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Abstract. We derive a perfectly matched layer (PML) for the Schrödinger equation us-
ing a modal ansatz. We derive approximate error formulas for the modeling error from
the outer boundary of the PML and the error from the discretization in the layer and
show how to choose layer parameters so that these errors are matched and optimal
performance of the PML is obtained. Numerical computations in 1D and 2D demon-
strate that the optimized PML works efficiently at a prescribed accuracy for the zero
potential case, with a layer of width less than a third of the de Broglie wavelength
corresponding to the dominating frequency.
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1 Introduction

Propagating waves are important in many fields of applications, such as electromag-
netism, acoustics, aerodynamics and quantum mechanics. These types of problems
are often formulated on very large or unbounded domains and an important aspect in
performing efficient numerical simulations is to restrict the original domain to a much
smaller computational domain. In order to mimic the behavior of outgoing waves on an
unbounded domain, artificial boundary conditions need to be imposed on the boundary
of the computational domain. An important feature of this boundary is that it should
not reflect outgoing waves, which would contaminate the solution of the original prob-
lem. Such artificial boundary conditions can be divided into two classes: non-reflecting
or absorbing boundary conditions (ABC) and absorbing layers. An ABC is posed pre-
cisely on the boundary, whereas an absorbing layer is an extension of the computational

∗Corresponding author. Email addresses: anna.nissen@it.uu.se (A. Nissen), gunilla.kreiss@it.uu.se (G.
Kreiss)

http://www.global-sci.com/ 147 c©2011 Global-Science Press



148 A. Nissen and G. Kreiss / Commun. Comput. Phys., 9 (2011), pp. 147-179

domain where outgoing waves are dampened (see, e.g., Hagstrom [1, 2] and Givoli [3]
for extensive reviews on ABCs).

Here, we consider solving the time-dependent Schrödinger equation with a member
from the second class, a perfectly matched layer (PML), in order to study the behavior of
quantum mechanical systems without having spurious reflections from waves traveling
out of the domain. This is an important issue when studying the dynamics of a chemical
reaction, e.g., when the quantum mechanical system consists of a molecule that disso-
ciates into two smaller molecules with a certain probability. The Schrödinger equation
is formulated in terms of a wavefunction, where the squares of the absolute values of
the wavefunction give the probability density of the states of the system. For the disso-
ciating molecule, this means that as the distance between the two subsystems increases
a ”probability cloud” propagates towards the far-field. Another application of interest
is quantum optimal control. Through the calculation of pulse shapes, e.g., finding the
optimal shape of a laser pulse that drives a system from one state to another in a finite
time, the control of chemical reactions is enabled. If the problem at hand can experience
dissociation, absorbing boundary conditions should be imposed to take care of boundary
effects [4].

The perfectly matched layer (PML) method was developed for Maxwell’s equations
by Berenger [5] in 1994 and has been successfully used in computational electromagnet-
ics, where it has become the standard method. The idea of the PML method is to surround
the computational domain by an artificial damping layer of finite width, where a modi-
fied set of equations have to be solved. Ideally, the incoming waves are damped to such
an extent that the outer boundary conditions are of no importance. Also, the interface
between the computational domain and the damping layer should not cause any reflec-
tions. The PML fulfils this criteria in theory, although some reflections occur in practice
due to the discretization of the problem. We will refer to these as numerical reflections.

In comparison, much work has been done on developing exact ABCs and local ap-
proximations of ABCs for the Schrödinger equations. See for instance the review article
of Antoine et al. [6]. A very recent result is Jiang and Greengard [7], where a fast al-
gorithm for the exact, global condition is presented. However, specific geometries are
required for global ABCs and extension to multi-dimensions is not trivial. Alternatively,
local conditions can be derived for a more efficient implementation, at the expense of
accuracy. The PML method is not as restricted as ABCs in terms of geometries and ap-
plication in several dimensions, which makes it suitable for large-scale problems. Also,
the PML approach is closely related to absorbing boundary methods used in chemical
physics, and our results can be extended to such methods.

The aim of this work is to show how to systematically choose damping parameters
and discretization parameters for optimal performance of a Schrodinger PML. A related
study for Maxwell’s equations in second order formulation was done in [8]. We focus
on spatial discretization by finite difference methods and consider orders 2, 4, 6 and 8.
In time we use a finite difference scheme of order 2, but the study is also relevant for
more efficient time propagation methods. In particular we have the Magnus-Arnoldi
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schemes [9] in mind.

The disposition of the article is as follows: in Section 1.1, we give an overview of the
relevant absorbing layers in chemical physics. In Section 2, the modified PML equation
is derived and the relation between smooth exterior scaling (SES) and PML is discussed.
Finally, well-posedness is discussed. We consider numerical approximations in Section
3. Error analysis is considered in Section 4, where we derive approximate formulas for
numerical errors and the error caused by the finite width of the layer. Numerical ex-
periments in 1D and 2D are performed in Sections 5 and 6, respectively, verifying the
error formulas derived in Section 4 and demonstrating how these yield optimal results.
Conclusions are given in Section 7.

1.1 Damping layers in quantum dynamics

An important task in the field of chemical physics is to calculate the energies of reso-
nance states. A resonance state is defined as a long-lived state of a system, which has
sufficient energy to break up into two or more subsystems [10]. In scattering experi-
ments, the subsystems can for instance be an electron, which is scattered from an atom
or a molecule. The resonance states have a coupling to the continuous spectra of the
Hamiltonian and are associated with eigenfunctions, which are not square integrable. In
order to enable the use of basis expansion methods, the problem needs to reformulated so
that the corresponding eigenfunctions are normalizable. There are different techniques
that address this issue, the common denominator being that the Hamiltonian of the re-
formulated system is no longer Hermitian. One technique is complex scaling, where a
coordinate transformation

x→F(x)= xeiθ ,

into the complex plane leads to square integrability of the resonance wave eigenfunc-
tions, while the resonance energies remain unaffected [10]. Using complex scaling for
molecular problems means that a potential energy surface (PES), which is given as a set
of ab initio points, needs to be scaled and interpolated between the points by analytic
functions. Smooth exterior scaling (SES) is based on the theory of complex scaling, but
the coordinate transformation occurs after some x = x1, after which the PES is assumed
to be constant. Hence, by using the SES technique the scaling of the PES can be avoided.
However, the most common approach in chemical physics is to add a complex absorb-
ing potential (CAP) to the physical Hamiltonian right outside the domain of interest. The
main reason that the CAPs are so popular is that they are easy to implement together with
pseudospectral methods, a diagonal complex matrix is simply added to the discretized
Hamiltonian. However, the spectrum of the perturbed Hamiltonian will be affected when
applying the CAP method for energy calculations. In dynamic settings this effect corre-
sponds to unphysical reflections. A significant advantage for SES and complex scaling
over CAP is that they stand on a more rigorous mathematical ground [11].
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2 The Schrödinger equation

We consider the time-dependent Schrödinger equation in two space dimensions

i
∂u

∂t
=−∂2u

∂x2
+L

(

y,
∂

∂y

)

u, in Ω=[x0,∞)×[−l,l], t≥0, (2.1)

with homogeneous boundary conditions at y =±l. We assume that L in concert with
these boundary conditions is a Sturm-Liouville problem, where

L
(

y,
∂

∂y

)

=− ∂2

∂y2
+V(y), (2.2)

with eigenvalues κ2
j and eigenvectors ψj

Lψj =κ2
j ψj, j=1,··· ,∞.

V(y) is called the potential.
Further, we consider a Dirichlet condition at x= x0

u(x0,y,t)=0, −l≤y≤ l, t≥0,

and a decay condition

lim
x→∞

u(x,y,t)=0, −l≤y≤ l, t≥0. (2.3)

We assume compactly supported initial data u0(x,y) in the domain of interest

ΩI =[x0,x1]×[−l,l],

so that u is initially zero in
ΩO =[x1,∞)×[−l,l].

2.1 Bound states and dissociative states

The assumption of a Sturm-Liouville operator (2.2) corresponds to the existence of a po-
tential barrier, i.e., solutions with localized wavefunctions are supported. In an eigen-
value setting, these are corresponding solutions called bound states, i.e., localized eigen-
functions with corresponding discrete eigenvalues. Bound states appear when at least
two particles are joined, and cannot be separated unless sufficient energy is added to the
system. If sufficient energy is added to the system, the particles may dissociate. This cor-
responds to parts of the probability density function escaping the potential barrier and
leaving the computational domain. For such cases there is a need for absorbing bound-
ary conditions at the edge of the computational domain. Dissociation corresponds to the
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existence of so-called dissociative states, which are non-local eigenfunctions with eigen-
values in the continuous spectra.

In (2.1), we assume the potential to be independent of x, i.e., we consider the
Schrödinger equation for a free particle in the x-direction. However, without restriction,
an x-dependent potential can be considered if it is independent of x, for x ≥ x1. Under
these conditions, both bound states and dissociative states can appear. The solutions with
low energies will be trapped in the potential and only solutions with sufficiently high en-
ergy escape the potential barrier and leave the computational domain. In this paper, we
are interested in the dissociative process, which under our assumptions only is possible
in the x-direction.

2.2 The Schrödinger equation with PML

We want to truncate the infinite domain in the x-direction by constructing a PML of width
d beginning at x=x1, so that the new domain, constituted by the interior domain, ΩI , and
the adjacent PML, is reduced to

ΩC =[x0,x1+d]×[−l,l].

We denote ΩC the computational domain. There are other choices than the Dirichlet
condition at x = x0, for instance a PML could be constructed also there. However, we
consider only the right side of the spatial domain, since it is unlikely that we would need
layers both in the positive and negative x-directions for our application.

The Schrödinger equation in the PML is modified following Hagstrom [2]. We con-
sider the domain outside the interior domain

ΩO =[x1,∞)×[−l,l].

Expanding u in the ψj’s and Laplace-transforming in time gives the equation

isûj =−∂2ûj

∂x2
+κ2

j ûj, (2.4)

with solutions

ûj(x)= Aje
λ+(x−x1)+Bje

λ−(x−x1), (2.5)

where

λ±=±
√

−is+κ2
j .

We want to modify (2.5), so that waves that propagate into the layer are damped. We
consider Re(s)≥0 and choose the branch of the square root, so that

Re
(√

−is+κ2
j

)

≥0, for Re(s)≥0.
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In physical space, the component in (2.5) with coefficient Aj corresponds to a left-going
wave and the component with coefficient Bj to a right-going wave. Due to the choice of
the square root λ− gives bounded solutions that satisfy (2.3) and decaying waves can be
obtained by modifying the exponent in the following way

ûj,PML(x)= Bjexp
[

−
√

−is+κ2
j

(

(x−x1)+eiγ
∫ x

x1

σ(ω)dω
)]

, (2.6)

where σ(ω) is a real, non-negative function in ω, called the absorption function. Poly-
nomial absorption functions are used throughout the paper. The parameter γ is usually
a constant grid stretching parameter chosen as 0< γ < π/2, in order to obtain decaying
solutions. An alternative is to let γ vary with x in the PML, i.e., γ = γ(x). For perfect
matching the solution and its derivative in the interior domain should coincide with the
modified solution and its derivative in the layer at the interface x= x1. Thus we need to
impose the additional condition

σ(x1)=0.

The modified expression (2.6) satisfies

i
∂u

∂t
=− 1

1+eiγσ(x)

∂

∂x

1

1+eiγσ(x)

∂u

∂x
+L

(

y,
∂

∂y

)

u, (2.7)

in

ΩC =[x0,x1+d]×[−l,l],

instead of (2.1). Note that if

σ(x)=0, for x≤ x1,

(2.7) reduces to (2.1) in the interior domain, ΩI . Hence, we can solve (2.7) both in the
interior domain and in the layer by letting σ(x) vanish in the interior.

2.3 Relation between PML and smooth exterior scaling

The idea of smooth exterior scaling (SES) is the same as the idea of the PML. Outgoing
waves are dampened as they travel out of the interior domain by gradually increasing
some absorption parameter towards the outer boundary of the layer. One way of view-
ing the PML method is as a complex coordinate stretch, where the real coordinate x is
replaced by a complex coordinate F(x) in the layer. This was first done by Chew and
Weedon [12], and in this setting it becomes clear that the modal ansatz PML and the SES
approaches are in fact equivalent, only written on different forms. Considering

F(x)= x+eiγ
∫ x

x1

σ(ω)dω,
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as a continuation of the real coordinate x into the complex plane in the layer leads to the
equation

i
∂u

∂t
=− ∂2u

∂F2
+L

(

y,
∂

∂y

)

u=− 1

f (x)

∂

∂x

1

f (x)

∂u

∂x
+L

(

y,
∂

∂y

)

u, (2.8)

where
dF(x)

dx
= f (x).

We note that with
f (x)=1+eiγσ(x),

(2.8) and (2.7) are identical. In SES the ansatz

u(x,t)= k(x)ϕ(x,t),

is inserted into (2.8), which for the new wave function ϕ(x,t) leads to the equation

i
∂ϕ

∂t
=− 1

f (x)

∂2

∂x2

1

f (x)
ϕ+VPML(x)ϕ+L

(

y,
∂

∂y

)

ϕ, (2.9)

here

VPML(x)=

(

3 f ′(x)2−2 f ′′(x) f (x)
)

4 f (x)4
,

and k(x) is chosen as

k(x)=
1

√

f (x)
,

in order to eliminate the first derivatives in ϕ(x,t) that appear from inserting the ansatz
into (2.8).

Using (2.9) instead of (2.7) could be advantageous for more than one reason. Hermi-
tian operators play a fundamental role in quantum mechanics. Neither the right hand
side of (2.7) nor that of (2.9) are composed of a Hermitian operator operating on u. How-
ever, in a finite basis set, the operator of the right hand side of (2.9) is represented by
a complex symmetric matrix H, which is not the case for (2.7). The derivation of com-
plex coordinate scattering theory for such complex-valued Hamiltonians can be enabled
through a generalized inner product called the c-product [10]. Another reason is that (2.9)
gives a larger basis of option when choosing methods for time-propagation. An exact
solution to the semi-discrete Schrödinger equation

i
∂ϕ

∂t
= Hϕ, (2.10)

with initial conditions ϕ(t0)= ϕ0 is given at time t by

ϕ(t)= ϕ0e−iH(t−t0),
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where H is the discretized Hamiltonian. This type of exponential expression can be used
to propagate the Schrödinger equation in time. In order to avoid taking the full matrix
exponential, H is commonly approximated. For instance, a few important eigenvalues
and eigenvectors of H can be generated by the Lanczos algorithm, if H is a Hermitian
matrix. Similar versions of the Lanczos algorithm exploiting complex symmetric struc-
tures can be applied to (2.9). However, sometimes this approach suffers from numerical
instabilities [13].

2.4 Well-posedness

We consider the well-posedness of (2.9) in 1D on a finite interval with Dirichlet boundary
conditions. The main result is:

Theorem 2.1. Let
1

f
= β−iα.

Assume that α ≥ 0, β ≥ β0 > 0, α,β ∈ℜ and that (2.9) has a smooth solution in any interval
0≤ t≤T <∞. Then

||ϕ(·,t)||2Hp ≤Kp(T)||ϕ(·,0)||2Hp ,

p=2m, m =0,1,2,··· ,Kp depends on derivatives of f up to order p for p≥2, and up to order 2
for p=0, but is uniform in α as α→0.

Estimates of temporal and mixed derivatives follow through the equation. Due to the
uniformity of the estimates this result leads to well-posedness, since for α ≥ α0 > 0 the
equation is parabolic and hence well-posed, see [14]. We will use this in Section 4 when
we study the necessary continuity requirements of the absorption function for optimal
convergence.

The restrictions of α and β corresponds to the following restriction on γ

0≤γ≤ π

2
. (2.11)

The proof of the theorem is found in Appendix A.

3 Numerical approximations

To begin with we considered the Schrödinger equation with PML (2.7), and solved nu-
merically in 1D using finite difference schemes of Crank-Nicolson type. Later we realized
the advantages of the corresponding SES formulation (2.9) mentioned in the previous
section. We also found that high order spatial discretizations are more easily derived
for Eq. (2.9) than for Eq. (2.7). Therefore we used the SES formulation (2.9) for our 2D
computations.
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The interior domains are [−5,5] in 1D and [−3,3]×[−5,5] in 2D, with PMLs starting
at x1 = 5 and x1 = 3, respectively. Dirichlet boundary conditions are imposed on the
outer boundary of the PML as well as on the other boundaries. The schemes for (2.7) are
second and fourth order in space, respectively, while the schemes for (2.9) are second,
fourth, sixth and eighth order in space, respectively. All the schemes are second order
accurate in time. The schemes for (2.7) are presented in Section 3.1 and the schemes for
(2.9) in Section 3.2.

The stability properties of the numerical schemes are good. A drawback is that the
Crank Nicolson method is an implicit method and a system of equations needs to be
solved in each time step.

Remark 3.1. Since the schemes are only second order accurate in time, using e.g., the
eighth order in space discretization (3.7) will force us to take very small time steps to
retain a high accuracy. However, higher orders will be useful in combination with a
more efficient time-stepping method, and also when expanding into higher dimensions
in space.

3.1 Schemes for Eq. (2.7)

For Eq. (2.7) in 1D, where

L
(

y,
∂

∂y

)

≡0,

we use finite difference schemes of Crank-Nicolson type, they are second order accurate
in time and second and fourth order accurate in space, respectively. The second order
method is

i
um+1

j −um
j

∆t
=

vj

∆x2

[

vj+ 1
2

(um+1
j+1 +um

j+1

2
−

um+1
j +um

j

2

)

−vj− 1
2

(um+1
j +um

j

2

−
um+1

j−1 +um
j−1

2

)]

≡ D̃2

(um+1
j +um

j

2

)

, (3.1)

where um
j is the grid function with space index j and time index m. The intermediate

values vj+1/2 are calculated as the mean of v(xj) and v(xj+1), where

v(x)=
(

1+eiγσ(x)
)−1

. (3.2)

The Crank-Nicolson scheme without PML

i
um+1

j −um
j

∆t
=

1

∆x2

(um+1
j+1 −2um+1

j +um+1
j−1

2
+

um
j+1−2um

j +um
j−1

2

)

, (3.3)

is unconditionally stable, hence the time step should only be restricted due to accuracy
requirements.
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The fourth order in space, second order in time-scheme (3.6) is obtained by first com-
bining (3.2) and the right hand side of (2.7) and expanding

−v(x)
∂

∂x

(

v(x)
∂u

∂x

)

=−v(x)2 ∂2u

∂x2
−v(x)

∂v

∂x

∂u

∂x
. (3.4)

The right hand side of (3.4) is then discretized using central finite differences of fourth
order

i
∂uj

∂t
=−

v2
j

12∆x2
[−uj+2+16uj+1−30uj+16uj−1−uj−2]

− vjvx,j

12∆x
[−uj+2+8uj+1−8uj−1+uj−2]≡ D̃4uj. (3.5)

Here vj and vx,j are the exact function values of v(x) and vx(x), respectively, in grid point
j. The fourth order in space, second order in time-scheme is

i
um+1

j −um
j

∆t
= D̃4

(um+1
j +um

j

2

)

. (3.6)

3.2 Schemes for Eq. (2.9)

In 2D, Eq. (2.9) is discretized using the following discretization scheme

i
ϕm+1

j,k −ϕm
j,k

∆t
=− 1

f j
Dn,j

1

f j

ϕm+1
j,k +ϕm

j,k

2
+VPML,j

ϕm+1
j,k +ϕm

j,k

2

−Dn,k

ϕm+1
j,k +ϕm

j,k

2
+Vk

ϕm+1
j,k +ϕm

j,k

2
, (3.7)

where Dn,j and Dn,k are standard central finite difference schemes of order n for the sec-
ond derivative, operating in the x- and y-directions, respectively. n is 2,4,6 and 8, respec-
tively. VPML,j is the exact value of the extra potential VPML, which is only x-dependent, in
grid point j in the x-direction, and Vk is the exact value of the potential V, which is only
y-dependent, in grid point k in the y-direction.

For all schemes, the second order stencil is used in the grid point next to the bound-
ary, the fourth two grid points away from the boundary etc. Since the wave packet is
dampened to a large extent near the outer boundary, we do not expect this to affect the
overall accuracy in the PML.

4 Error analysis

There are three contributions to the error in the spatially discrete solution on the interior
domain. The first contribution is a modeling error that comes from solving (2.7) on a
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truncated domain instead of the unbounded domain. The second and third contributions
are due to the discretization in the layer and in the interior, respectively. We refer to them
as numerical reflections and discretization errors, respectively. Note that the numerical
reflections and the discretization errors constitute the total spatial numerical error, i.e., the
difference between a continuous solution on the truncated domain and a semi-discrete
solution on the truncated domain. However, since they display different behavior, we
discuss them separately.

The modeling error decreases as the thickness of the layer increases, and goes to zero
as the thickness goes to infinity. However, the numerical errors will be present, regardless
of the thickness of the layer. Therefore, extending the layer after a certain point will not be
meaningful in terms of the total error. Instead, we want to match the modeling error with
the numerical reflections, so that neither of the errors from the PML dominate, but are of
the same order. Moreover, the error level should be determined by the discretization
error (errors due to the numerical scheme in the interior), so that all three error sources
are of the same order.

We perform error analysis with respect to Eq. (2.7) in 1D. The modeling error is con-
sidered in Section 4.1, the numerical reflections in Section 4.2 and the discretization error
in Section 4.3. Since we aim at using more efficient time-propagation methods, we do not
consider the temporal error in the analysis.

4.1 Modeling error

The modeling error arises when the continuous problem (2.7) is solved on the truncated
computational domain, ΩC. Consider a point in space, which is located to the right of the
compact support of the initial data, i.e., at a location with larger x-coordinate, but to the
left of the PML. Laplace-transformed solutions at this location are on the form

ûj(x)= Aje

√

−is+κ2
j (x−x1)+Bje

−
√

−is+κ2
j (x−x1),

which in physical space corresponds to a left-propagating and a right-propagating wave,
with coefficients Aj and Bj, respectively. We define the modeling error, ε1(x,t), as the
incoming (left-propagating) wave. The solutions in the layer are

ûj,PML(x)=Aj,PMLexp
[√

−is+κ2
j

(

(x−x1)+eiγ
∫ x

x1

σ(ω)dω
)]

+Bj,PMLexp
[

−
√

−is+κ2
j

(

(x−x1)+eiγ
∫ x

x1

σ(ω)dω
)]

,

where continuity at x= x1 implies

Aj = Aj,PML, Bj = Bj,PML.
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Imposing a Dirichlet boundary condition at the outer boundary of the layer, x = x1+d,
gives

ûj,PML(x1+d)=0⇒Aj =−Bjexp
[

−2
√

−is+κ2
j

(

d+eiγ
∫ x1+d

x1

σ(ω)dω
)]

.

Clearly the magnitude of the relative modeling error in Laplace space is proportional to
the quotient |Aj|/|Bj|. In particular

|ε̂1(x1,s)|= |Aj|=
|Aj|
|Bj|

|Bj|= e2δ|Bj|, (4.1a)

δ= Re
(

λ−
(

d+eiγ
∫ x1+d

x1

σ(ω)dω
))

, λ−=−
√

−is+κ2
j . (4.1b)

We expect the e2δ to be useful for approximating the modeling error also for other values
of x. We see that this quantity depends on the width of the PML, the size of the integral
of σ(x) and on the specific problem in terms of κ2

j and s. However, it is independent of

the shape of σ(x). If the solution is dominated by certain values of s and j, the quotient
for these values gives a good estimate of the relative error.

In order to derive an approximate expression for the l2 norm of the relative modeling
error in physical space, which we denote by ε̄1, and later for the numerical reflections
from the PML, we need to determine the dominating frequencies in a dissociative pro-
cess. We assume that the solution mainly consists of the lowest mode in the y-direction
and that the corresponding κj is small. As a model of a dissociative process consider a
free particle in 1D, described by







i
∂u

∂t
=−∂2u

∂x2
,

u(x,0)= eikx .
(4.2)

The wavenumber k is related to the speed of the particle. Fourier-transforming in
time and space shows that a free particle with wavenumber k corresponds to the time-
harmonic frequency

ω =−k2,

where ω is the dual variable in time. Thus, the solution to (4.2) is given by

u(x,t)= eikx−ik2 t, (4.3)

and the corresponding solution in the layer is

uPML(x,t)=exp
[

ik
(

x+eiγ
∫ x

x1

σ(ω)dω
)

−ik2t
]

. (4.4)
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The time-harmonic frequency ω =−k2 corresponds to Laplace transformation along the
imaginary axis, where

s=−ik2.

Inserting s=−ik2 into

λ−=−
√

−is+κ2
j ,

with κj =0, yields

λ−=−
√

−i(−ik2)= ik. (4.5)

For a polynomial of degree p as absorption function, we get the integral

∫ x1+d

x1

σ(ω)dω =
∫ x1+d

x1

σmax

(ω−x0

d

)p

=
[

σmax
(ω−x1)

(p+1)

(p+1)dp

]
∣

∣

∣

x1+d

x1

=σmax
d

p+1
. (4.6)

Inserting (4.5) and (4.6) into (4.1), yields

e2δ =exp
(−2ksin(γ)σmaxd

p+1

)

. (4.7)

In a dissociative process, where we know the dominating frequencies approximately,
we expect this quantity to approximate the relative modeling error also in physical space.
According to (4.7), the error can be expected to decrease exponentially as the wave num-
ber, k, the width of the PML, d, and the strength of the absorption, σmax, increase. Note
that by letting σmax depend on the degree of the polynomial, p, the value of the integral
can be kept constant independently of p. This is validated by numerical results for spe-
cific initial data in Section 5.1. In [15], a study was done for more general data, which in
the dissociative state was known only as a numerical solution. Here, it was demonstrated
that expression (4.7) can be applied for such problems, by determining the dominating
frequencies numerically via Fourier transform.

Remark 4.1. To model a particle moving with speed k initial data

u(x,0)= e−x2+ikx,

is often used. Laplace-transforming equation (4.2) with this initial data in time and
Fourier-transforming in space, yields

ˆ̃u(ξ,s)=
i
√

π

is−ξ2
e−

(ξ−k)2

4 . (4.8)

From this expression, we see that the solution is dominated by modes near ξ = k and
s=−ik2.
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Remark 4.2. In the model problem Re(s)=0. If we instead consider a more general case
with s=−ik2 +α1, we have

λ−=−
√

−i(−ik2 +α1)+κ2
j = ik2−α2, α2 >0. (4.9)

Now consider the Laplace-transform of a rightgoing wave in the layer,

ûj,PML(x)≈Bjexp
[

λ−
(

x+eiγ
∫ x

x1

σ(ω)dω
)]

. (4.10)

Inserting (4.9), gives

ûj,PML(x)≈Bje
(ik2−α2)(x+Σa+iΣb) = eik2(x+Σa)−iα2Σb e−k2Σb−α2(x+Σa), (4.11)

where

eiγ
∫ x

x1

σ(ω)dω =Σa+iΣb.

Here Σa and Σb are real and positive.
Note that Σa corresponds to a real grid stretch, whereas Σb corresponds to a continu-

ation of x into the complex plane. Here, both Σa and Σb will contribute to the dampening
of the wavepacket. More specifically, Σb dampens outgoing traveling waves whereas
Σa helps to dampen the solution in the layer in the presence of evanescent waves. The
relation between Σa and Σb is determined by the parameter γ.

4.2 Numerical reflections from the PML

Consider (2.7) in 1D with V≡0. Discretizing the continuous PML equation (2.7) in space
introduces numerical reflections, which we denote ε2, that depend on the truncation error
inside the PML. The truncation error of the spatial part of the second order scheme (3.1)
is to leading order

Tε2,j =−∆x2v
(vuxxxx

12
+

vxuxxx

6
+

vxxuxx

8
+

vxxxux

24

)

, (4.12)

in grid point j, for grid points in the layer. Here v is given by (3.2).
Assuming that the dominating spatial frequency is k, an expression of the truncation

error can be derived in terms of
σ̃(x)= eiγσ(x),

derivatives of σ̃(x), spatial frequency k and the solution in the layer, uPML(x,t). Inserting
the PML solutions from the model problem (4.4) and Eq. (3.2) into (4.12), yields

Tε2,j =−∆x2 1

1+σ̃j

[

− 5

24
k2σ̃′′

j +
1

24

1

(1+σ̃j)
ikσ̃′′′

j − 1

24

1

(1+σ̃j)2
ikσ̃′

j σ̃
′′
j

− 1

3
(1+σ̃j)ik3σ̃′

j +
1

12
(1+σ̃j)

3k4
]

uPML(xj,t)+O(∆x4). (4.13)
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Then the numerical reflections in grid point j, ε2,j, fulfills

i
∂ε2,j

∂t
= D2ε2,j+Tε2,j, (4.14)

for grid points in the whole computational domain. Note that with our definition of ε2,
the terms depending on the absorption function in Tε2,j vanish at interior points. We still
expect ε2 to be non-zero in the interior, since the truncation error is transported with the
error equation (4.14). We are interested in the accuracy of the solution in the interior
domain.

If the numerical scheme is stable, the convergence rate is determined by the truncation
error. Near the interface the second term on the right hand side in (4.13) (with the third
derivative) is likely to dominate. For instance, for third order polynomials, the second
term is uniformally non-zero at points near the interface, while all other sigma-dependent
terms vanish. Thus, if σ(x) is a polynomial of degree p according to (4.6), we expect the
truncation error to behave like

∼ σmax

dp
∆x2, (4.15)

thus, we expect the relative l2 error of the numerical reflections from the PML to behave
like

ε̄2≡
√

∆x∑ |ε2,j|2≈C2(k)
σmax

dp
∆x2, (4.16)

where the sum is taken over the points in the interior. C2(k) is a numerical constant that
depends on the dominating frequency. The behavior of the expression (4.16) with respect
to σmax, d, p and ∆x is verified by numerical experiments in Section 5.2. In Section 5.2, we
also see that ε̄2 decreases with increasing k.

A similar study of the truncation error for the schemes (3.7) show that also here a term
proportional to σmax/dp will always be present in the term with the highest derivative.
Thus, we expect a σmax/dp behavior for ε̄2 also for the schemes (3.7), so that

ε̄2≈Cn(k)
σmax

dp
∆xn, (4.17)

where n is the order of the spatial discretization. In order to obtain optimal convergence,
the order of the polynomial, p, needs to be chosen sufficiently large with respect to n.

To understand this we analyze the continuous error equation corresponding to an nth
order spatial approximation of (2.9) in 1D with Dirichlet boundary conditions











i
∂e

∂t
=− 1

f

∂2

∂x2

( 1

f
e
)

+VPMLe+∆xnTe,

e(x,0)=0.

(4.18)

Here, n is assumed to be even and

Te =
cn

f

∂n+2

∂xn+2

( 1

f
ϕ
)

. (4.19)
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In particular, we note that ||Te|| is bounded if ||ϕ||Hn+2 and | f (m)|∞, 0 ≤ m ≤ n+2, are
bounded. Remembering Theorem 2.1, we see that this is achieved by σ being a polyno-
mial of at least degree n+2. By Duhamel’s principle we have by Theorem 2.1

||e(·,t)||22 ≤∆xnK0(T)
∫ t

0
||Te(·,τ)||2dτ. (4.20)

Thus, if σ is a polynomial of degree at least n+2, the integral is bounded and we are
sure to have optimal convergence. This result is true for all α≥0. However, in the layer
the equation is of parabolic type, and less smoothness may be required there for optimal
convergence. If we restrict ourselves to the layer, assuming α≥α0 >0 we can show

Lemma 4.1. If α≥α0 >0 and |σ(m)|∞ <∞ for 0≤m≤n+1, then

||e(·,t)||22 ≤∆xnK̃(T),

where K̃(T) depends on σ(m), 0≤m≤n+1 and ||ϕ||Hn+1 .

The proof is found in Appendix B. Now a polynomial of order n+1 ensures optimal
convergence (n odd). For higher order schemes we actually get optimal convergence with
less smoothness in σ. A more refined analysis would be required to fully understand this
behavior.

4.3 Discretization error from the interior

For the scheme in the interior, where σ̃=0, all terms but the last one in (4.13) will vanish,
and the truncation error in the interior is approximately

Tε0,j≈−∆x2k4

12
u(xj,t). (4.21)

For a plane wave with unit amplitude and spatial frequency k, there is an explicit expres-
sion for the pointwise error in the interior at time T

ε0,j =
∣

∣u(xj,T)−uj(T)
∣

∣.

The pointwise error for the second order scheme is at most

max
j

{ε0,j}=
∆x2k4

12
T+O(∆x4), (4.22)

for grid points j in the interior domain (see [17], pp. 93).
We cannot use this error bound in a strict sense here, since we do not expect plane

wave solutions. However, we expect the relative l2 norm of the discretization error from
the interior domain to behave like

ε̄0≡
√

∆x∑ |ε0,j|2≈C
∆x2k4

12
T. (4.23)
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Numerical tests presented in Section 5 show that (4.23) gives a good estimation of the l2
norm of the discretization error from the interior and that the proportionality constant
C≈1. This is not surprising since the l2 norm of the solution is of order unity. For general
initial data, we refer to the error estimate (4.20) in the previous section.

4.4 Matching of errors

Making the requirement that the l2 error of the numerical reflections, ε̄2, should not
amount to more than ten percent of the l2 error of the discretization error from the in-
terior, ε̄0, yields

C2(k)
σmax

dp
∆x2≤0.1C0(k,T)∆x2,

where

C0(k,T)=C
k4T

12
.

We define M as

M=
σmax

dp
, (4.24)

which gives

C2(k)M∆x2 ≤0.1C0(k,T)∆x2. (4.25)

The constants C2(k) and C0(k,T) can be determined numerically and we get the largest
possible value of M from (4.25)

M=
0.1C0(k,T)

C2(k)
. (4.26)

At the same time, we require that the relative modeling error from the PML, ε̄1, should
not exceed ten percent of ε̄0, i.e.,

exp
[−2ksin(γ)σmaxd

p+1

]

≤0.1C0(k,T)∆x2. (4.27)

Here we have used the approximation (4.7). By inserting (4.24) into (4.27), the smallest
possible value of d can be determined as

d=
p+1

√

−ln
(

0.1C0(k,T)∆x2
)

(p+1)

2ksin(γ)M
, (4.28)

and the corresponding σmax is determined from (4.24).
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5 Numerical experiments

Numerical experiments are performed in both 1D and 2D. In 1D, we perform numerical
experiments with a zero potential and verify that the behavior of the modeling error
agrees with our theoretical formulas. We show that the numerical reflections go to zero at
the expected rate as the mesh is refined for the second and fourth order in space schemes,
(3.1) and (3.6). Also, we investigate how the numerical reflections from the PML depend
on the layer parameters and how to choose parameters so that the different types of errors
are matched. An interesting observation is that when the PML is sufficiently wide and
the absorption function is smooth, the numerical reflections from the PML, ε2, is often
the least significant error as the wave packet is sufficiently resolved. For those grids,
coarser grids actually perform slightly better, which likely is due to the fact that finer
grids succeed in transporting the error more efficiently.

The model problem (4.2) with initial data u(x,0) = e−x2+ikx has in the absence of
boundaries the exact solution

uexact(x,t)=

√

i

−4t+i
exp

(−ix2−kx+k2t

−4t+i

)

.

We solve (2.7) in 1D and compare the numerical solution, uPML, to the exact solution,
uexact, and to a reference solution, ure f . ure f is calculated on the same grid as uPML but
without PML and on a larger domain. The reference solution is used in order to be able
to distinguish between the numerical reflections from the PML, ε2, and the discretization
error of the interior scheme, ε0. The l2 error with respect to the exact solution is calculated
at time T as

||uPML(·,T)−uexact(·,T)||2
||uexact(·,0)||2

, (5.1)

where

||u(·,t)||2 =
(

∆x∑
i

|u(xi,t)|2
)

1
2
.

The sums are taken only over points in the interior domain. The l2-error with respect
to the reference solution is calculated correspondingly. As absorption functions, we use
polynomials of degree p, on the form

σ(x)=σmax

( x−x0

d

)p
,

with p≥4.

5.1 Modeling error

We expect the l2 norm of the modeling error, ε̄1, to decrease exponentially with respect to
wave number k, the strength of the absorption function σmax, and the width of the PML d,
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Figure 1: ε̄1 as a function of σmax
(a), k (b) and d (c).

see (4.7). This behavior is verified and displayed in Fig. 1. We use (3.1) with ∆x=1×10−3,
∆t = 1×10−4 on the domain x = [−5,7], where the interior domain is x = [−5,5] and the
PML starts at x1 =5. The simulations are run until T =1. We also see from Fig. 1 that the
predicted modeling error agrees with the measured. An eighth order polynomial is used
as absorption function with relatively low values of σmax to ensure that the numerical
reflections are small and the modeling error is dominating. σmax, k and d are varied
separately, elsewhere we have σmax =1.5, k=10, d=2 and γ=π/4.

From the results displayed in Fig. 1, we conclude that the behavior of the modeling
error is in agreement with the theory in Section 4.1 and that (4.7) gives an estimate of the
modeling error also in physical space.

5.2 Numerical reflections

We expect the l2 error of the numerical reflections from the PML, ε̄2, to behave as in (4.17).
It should increase linearly with respect to σmax and depend on the width of the PML, d,
as d−p, where p is the order of the polynomial used. We investigate the behavior of the
numerical reflections with respect to ∆x and σmax, for a constant shape of the absorption
function. We use a wide PML with d=4 to ensure that the modeling error is kept small
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Figure 2: ε̄2 as a function of σmax (a) and ∆x (b).
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Figure 3: ε̄2 as a function of d, logarithmic scale.

and the numerical reflections from the interface of the PML are dominating. The grid size
as well as σmax are varied in order to investigate the behavior of the numerical reflections
from the PML using (3.1). First, we keep the grid fixed with ∆x =3.2×10−2 and we use
∆t = 10−4 and a 4th order polynomial. Other constants are k = 10, d = 4, γ = π/4. The
simulations are run until T =1. In Fig. 2, we see the linear and quadratic behaviors of ε̄2

with respect to σmax and ∆x, respectively. These simulations are run until T =0.1.

In Fig. 3, we see how ε̄2 depends of the width, d. Here we use ∆x=8×10−3, ∆t=10−4,
σmax =10, p=4 and vary d. The slope in Fig. 3 is determined to −4.02, clearly showing a
d−p-behavior as expected.

In Table 1, ∆x=8×10−3 is kept and k is varied. We use d=4, σmax =10, ∆t=10−4 and
γ=π/4. The numerical reflections from the interface decrease as k increases, which is not
what we would expect by looking at the truncation error. However, we have seen that
the performance of the PML increases vastly for higher frequencies and this is likely an
effect of that. For comparison, we have included values of the l2 error of the discretization
error in the interior, ε̄0, obtained from (4.23) and by direct measurement from numerical
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Table 1: Discretization error with varying k.

k ε̄2 (measured) ε̄0 (measured) ε̄0 (predicted)

8 7.9900×10−9 5.9853×10−3 5.3084×10−3

9 6.1823×10−9 8.4365×10−3 7.6982×10−3

10 4.9414×10−9 1.1510×10−2 1.0773×10−2

11 4.0448×10−9 1.5281×10−2 1.4523×10−2

12 3.3745×10−9 1.9828×10−2 1.9021×10−2

13 2.8596×10−9 2.5232×10−2 2.4372×10−2

14 2.4550×10−9 3.1581×10−2 3.0732×10−2

experiments in the same table. We see from Table 1 that the measured values agree with
the predicted values.

The measured values of ε̄0 are computed by comparison with the exact solution at
the time when the wavepacket starts to enter the PML, at t = 0.202. After this time the
measured error decreases since the solution is leaving the interior domain. The predicted
values are computed using formula (4.23) at the same time, with C = 1. ε̄2 is computed
with respect to the reference solution, so that only the PML error is taken into account.
Moreover, due to the wide PML, we expect ε̄1 to be negligible.

In Fig. 4, we see the l2-error of a numerical solution compared to a reference solution
as a function of time, and thus, the error displayed stems from the PML. In (a) and (b), the
solution is computed using (3.1) and in (c) and (d) (3.6) is used. Fig. 4 (b) and (d) are close
ups displaying parts of Fig. 4 (a) and (c), respectively. The computations are run for three
different discretizations, with consecutively halved step lengths, ∆x = 4×10−2, 2×10−2,
and 1×10−2, corresponding to the blue, red and green lines in the figures, respectively.
The wave enters the PML before t=0.2 causing numerical reflections and after t=0.7 the
modeling error appears. The total simulation time is T =1.5. We see in Fig. 4 (a) that the
modeling error for the finest discretization is of the same size as the modeling error for
all discretizations in Fig. 4 (c), but for coarser grids this error is smaller. This is likely due
to the fact that for coarser grids information is lost when the wave propagates. Here we
have used parameter values

k=10, p=8, d=4, σmax =
9

4
, γ=

π

4
,

and the time-step ∆t=10−5.
The l2 error of the numerical reflections from the interface are converging for the 2nd

order discretization, while for the 4th order discretization they are already of the order of
roundoff, as we see in Fig. 4. The l2 error of the discretization error in the interior (where
σ(x)=0) converges with 2nd and 4th order respectively, see Fig. 5.

Worth to note is that for well resolved wave packets the discretization error from the
interior is dominating compared to the numerical reflections from the interface of the
PML.
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Figure 4: PML error as a function of time. 2nd order (a), 2nd order zoom (b), 4th order (c), 4th order zoom
(d).
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5.3 Matching of errors

We want to match the errors from the PML so that they are of the same order, where
the magnitude is determined from the magnitude of the discretization error in the inte-
rior. Increasing σmax makes the modeling error decrease, while the numerical reflections
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increase. An alternative way of decreasing the modeling error is to increase d, and this
also decreases the numerical reflections from the PML. We match d and σmax for a fixed
PML profile following the procedure described in Section 4.4, so that a minimal number
of points can be used in the PML for a given level of accuracy.

We measure ε̄0 and use it as error level. C2(k) is numerically determined to be
C2(10)≈4.9×10−4, for p=4. We continue by determining M from (4.26), d from (4.28) and
σmax from (4.24). The results obtained when using the optimized values are displayed in
Table 2.

Table 2: Matching errors with varying ∆x.

∆x ε̄0 d σmax ε̄m (measured) %ε̄0

3.2×10−2 1.8246 ×10−1 0.192 12.25 2.3910 ×10−2 13.10

1.6×10−2 4.5533 ×10−2 0.192 12.23 8.7667 ×10−3 19.27

8×10−3 1.1509 ×10−2 0.192 12.37 3.2230 ×10−3 28.00

4×10−3 3.0248 ×10−3 0.196 14.12 8.7576 ×10−4 28.95

2×10−3 9.0628 ×10−4 0.196 16.92 2.0179 ×10−4 22.27

1×10−3 3.7770 ×10−4 0.180 20.07 1.0079 ×10−4 26.69

When we cannot choose the exact width due to the grid size, we choose to use one
extra gridpoint. This improves the result significantly compared to using one gridpoint
less. The total measured error from the PML, denoted ε̄m, and the relation between ε̄m

and ε̄0 is also presented in Table 2. We have prescribed that the total error from the PML
should be 20 percent or less, and we see that we get a slightly larger error from the PML
than that. However, it does not exceed 30 percent of the interior error. Also, note that the
width of the PML almost can be kept constant and the error is still reduced by increasing
σmax. The width d here amounts to less than a third of the de Broglie wavelength of the
dominating frequency of the wave packet.

6 2D experiments

In the 2D experiments, we use the complex symmetric schemes (3.7) on the interior do-
main [−3,3]×[−5,5] with a PML placed in the positive x-direction, starting at x1 = 3.
Dirichlet boundary conditions are posed both in the y-direction and at x0 =−3. We solve
(2.9) with

L
(

y,
∂

∂y

)

=− ∂2

∂y2
+V,

and initial condition

u0(x,y)=exp
[

−(x−x0)
2+ikx(x−x0)−(y−y0)

2+iky(y−y0)
]

,

where k = 10, kx = k·cosθ and ky = k·sinθ, and θ is the angle of direction of the gaussian
pulse with respect to the x-axis. x0 and y0 are chosen so that the pulse reaches the PML
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at a specific time t̃ independent of θ. We use the time step ∆t = 0.01 and run until time
T = 0.6. Both a constant potential V, and a potential V = V(y) are used. For illustrative
purposes, we also use V =V(x,y). Optimal PML parameters derived in 1D are used, see
Table 3.

Table 3: PML errors in 1D and 2D for optimal parameters.

order ∆x d (points) σmax 1D error 2D error

4 5×10−2 0.55 (11) 6.03 4.71×10−4 4.71×10−4

6.1 Zero potential

In the zero potential case, where

L
(

y,
∂

∂y

)

=− ∂2

∂y2
,

the exact solution to the two-dimensional model problem with initial data from Section 6
is given by

uexact(x,y,t)=
i

−4t+i
exp

[−i(x−x0)2−kx(x−x0)+kxt2−i(y−y0)2−ky(y−y0)+kyt2

−4t+i

]

.

As in the 1D case, the l2 error is computed over the interior points with (5.1). Here

||u(x,y,t)||2 =
(

∆x∆y∑
i

∑
j

|u(xi,yj,t)|2
)

1
2
.

The 2D computations yield the same results as the 1D computations, if the pulse enters
the PML in the normal direction. This is displayed in Table 3. If the incoming pulse enters
the PML with some other angle, the damping decreases somewhat with increasing angle,
see Table 4. Here, the optimal parameters from the case with spatial discretization of
order 4 and ∆x = 0.05 are used. Only the angle of the pulse is varied. We have also
performed the same experiments with spatial discretization of order 6 and 8. However,
the memory requirements for Matlab put a restriction on the largest possible number
of grid points in the computations. The results from computations using this grid size
are for the 6th and 8th order schemes not in the asymptotic region of the asymptotic
error formulas (4.17) and (4.23). We can therefore not expect them to display asymptotic
behavior. In fact, for these experiments the damping increases somewhat with increasing
angle.

In order to convince that the parameters from Table 3 in fact are optimal Fig. 6 dis-
plays the errors that arise using the same profile, but extending the PML with some extra
points. We see that the error decreases to some extent, but then flattens out due to the



A. Nissen and G. Kreiss / Commun. Comput. Phys., 9 (2011), pp. 147-179 171

Table 4: PML error with varying incoming angle.

θ ε̄m

0 4.71×10−4

5 (π/36) 4.78×10−4

10 (π/18) 4.98×10−4

15 (π/12) 5.32×10−4

20 (π/9) 5.81×10−4

25 (5π/36) 6.41×10−4

30 (π/6) 7.10×10−4

35 (7π/36) 8.04×10−4

40 (2π/9) 1.04×10−3

45 (π/4) 2.10×10−3

dominating numerical reflections. Hence, using a wider PML at this point only gives a
higher cost but no gain in accuracy. Moreover, halfing the step length when d=0.55 yields
the error 1.63×10−4, i.e., the error is reduced, but far from reduced with 4th order conver-
gence rate. This is due to the fact that while the numerical reflections converge with 4th
order convergence rate when refining the grid, the modeling error in not reduced with
grid-refinement. The balance between the two error sources implies that the parameters
are optimal for the 4th order method with ∆x=0.05.

0.55 0.6 0.65 0.7 0.75 0.8
2

2.5

3

3.5

4

4.5

5

5.5
x 10

−4

d

ε 1 +
 ε

2

Figure 6: l2-error as a function of d for a fixed absorption profile.

6.2 Harmonic oscillator potential

As we have seen for the zero potential case, the angle of the incoming wave does not
significantly affect the absorption properties. However, when a potential channel is con-
sidered, the alignment of the potential is of importance. We perform experiments with a
harmonic oscillator potential channel to illustrate this. Here

V(x,y)=30
(

y−x·tan(θ)
)2

,
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Figure 7: Gaussian pulse in potential channel aligned with x-axis (a) and channel dependent on both x and y
(b).

where θ is the angle with which the potential channel is rotated from the x-axis. In the
case of an ”aligned” channel, θ =0, so that V =V(y)=30y2, and thus independent of the
x-direction, see Fig. 7 (a). For a ”skewed” channel, θ 6=0, and V=V(x,y) is thus dependent
of both x and y, see Fig. 7 (b). Initial data is suitably scaled and depicted together with
the potential in the contour plots in Fig. 7.
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Figure 8: PML error as a function of angle θ.

In Fig. 8, we see how the reflections from the PML are affected by rotating the channel
with an angle θ from the x-axis (red line with triangles). For all computations, the pulse
travels in alignment with the channel and starts at the same distance from the PML inter-
face. For comparison we have plotted the results for the zero potential case for different
incoming angles (blue line with circles) in the same figure. In both sets of experiments,
the numerical solution is compared to a reference solution. We see that the effectiveness
of the absorption of the PML is clearly reduced when the angle between the potential
and the x-axis is increased. This is not surprising, since the PML derivation is based on
alignment of the potential channel with the normal direction of the layer, in this case the
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x-axis. Hence, aligning the potential channels with the computational grid is desirable.
The effectiveness is affected also for the zero potential case, but not at all to the same
extent if the angle of the incoming wave is smaller than around π/4. As the angle is
increased over π/4, the performance of the PML deteriorates. For glancing waves, the
absorption in the zero potential case is only marginally better than for the skewed po-
tential. Although, the PML is perfectly matched for all incoming angles the absorption
properties of the PML are impaired as the angle increases. We refer to [8] for details on
this matter.

7 Conclusions

Our approximate error formulas describe qualitative behavior of the error with respect
to strength of damping, thickness of the layer and grid size, which enables optimization
of the PML. Numerical experiments show that by using our formulas it is possible to
match the error due to numerical reflections and the modeling error of the PML, so that
the layer performs with a prescribed accuracy, as seen in Table 2. Lowering the error tol-
erance calls for increased strength in the absorption parameter, but the width of the layer
can be kept constant, here constituting of less than a third of the de Broglie wavelength
corresponding to the dominating frequency for the zero potential case.

Also, the optimized PML parameters give similar results in 2D. When the wave
packet is traveling in a potential channel, we show that the alignment of the potential
channel with the coordinate axis, in which the PML is placed is important, especially for
angles up to π/4. Reducing the alignment results in increased numerical reflections and
therefore alignment of the computational grid and the potential channel is desirable.

Appendix A

In this appendix, estimates of the solution to Eq. (2.9) in 1D, ϕ(x,t), and its derivatives
are derived. Dirichlet boundary conditions are assumed. The calculations are carried out
using techniques from [14]. Eq. (2.9) in 1D with the substitution v=1/ f is

iϕt =−v(vϕ)xx+VPML ϕ, (A.1)

where

VPML =
2vvxx−v2

x

4
. (A.2)

We get

∂

∂t
||ϕ||2 =

∫

ϕ∗ϕt+ϕ∗
t ϕ

=
∫

i
(

vϕ∗)(vϕ
)

xx
−i

(

v∗ϕ
)(

v∗ϕ∗)
xx

+i
(

V∗
PML−VPML

)

ϕ∗ϕ.
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For 0≤γ≤π/2, we have

ℜv= β≥β0 >0, ℑv=−α≤0.

Then

I =
∫

i
(

vϕ∗)(vϕ
)

xx
−i

(

v∗ϕ
)(

v∗ϕ∗)
xx

=
∫

−i
(

ϕ∗(β−iα)
)

x

(

ϕ(β−iα)
)

x
+i

(

ϕ(β+iα)
)

x

(

ϕ∗(β+iα)
)

x

=−2
∫

(αϕ∗)x(βϕ)x+(βϕ∗)x(αϕ)x.

Denote ϕ= z+iw. Then

I =−2
∫

(α(z−iw))x

(

β(z+iw)
)

x
+

(

β(z−iw)
)

x

(

α(z+iw)
)

x

=−4
∫

(βz)x(αz)x +(βw)x(αw)x

=−4
∫

αβ
(

|zx|2+|wx|2
)

−4
∫

(αxβ+αβx)(zzx +wwx)−4
∫

αxβx

(

|z|2+|w|2
)

=−4
∫

αβ
(

|zx|2+|wx|2
)

+4
∫

( (αβ)xx

2
−αxβx

)

(

|z|2+|w|2
)

≤C1||ϕ||2, (A.3)

where

C1 =max
x

4
{ (αβ)xx

2
−αxβx

}

,

I∈ℜ, since α,β∈ℜ. From (A.2), we get that

i
(

V∗
PML−VPML

)

=2ℑVPML =αxβx−βαxx−αβxx. (A.4)

Hence,

∂

∂t
||ϕ||2 ≤C2||ϕ||2,

where

C2 =max
x

{

(αβ)xx−αxβx

}

,

in any interval 0≤ t≤T, where we get the estimate

||ϕ(·,t)||2 ≤K0(T)||ϕ(·,0)||2, (A.5)

where

K0(T)= eC2T.
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Substituting w=ϕt and carrying out the above calculation for w, yields the corresponding
estimate for ||ϕt||

||ϕt(·,t)||2 ≤K0(T)||ϕt(·,0)||2. (A.6)

This procedure can be continued for derivatives in t of higher orders, all bounded by
K0(T). Note that the time derivatives of the initial data can be estimated by spatial
derivatives of the initial data up to double order. Coefficients will depend on double
order derivatives of f .

The bound of ||ϕxx|| is obtained through Eq. (A.1). Solving for ϕxx gives

ϕxx =
−i

v2
ϕt−

2vx

v
ϕx+

VPML−vvxx

v2
ϕ,

and from (A.2), we get

||ϕxx||≤
1

β2
0

||ϕt||+
2|βx−iαx|∞

β0
||ϕx||+C||ϕ||, (A.7)

where

C=
1

4β2
0

∣

∣2(β−iα)(βxx−iαxx)+(βx−iαx)
2
∣

∣

∞
.

By Lemma A.3.1 in [14], we have

||ϕx||≤ ξ||ϕ||+ 1

ξ
||ϕxx||, (A.8)

where ξ >0. Inserting (A.8) into (A.7) and choosing ξ =4|βx−iαx|∞/β0 yields

||ϕxx||≤C3||ϕt||+C4||ϕ||, for 0≤ t≤T,

where

C3 =
2

β2
0

, C4 =max
x

{2Cβ0+4|βx−iαx|2∞
β0

}

. (A.9)

Thus,

||ϕxx(·,t)||≤C3K0(T)||ϕt(·,0)||+C4K0(T)||ϕ(·,0)||. (A.10)

(A.8) yields

||ϕx||≤
C3

ξ
||ϕt||+

{

ξ+
C4

ξ

}

||ϕ||, for 0≤ t≤T,
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so that

||ϕx(·,t)||≤
1

2β0|βx−iαx|2∞
K0(T)||ϕt(·,0)||

+max
x

{Cβ2
0+(8+2β0)|βx−iαx|2∞

2β0|βx−iαx|2∞

}

K0(T)||ϕ(·,0)||. (A.11)

Differentiating (A.1) with respect to t, yields

iϕtt =−v(vϕt)xx+
2vvxx−v2

x

4
ϕt

=−v(vxx ϕt+2vx ϕxt+vϕxxt)+
2vvxx−v2

x

4
ϕt.

We rearrange, so that

ϕxxt =
−i

v2
ϕtt−

2vx

v
ϕxt+

−2vvxx−v2
x

4v2
ϕt,

which gives the estimate

||ϕxxt||≤
1

β2
0

||ϕtt||+
2

β0
|βx−iαx|∞||ϕxt||

+
1

4β2
0

∣

∣2(β−iα)(βxx−iαxx)+(βx−iαx)
2
∣

∣

∞
||ϕt||.

By Lemma A.3.1 in [14], we get

||ϕxt||≤ ξ||ϕt ||+
1

ξ
||ϕxxt||,

where we choose ξ =4|βx−iαx|∞/β0 so that we get the bound

||ϕxxt||≤C3||ϕtt||+C4||ϕt||, for 0≤ t≤T,

where C3 and C4 are specified in (A.9). Thus we get

||ϕxxt(·,t)||≤C3K0(T)||ϕtt(·,0)||+C4K0(T)||ϕt(·,0)||, (A.12)

||ϕxt(·,t)||≤
1

2β0|βx−iαx|2∞
K0(T)||ϕtt(·,0)||

+max
x

{Cβ2
0+(8+2β0)|βx−iαx|2∞

2β0|βx−iαx|2∞

}

K0(T)||ϕt(·,0)||. (A.13)

If we instead differentiate (A.1) with respect to x, we get

iϕxt =
(

−v(vϕ)xx+
2vvxx−v2

x

4
ϕ
)

x

=−vx(vϕ)xx−v(vxxx ϕ+3vxx ϕx+3vx ϕxx+vϕxxx)+
vvxxx

2
ϕ+

2vvxx−v2
x

4
ϕx,
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so that

ϕxt = iv2 ϕxxx+4ivvx ϕxx+
(

3ivvxx +2iv2
x−i

2vvxx−v2
x

4

)

ϕx+
(

ivxvxx+i
1

2
vvxxx

)

ϕ.

We rearrange and obtain a bound for ||ϕxxx||

||ϕxxx||≤
1

β2
0

||ϕxt||+
4

β0
|βx−iαx|∞||ϕxx||

+
1

4β2
0

∣

∣10(β−iα)(βxx−iαxx)+9(βx−iαx)
2
∣

∣

∞
||ϕx||

+
1

2β2
0

∣

∣2(βx−iαx)(βxx−iαxx)+(β−iα)(βxxx−iαxxx)
∣

∣

∞
||ϕ||,

since ||ϕxt||, ||ϕxx||, ||ϕx|| and ||ϕ|| are all bounded. Note that the bounds for ||ϕxx||,
||ϕx|| and ||ϕ|| all depend on | f (2)|∞. The bound for ||ϕxxx|| depends explicitly on | f (3)|∞.
Differentiating the equation again with respect to x and rearranging the resulting equa-
tion gives us a bound of ||ϕxxxx||:

||ϕxxxx||≤
1

β2
0

||ϕxxt||+
6

β0
|βx−iαx|∞||ϕxxx||+

1

4β2
0

∣

∣26(β−iα)(βxx−iαxx)+25(βx−iαx)
2
∣

∣

∞
||ϕxx||

+
8

β2
0

∣

∣(βx−iαx)(βxx−iαxx)+3(β−iα)(βxxx−iαxxx)
∣

∣

∞
||ϕx||

+
1

2β2
0

|2(βxx−iαxx)
2+3(βx−iαx)(βxxx−iαxxx)+(β−iα)(βxxxx−iαxxxx)|∞||ϕ||.

Here, the bound depends on | f (4)|∞. We note that ||ϕxxx|| depends implicitly on | f (4)|∞
through ||ϕxt||, which is bounded by ||ϕ(·,0)tt|| and hence by ||ϕ(·,0)xxxx||. This pro-
cedure can be continued to obtain bounds of ||ϕ2mx|| and ||ϕ(2m−1)x|| that depend on

derivatives in f up to | f (2m)|∞.

Appendix B

In this appendix, we derive error estimates for the continuous error equation of (2.9) in
1D, assuming a finite domain with Dirichlet boundary condition. The continuous error
equation for the nth order spatial discretization is given by

{

iet =−v(ve)xx +VPMLe+∆xnTe,

e(x,0)=0.
(B.1)

Here n is assumed to be even and

Te =
cn

f

∂n+2

∂xn+2

( 1

f
ϕ
)

=vcn
∂n+2

∂xn+2
(vϕ). (B.2)
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Then

∂

∂t
||e||2 =(e,et)+(et,e)

=
∫

i
(

ve∗
)(

ve
)

xx
−i

(

v∗e
)(

v∗e∗
)

xx
−i

(

VPML−V∗
PML

)

e∗e−ie∗∆xnTe+i∆xnT∗
e e.

From (A.3) and (A.4), we get that

∂

∂t
||e||2 =

∫

−4αβe∗xex+2(αβ)xxe∗e−4αxβxe∗e+2ℑVPMLe∗e−ie∗∆xnTe+i∆xnT∗
e e

=
∫

−4αβe∗xex+(αβ)xxe∗e−αxβxe∗e−ie∗∆xnTe+i∆xnT∗
e e. (B.3)

In the layer, we have α≥α0 >0. Then by (B.3)

∂

∂t
||e||2 =

∫

−4αβe∗xex +(αβ)xxe∗e−αxβxe∗e−ie∗∆xnTe+i∆xnT∗
e e

=
∫

−4αβe∗xex +(αβ)xxe∗e−αxβxe∗e−ie∗∆xn
(

vcn
∂n+2

∂xn+2
(vϕ)

)

+i∆xn
(

vcn
∂n+2

∂xn+2
(vϕ)

)∗
e.

Integration by parts yields

∂

∂t
||e||2 =

∫

−4αβe∗xex +(αβ)xxe∗e−αxβxe∗e+i∆xn(e∗vcn)x
∂n+1

∂xn+1
(vϕ)

−i∆xn(v∗c∗ne)x
∂n+1

∂xn+1
(vϕ)∗

≤
∫

−4αβe∗xex +(αβ)xxe∗e−αxβxe∗e+2∆xn
(

ξ|ex |2+
1

ξ

∣

∣

∣
vcn

∂n+1

∂xn+1
(vϕ)

∣

∣

∣

2)

+2∆xn
(

|e|2+
∣

∣

∣
vxcn

∂n+1

∂xn+1
(vϕ)

∣

∣

∣

2)

=(2∆xnξ−4αβ)||ex||2+C̃2||e||2+2∆xn
(1

ξ

∥

∥

∥
vcn

∂n+1

∂xn+1
(vϕ)

∥

∥

∥

2
+

∥

∥

∥
vxcn

∂n+1

∂xn+1
(vϕ)

∥

∥

∥

2)

.

We choose

ξ =
α0β0

∆xn
,

so that
2∆xnξ−4α0β0 <0.

Then the resulting ODE can be solved by integrating factor and we get the estimate

||e(·,t)||2 ≤∆xnK̃(T), (B.4)

where

K̃(T)= eC̃2T
∫ T

0
2
( ∆xn

α0β0

∥

∥

∥
vcn

∂n+1

∂xn+1
(vϕ)

∥

∥

∥

2
+

∥

∥

∥
vxcn

∂n+1

∂xn+1
(vϕ)

∥

∥

∥

2)

e−C̃2τdτ,

so that K̃(T) is bounded through the bounds on ||ϕ||Hn+1 .
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