Earth. It follows from the conser-
vation of energy and Fourier’s law for heat conduction that, at any point of the system
x=(x,y,z)∈R3, the rate of change of temperature is proportional to the divergence of the
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heat flux:

ρc
dT

dt
=∇·(k1∇T),

where ρ is the density of the material, in this case the rocks, c is the capacity of the system,
k1 is the conductivity of the material and T = T(t,x) is the temperature at x = (x,y,z) at
time t.

If we consider that rocks are transported at a velocity v=(vx,vy,vz) and there exists a
temperature gradient in the material along that direction, we have

dT

dt
=

∂T

∂t
+

∂T

∂x

∂x

∂t
+

∂T

∂y

∂y

∂t
+

∂T

∂z

∂z

∂t

=
∂T

∂t
+

∂T

∂x
vx+

∂T

∂y
vy+

∂T

∂z
vz

=
∂T

∂t
+v·∇T

and

ρc
(∂T

∂t
+v·∇T

)

=∇·(k1∇T). (2.1)

On the earth, most rocks contain a finite concentration of radioactive isotopes, such
as U, Th, and K. The decay of these radioactive atoms gives rise to an increased kinetic
energy. By adding the contribution of the source to (2.1), we have

ρc
( ∂T

∂t
+v·∇T

)

=∇·(k1∇T)+ρH,

where H is the rate of radiogenic heat production per unit mass. Let

D={(x,y)|0≤ x≤ a,0≤y≤b}, Ω={(x,y,z)|(x,y)∈D,0≤ z≤S},

where S=S(t,x,y) is the surface of the mountain at time t. We consider the heat transport
process model, which satisfies the following equation with proper boundary conditions















































ρc

(

∂T

∂t
+v·∇T

)

=∇·(k1∇T)+ρH,

T(t,x,y,S(t,x,y))=Ta , (x,y)∈D,tp ≤ t≤ tc,

T(t,x,y,0)=Tm, (x,y)∈D,tp ≤ t≤ tc,

∂T

∂n

∣

∣

∣

(x,y)∈∂D
=0, (x,y)∈∂D,tp ≤ t≤ tc,

T(tp,x,y,z)=Tp(x,y,z), (x,y,z)∈Ω,tp ≤ t≤ tc.

(2.2)

Here density of material ρ, capacity c, conductivity k1, rate of radiogenic heat production
per unit mass H could be obtained by experiments. The boundary value Ta is the tem-
perature of air and Tm is the temperature at the base of the crust or asthenosphere. These
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two parameters are reasonably well known and initial temperature distribution Tp(x,y,z)
is also well constrained. The vertical side boundaries are assumed to be conductively
isolated, ∂T/∂n =0. For the inverse problem, the velocity v and surface S(t,x,y) are un-
known, which need be reconstructed. The measurement data is T(t,xj(t)), j=1,··· ,m, the
history temperature data at points xj(t). But actually even we know xj(tc), the current lo-
cation of measurement points, but do not know the history location of the measurement
points xj(t), tp ≤ t< tc. To overcome this difficulty, it is assumed that the location is only
changed by the velocity at this point

xj(t)=xj(tc)−
∫ tc

t
vdt.

Another model is the surface process model, where three mechanisms are involved:
the hillslope process, the advection and uplift, and the fluvial process.

First, diffusion is used to represent a variety of surficial hillslope processes over long
time scales, including regolith creep and mass wasting by bedrock-involved landslides,
which describes the time dependent change on the surface of the earth,

∂S

∂t
=∇·(k2∇S). (2.3)

Here S=S(t,x), x=(x1,x2)∈R2 is the height function of x at time t, and k2 is the diffusivity
constant. If combined with an uplift by the velocity u3 and a horizontal transport by the
velocity u=(u1,u2), the equation (2.3) describing the change of surface can be changed to

∂S

∂t
=∇·(k2∇S)+u·∇S+u3.

Now we take the fluvial process into consideration. Define Q as the discharge L3/t, ℓ

as the direction of the river. Sediment is not considered in this model because bedrock
channels in mountainous settings often have a sediment load less than the capacity and
thus it is reasonable to believe there is no sediment storage. The bedrock incision at a rate
of ∂S

∂t , also taken to be proportional to stream power

∂S

∂t
=

k f

w
Q

∂S

∂ℓ
,

where w is the channel width and k f is a proportionality constant. The channel width is
assumed to be proportional to the square root of discharge

w= a
√

Q.

Finally
∂S

∂t
=∇·(k2∇S)+ ·∇S+u3+

k f

a

√

Q
∂S

∂ℓ
.
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By combining all of the factors considered above, we have the following equations for
the surface process model























∂S

∂t
=∇·(k2∇S)+u·∇S+u3+a

√

Qd·∇S,

∂S

∂n

∣

∣

∣

∂D
=0,

S(tp,x,y)=Sp(x,y), (x,y)∈D,tp ≤ t≤ tc.

(2.4)

Here the diffusivity constant of hillslope processes is given by k2, proportional constant
a, river channel discharge Q and direction d are known from historic data or by exper-
iments. The functions u and u3 are the velocity v on the surface. Our objective is to
reconstruct Sp(x,y) from Sc(x,y).

The model problem is a coupled system because u and u3 of the surface process model
come from the velocity v of the heat transport process model, while the top boundary
of the domain for the heat transport process model comes from the solution of surface
process model. In the following, we abbreviate the heat transport process model and the
surface process model by HTPM and SPM, respectively.

3 Algorithm

For simplicity, we assume that the velocity v is a piecewise constant function with respect
to t

v(t,x,y,z)=v(ti,x,y,z), ti ≤ t< ti+1,

where tp = t0 < t1 < ···< tN = tc is a partition of [tp,tc].
We also assume that

S(t,x,y,z)=S(ti,x,y,z), ti ≤ t< ti+1,

such that we can solve the forward problem of the heat transport process model in a fixed
domain when ti ≤ t< ti+1.

The iteration is as follows:

First, we give the initial guess of the velocity v(k)(ti,x,y,z), i = 0,1,··· ,N−1 and the initial guess of

the surface at time tp: S
(k)
p (x,y),(x,y)∈D, where S

(k)
p (x,y) is also the surface between time [t0,t1],

also denoted as S
(k)
0 (x,y),(x,y)∈D. Here k is the count of the iterations, where k=0 at the beginning.

Next, we update v from T(t,xj(t)), j=1,··· ,m, assuming that S0(x,y) is fixed.

Then update S(tp,x,y) from the current surface S(tc,x,y), assuming that v is known.

Repeat the previous steps until certain stopping criterion is met.
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Next the details for updating the velocity field and surface are discussed. To up-
date S and V, we adopt the gradient method by minimizing the cost functional in the L2

norm. To obtain the gradient of the cost functional, two backward heat type equations
are solved.

3.1 Update v when S0(x,y) is fixed

Step 1: With the current v(k)(ti,x,y,z), i =0,1,··· ,N−1, we can obtain u(ti,x,y) and u3(ti,x,y) for

i =0,1,··· ,N−1. With the guess of initial surface S
(k)
0 (x,y), we solve the surface process model as a

forward problem for

Si(x,y)=S(ti,x,y), (x,y)∈D, i=0,1,··· ,N.

Step 2: Solve the heat transport process model for t0 ≤ t≤ t1 with the velocity v(k)(t0,x,y,z). The

initial temperature T0 =Tp is given. The temperature at t1 is denoted as T1 which is used as the initial

value of the forward problem for t1≤ t≤ t2.

Step 3: Update v(k)(t0,x,y,z) from the measurement data T(t,xj(t)),t0≤t≤t1. The detailed algorithm

for updating v(k)(t0,x,y,z) is provided below.

Step 4: Repeat Step 2 and Step 3 for ti ≤ t≤ ti+1, i=1,2,··· ,N−1.

Thus, we finish one cycle of iteration for updating v.
To update v(k)(ti,x,y,z), we adopt a variational approach for the heat transport pro-

cess model for ti ≤ t≤ ti+1. Let ṽ=v+δv, T be the solution of the heat transport process
model with the velocity v and T̃ be the solution with the velocity ṽ. Let δT = T̃−T. It is
clear that the initial values are the same: T̃i = Ti. Hence δT satisfies the following equa-
tions















































ρc

(

∂(δT)

∂t
+v·∇(δT)

)

=∇·(k1∇(δT))−δv·∇T,

δT(t,x,y,S(t,x,y))=0, (x,y)∈D,

δT(t,x,y,0)=0, (x,y)∈D,

∂(δT)

∂n

∣

∣

∣

(x,y)∈∂D
=0, (x,y)∈∂D,

δT(ti,x,y,z)=0, (x,y,z)∈Ω,

(3.1)

where Ω= D×Si(x,y). Define the cost functional

J(v)=
1

2

m

∑
j=1

∫ ti+1

ti

(T(t,xj)−Z(t,xj))
2+α

∫

Ω
|v|2 = J1+ J2. (3.2)

Since it is assumed that there is no movement in time [ti,ti+1], xj now is independent of
time t for every j. To minimize the cost functional (3.2) by a gradient method, let

ζ j(t)= ζ(t,xj)=T(t,xj)−Z(t,xj).
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Thus

J1(ṽ)− J1(v)=
1

2

m

∑
j=1

∫ ti+1

ti

δT(t,xj)(T̃(t,xj)+T(t,xj)−2Z(t,xj)).

Therefore

J′1(v)δv=
∫ ti+1

ti

m

∑
j=1

T′(t,xj)δvζ j(t) (3.3)

or

J′1(v)=
m

∑
j=1

T′(t,xj)ζ j(t),

where T′ is the Fréchet derivative with respect to v. Consider the adjoint problem














































ρc

(

∂W

∂t
+∇·(vW)

)

=−∇·(k1∇W)−
m

∑
j=1

ζ j(t)δ(x−xj),

W(t,x,y,S(t,x,y))=0, (x,y)∈D,

W(t,x,y,0)=0, (x,y)∈D,

n·(ρcvW+k1∇W)
∣

∣

∣

(x,y)∈∂D
=0, (x,y)∈∂D,

W(ti+1,x,y,z)=0, (x,y,z)∈Ω.

(3.4)

We have
∫ ti+1

ti

∫

Ω

{

W

[

ρc

(

∂(δT)

∂t
+v·∇(δT)

)

−∇·(k1∇(δT))

]}

+

{

δT

[

ρc

(

∂W

∂t
+∇·(vW)

)

+∇·(k1∇W)

]}

=−
∫ ti+1

ti

∫

Ω

[

Wδv·∇T+
m

∑
j=1

δTζ j(t)δ(x−xj)

]

.

Since
∫ ti+1

ti

∫

Ω
Wρc

∂(δT)

∂t
+δTρc

∂W

∂t
=

∫

Ω
ρc(WδT)|

ti+1
ti

=0,

∫ ti+1

ti

∫

Ω
(Wρcv·∇(δT)+δTρc∇·(vW))

=
∫ ti+1

ti

ρc
∫

∂Ω
WδTv·n=

∫ ti+1

ti

δT(n·ρcvW)|(x,y)∈∂D,

∫ ti+1

ti

∫

Ω
(−W∇·(k1∇(δT))+δT∇·(k1∇W))

=
∫ ti+1

ti

∫

∂Ω
(−Wk1∇(δT)·n+δTk1∇W ·n)=

∫ ti+1

ti

δT(n·k1∇W)|(x,y)∈∂D,
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it follows that

−
∫ ti+1

ti

∫

Ω
δv·∇TW =

∫ ti+1

ti

∫

Ω

m

∑
j=1

δT(t,x)ζ j(t)δ(x−xj)=
∫ ti+1

ti

m

∑
j=1

δT(t,xj)ζ j(t). (3.5)

By comparing (3.5) with (3.3), we have

J′1(v)=−∇TW.

A simple calculation yields the Fréchet derivative of the functional J2(v): J′2(v) = αv.
Therefore, to obtain the gradient, we need to solve the adjoint problem (3.4), which is a
backward heat equation.

3.2 Update S0(x,y) when v is given

We update S0(x,y) from the current surface SN(x,y)= S(tc,x,y) while assuming that ve-
locity v is given. Let S̃0(x,y) = S0(x,y)+δS0(x,y), where S is the solution of the surface
process model with the initial value S0(x,y) and S̃ is the solution with the initial value S̃0.
Let δS= S̃−S. Then δS satisfies the following equations























∂(δS)

∂t
=∇·(k2∇(δS))+u·∇(δS)+a

√

Qd·∇(δS),

∂(δS)

∂n

∣

∣

∣

∂D
=0,

δS(t0,x,y)=δS0(x,y), (x,y)∈D, tp≤ t≤ tc.

(3.6)

Suppose that Sc(x,y) is the measured surface at current time tc and S(tN ,x,y) is the nu-
merically reconstructed surface with the initial value S0(x,y).

Define the cost functional

I(S0)=
1

2

∫

D
(S(tN ,x,y)−Sc(x,y))2+β

∫

D
|S0|

2 = I1+ I2. (3.7)

We apply the gradient method to minimize the cost functional defined in (3.7). Thus

I1(S̃0)− I1(S0)=
1

2

∫

D
δS(tN ,x,y)(S̃(tN ,x,y)+S(tN ,x,y)−2Sc(x,y)). (3.8)

Therefore

I ′1(S0)δS0 =
∫

D
S′(tN ,x,y)δS0(S(tN ,x,y)−Sc(x,y)),

where S′ is the Fréchet derivative with respect to the initial surface. To evaluate the
gradient I ′1(S0) of the functional I(S0), we introduce the adjoint problem























∂V

∂t
=−∇·(k2∇V)+∇·(uV)+∇·(a

√

QdV),

∂V

∂n

∣

∣

∣

∂D
=0,

V(tc,x,y)=S(tc,x,y)−Sc(x,y), (x,y)∈D.

(3.9)
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Combining (3.6) with (3.9), we have
∫ tc

tp

∫

D
V

[

∂(δS)

∂t
−∇·(k2∇(δS))−u·∇(δS)−a

√

Qd·∇(δS)

]

+δS

[

∂V

∂t
+∇·(k2∇V)−∇·(uV)−∇·(a

√

QdV)

]

=0.

Since
∫ tc

tp

∫

D
δS

∂V

∂t
+V

∂(δS)

∂t
=

∫

D
(VδS)|tc

tp
=

∫

D
((S(tc)−Sc)δS(tc)−V(tp)δS0),

∫ tc

tp

∫

D
δS∇·(k2∇V)−V∇·(k2∇(δS))=

∫ tc

tp

∫

∂D
δSk2

∂V

∂n
−Vk2

∂(δS)

∂n
=0,

∫ tc

tp

∫

D
δS∇·(uV)+Vu·∇(δS)=

∫ tc

tp

∫

∂D
δSVu·n=0,

∫ tc

tp

∫

D
δS∇·(a

√

QdV)+Va
√

Qd·∇(δS)=
∫ tc

tp

∫

∂D
δSa

√

Qd·n=0,

we obtain
∫

D
(S(tc)−Sc)δS(tc)=

∫

D
V(tp)δS0. (3.10)

By comparing (3.10) with (3.8), we derive the gradient of the cost functional as I ′1(S0)=
V(tp,x,y). Similarly, we may easily get the Fréchet derivative of the functional I2: I ′2(S0)=
βS0. Therefore, the gradient of the cost functional (3.7) can be evaluated through solving
the adjoint problem (3.9).

3.3 A modification of the inverse problem for HTPM

It is evident that additional information on the data to be recovered certainly enhances
the accuracy of the numerical reconstruction. For example, a priori knowledge (through
sampling) of the direction or distribution of the velocity field can lead to the simplifica-
tion

v=v·d,

where v is unknown but d is known. The governing equation (2.2) is replaced by a slightly
modified version















































ρc

(

∂T

∂t
+vd·∇T

)

=∇·(k∇T)+ρH, (x,y,z)∈Ω, 0≤ t≤ t∗ ,

T(t,x,y,S(t,x,y))=Ta, (x,y)∈D, 0≤ t≤ t∗,

T(t,x,y,0)=Tc, (x,y)∈D, 0≤ t≤ t∗,

∂T

∂n

∣

∣

∣

(x,y)∈∂D
=0, (x,y)∈∂D, 0≤ t≤ t∗ ,

T(0,x,y,z)=T0(x,y,z), (x,y,z)∈Ω, 0≤ t≤ t∗ .

(3.11)
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For the inverse problem, the observation data is one measurement of the temperature T
at time t∗, which is denoted as Z(x,y,z). Similarly, we define the cost functional

J(v)=
1

2

∫

Ω
(T(t∗;x)−Z)2+α

∫

Ω
|v|2 = J1+ J2.

Let ζ =T(t∗ ;x)−Z. Then

J1(ṽ)− J1(v)=
1

2

∫

Ω
δT(t∗)(T̃(t∗)+T(t∗)−2Z).

Hence

J′1(v)δv=
∫

Ω
T′(t∗)δvζ

or
J′1(v)=T′(t∗)ζ.

Consider the adjoint problem















































ρc

(

∂W

∂t
+∇·(vW)

)

=−∇·(k∇W),

W(t,x,y,S(t,x,y))=0, (x,y)∈D,

W(t,x,y,0)=0, (x,y)∈D,

n·(ρcvW+k∇W)
∣

∣

∣

(x,y)∈∂D
=0, (x,y)∈∂D,

W(t∗,x,y,z)= ζ, (x,y,z)∈Ω.

(3.12)

We have

∫ t∗

0

∫

Ω

{

W

[

ρc

(

∂(δT)

∂t
+v·∇(δT)

)

−∇·(k∇(δT))

]}

+

{

δT

[

ρc

(

∂W

∂t
+∇·(vW)

)

+∇·(k∇W)

]}

=−
∫ t∗

0

∫

Ω
(Wδv·∇T) .

Since

∫ t∗

0

∫

Ω

(

Wρc
∂(δT)

∂t
+δTρc

∂W

∂t

)

=
∫

Ω
ρc(WδT)|t

∗

0 =
∫

Ω
ρcζδT(t∗),

∫ t∗

0

∫

Ω
(Wρcv ·∇(δT)+δTρc∇·(vW)

=
∫ t∗

0
ρc

∫

∂Ω
WδTv·n=

∫ t∗

0
δT(n·ρcvW)|(x,y)∈∂D,
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and

∫ t∗

0

∫

Ω
−W∇·(k∇(δT))+δT∇·(k∇W)

=
∫ t∗

0

∫

∂Ω
(−Wk∇(δT)·n+δTk∇W ·n)=

∫ t∗

0
δT(n·k∇W)|(x,y)∈∂D,

we obtain

−
∫ t∗

0

∫

Ω
δv·∇TW =

∫

Ω
ρcδT(t∗)ζ.

Thus

J′1(v)δv=−
1

ρc

∫ t∗

0

∫

Ω
δv·∇TW

or

J′1(v)=−
1

ρc
d·∇TW.

4 Numerical results

In this section, we present several numerical test results to validate our model. The fol-
lowing experimental data for parameters are used in the governing equation for our nu-
merical computation purpose:

• Heat transport diffusivity: 32 km2/myr.

• velocity: on the scale of 1.0 km/myr.

• ρ: 2700 kg/m3.

• c: heat capacity 800 J/(kg K).

• H: radiogenic production 0.5 µW/m3.

• Ta =293K, Tm =1073K.

For the numerical computation, we use the following setup:

• The computational domain: x ∈ [0,100] km, y ∈ [0,50] km, z ∈ [0,S(x,y)] km; each
time interval is separated into 20 time steps.

• The regularization parameter: α=10−3, β=10−6.

• Measurement data: T(tc,xj(tc)), temperature on nodes in Subsection 4.1.

• Measurement data: S(tc,xj,yj), lift of surface on nodes in Subsection 4.2.

• Measurement data: {T(n△t,xj(n△t))}|Nn=1 and S(tc,xj,yj) on nodes in Subsection
4.3.



Z. Xu et al. / Commun. Comput. Phys., 9 (2011), pp. 129-146 141

To create the mesh for the finite element method, we employ a simple and effective
mesh generator in MATLAB by Persson and Strang [18] for 3D HTPM. In the spatial do-
main Ω, we choose the continuous piecewise linear polynomial. In the temporal domain,
we use the backward Euler method. All of the numerical experiments are performed in a
Window XP machine with an Inter(R) Pentium(R) 4, 3.20GHz, 3.19 GHz CPU and 2.00GB
of RAM.

4.1 Backward for HTPM

We run the numerical simulation on one time interval tc−△t≤ t≤ tc , tc = 5×105, △t =
1×105.

Test 1 We begin with the simplest case in which the velocity field is composed of a
two-component piecewise constant. The direction is also assumed to be known. The
data to be restored is the magnitude. We use the heat transport model within the fixed
domain to solve a coefficient inverse problem for reconstructing the simple velocity field.
For simplicity, we assume zero velocity in the x direction, though our algorithm and
computation may be extended to the three dimensional case. We use one measurement
of the temperature at the end of time period for the observation. Fig. 1 is the profile of
the velocity field. Table 1 shows the reconstruction accuracy.

Figure 1: Two component piecewise constant velocity field.

Test 2 The velocity field is assumed to be composed of four piecewise constants. Once
again, the direction is known and the magnitude is what we need to reconstruct. Fig. 2
and Table 2 show the velocity profile and accuracy of restoration, respectively.

Test 3 As expected, the numerically recovered velocity field is consistent with the exact
data for the last two setup. For now, we test our numerical method for a velocity field
which is composed of four parts. For each part, the direction is an unknown. The result
in Table 3 shows that the reconstruction is less accurate due to the more information to
be restored. And it gets better when we drop the unresolved boundary layer or when we
refine the mesh, which means more information is at our disposal and high numerical
accuracy.
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Table 1: Numerical result: Two component piecewise constant velocity field.

relative error iterations elements
77%→0.3% 27 17070

Table 2: Numerical result: Four component piecewise constant velocity field.

relative error iterations elements
84%→0.5% 42 17070

Table 3: Numerical result: Four component piecewise variable velocity field.

relative error drop boundary drop two layers iterations elements
87%→37% 87%→16% 87%→8% 583 17070
87%→24% 87%→7% 87%→3% 807 31687

Figure 2: Four component piecewise constant
velocity field.

Figure 3: Four component piecewise variable ve-
locity field.

4.2 Model IV (Backward for SPM)

We run the numerical simulation on one time interval tc−△t≤ t≤ tc , tc = 5×105, △t =
1×105. The algorithm for the surface process model is much simpler than for the heat
transportation process model because the surface process model is a linear problem. Nev-
ertheless, it is also a typical backward parabolic problem. The reconstruction of the initial
value is extremely ill-posed. Although to reconstruct the initial value is not stable, the re-
construction at any time t, tp<t<tc , is better. The reconstruction is better if time t is closer
to tc. In this subsection, we present a numerical result at initial time and at half time. The
initial surface is

Sp(x,y)=(cos(π×x/100)+cos(π×y/50))×2+20.

Fig. 4 shows the exact and reconstructed initial surface. Fig. 5 shows the exact and nu-
merically restored surface at the middle of this time period. Table 4 shows the accuracy
of restoring surface to the past.



Z. Xu et al. / Commun. Comput. Phys., 9 (2011), pp. 129-146 143

Table 4: Accuracy of the reconstruction.

initial guess relative error computational cost
S(x,y)=15 23%→0.3% 13 seconds

Figure 4: Left: Exact initial surface; Right: Reconstructed initial surface.

Figure 5: Left: Exact half-time surface; Right: Reconstructed half-time surface.

4.3 Model V: The coupled system

We run the numerical simulation on one time interval tp=0≤t≤tc, tc=5×105, △t=1×105.
For the coupled system, the main challenge is the slow convergence of the iterations,
thus there is a large computational cost. We test our method on the case that velocity
field is composed of four parts, for each part the direction of the velocity is known. In
order to test stability of the algorithm, we also add 5% random noise to the measurement
data. We compare the two figures in Fig. 7, the exact initial surface and the numerically
reconstructed surface. It shows that the main feature of the surface is restored correctly
and the accuracy shown in the Table 6 is satisfactory. Fig. 6 is the velocity profile.

We choose the velocity in the Table 5 as the exact velocity field, in which each row is
corresponding to the velocity for one time interval.

5 Conclusion

Successful reconstruction of the mountain surface often provides geologists with a valu-
able perspective about the limit of the range that thermochronometer data can be inter-
preted. In this paper, we have presented a novel inverse problem method along with
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Table 5: Velocity field.

Time interval vy vz

N I II III IV I II III IV
1 1 1.5 -2 -1.3 -1 0 0 1.3
2 0.8 1.5 -2 -1.4 -0.8 0 0 1.4
3 0.8 1.2 -1.7 -1.3 -0.8 0 0 -.3
4 1 1.5 -1.8 -1.5 -1 0 0 1.5
5 1.2 1.5 -2 -1.5 -1.2 0 0 1.5

Table 6: Reconstruction without random noise to the measurement data.

initial guess relative error computational cost elements
S(x,y)=15 23%→2% 18 hours 17070

0 10 20 30 40 50 60 70 80 90 100
0
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Figure 6: Four component piecewise constant velocity field.

Figure 7: Left: Exact initial surface; Right: Reconstructed initial surface.

the new algorithms and numerical examples. Our method provides a solid and essential
mean in understanding how to reconstruct the evolution of mountain topography effi-
ciently and accurately. We have also presented the mathematical model formulation by
taking account of the main factors affecting temperature distribution in the mountain,
such as heat transferring in the mountain, heat produced by the radiological element in
rocks whose history temperature can be used for observation. As the initial step, we
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have tested our models on very simple cases to obtain promising numerical results. Even
with a limited amount of data, our results have demonstrated the restored surface car-
ries important features of the (exact) initial surfaces for the test problems. Our general
computational approach may be extended to a range of other tectonic and geomorphic
settings where the kinematic and topographic history could be different.

Our long term objective is to develop a systematic tool for the understanding of dy-
namic geological processes influenced by thermal factors. A significant inherent chal-
lenge is to produce accurate numerical approximation of the large scale problem over
million year time scales.

We conclude the paper by some general remarks about future directions along this
line of research. There are many other factors affecting the temperature distribution that
are neglected in our governing equations. An interesting future direction is to include
also the melting effect which would lead to a highly nonlinear equation. The corre-
sponding inverse problem for the nonlinear forward problem is at present completely
open. Another interesting open problem is to numerically solve the problem with more
realistic setups so that the measurement data is T(t,xj(t)), j = 1,··· ,m, the history tem-
perature data at rocks xj(t) carrying radiogenic elements. Mathematically, an interesting
problem is to study the uniqueness question for the coefficient inverse problem given the
direction of the velocity field. There are also many challenging issues for developing fast
and efficient algorithms for solving the large scale model problem.
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