
Commun. Comput. Phys.
doi: 10.4208/cicp.070210.020610a

Vol. 9, No. 2, pp. 363-389
February 2011

A Parallel, Reconstructed Discontinuous Galerkin Method

for the Compressible Flows on Arbitrary Grids

Hong Luo1,∗, Luqing Luo1, Amjad Ali1, Robert Nourgaliev2 and
Chunpei Cai3

1 Department of Mechanical and Aerospace Engineering, North Carolina State
University, Raleigh, NC, 27695, USA.
2 Reactor Safety Simulation Group, Idaho National Laboratory, Idaho Falls, ID, 83415,
USA.
3 Department of Mechanical and Aerospace Engineering, New Mexico State
University, Las Cruces, NM, 88001, USA.

Received 7 February 2010; Accepted (in revised version) 2 June 2010

Communicated by Kun Xu

Available online 27 August 2010

Abstract. A reconstruction-based discontinuous Galerkin method is presented for the
solution of the compressible Navier-Stokes equations on arbitrary grids. In this method,
an in-cell reconstruction is used to obtain a higher-order polynomial representation
of the underlying discontinuous Galerkin polynomial solution and an inter-cell re-
construction is used to obtain a continuous polynomial solution on the union of two
neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance
the accuracy of the discontinuous Galerkin method by increasing the order of the un-
derlying polynomial solution. The inter-cell reconstruction is devised to remove an
interface discontinuity of the solution and its derivatives and thus to provide a sim-
ple, accurate, consistent, and robust approximation to the viscous and heat fluxes
in the Navier-Stokes equations. A parallel strategy is also devised for the resulting
reconstruction discontinuous Galerkin method, which is based on domain partition-
ing and Single Program Multiple Data (SPMD) parallel programming model. The
RDG method is used to compute a variety of compressible flow problems on arbi-
trary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The
numerical results demonstrate that this RDG method is third-order accurate at a cost
slightly higher than its underlying second-order DG method, at the same time provid-
ing a better performance than the third order DG method, in terms of both computing
costs and storage requirements.

AMS subject classifications: 65M60, 65M99, 76M25, 76M10

Key words: Discontinuous Galerkin methods, least-squares reconstruction methods, compress-
ible Navier-Stokes equations.

∗Corresponding author. Email addresses: hong luo@ncsu.edu (H. Luo), lluo2@ncsu.edu (L. Luo), aali3@
ncsu.edu (A. Ali), robert.nourgaliev@inl.gov (R. Nourgaliev), ccai@nmsu.edu (C. Cai)

http://www.global-sci.com/ 363 c©2011 Global-Science Press



364 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

1 Introduction

The discontinuous Galerkin methods [1–25] (DGM) have recently become popular for the
solution of systems of conservation laws. Nowadays, they are widely used in compu-
tational fluid dynamics, computational acoustics, and computational electromagnetics.
The discontinuous Galerkin methods combine two advantageous features commonly as-
sociated to finite element and finite volume methods. As in classical finite element meth-
ods, accuracy is obtained by means of high-order polynomial approximation within an
element rather than by wide stencils as in the case of finite volume methods. The physics
of wave propagation is, however, accounted for by solving the Riemann problems that
arise from the discontinuous representation of the solution at element interfaces. In this
respect, the methods are therefore similar to finite volume methods. The discontinuous
Galerkin methods have many attractive features: 1) They have several useful mathemati-
cal properties with respect to conservation, stability, and convergence; 2) The method can
be easily extended to higher-order (>2nd) approximation; 3) The methods are well suited
for complex geometries since they can be applied on unstructured grids. In addition,
the methods can also handle non-conforming elements, where the grids are allowed to
have hanging nodes; 4) The methods are highly parallelizable, as they are compact and
each element is independent. Since the elements are discontinuous, and the inter-element
communications are minimal, domain decomposition can be efficiently employed. The
compactness also allows for structured and simplified coding for the methods; 5) They
can easily handle adaptive strategies, since refining or coarsening a grid can be achieved
without considering the continuity restriction commonly associated with the conforming
elements. The methods allow easy implementation of hp-refinement, for example, the
order of accuracy, or shape, can vary from element to element; 6) They have the ability to
compute low Mach number flow problems without recourse to the time-preconditioning
techniques normally required for the finite volume methods. In contrast to the enormous
advances in the theoretical and numerical analysis of the DGM, the development of a
viable, attractive, competitive, and ultimately superior DG method over the more ma-
ture and well-established second order methods is relatively an untouched area. This is
mainly due to the fact that the DGM have a number of weaknesses that have yet to be
addressed, before they can be robustly used to flow problems of practical interest in a
complex configuration environment. In particular, there are three most challenging and
unresolved issues in the DGM: a) how to efficiently discretize diffusion terms required
for the Navier-Stokes equations, b) how to effectively control spurious oscillations in
the presence of strong discontinuities, and c) how to develop efficient time integration
schemes for time accurate and steady-state solutions. Indeed, compared to the finite ele-
ment methods and finite volume methods, the DG methods require solutions of systems
of equations with more unknowns for the same grids. Consequently, these methods have
been recognized as expensive in terms of both computational costs and storage require-
ments.

DG methods are indeed a natural choice for the solution of the hyperbolic equations,



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 365

such as the compressible Euler equations. However, the DG formulation is far less cer-
tain and advantageous for the compressible Navier-Stokes equations, where viscous and
heat fluxes exist. A severe difficulty raised by the application of the DG methods to
the Navier-Stokes equations is the approximation of the numerical fluxes for the viscous
fluxes, that has to properly resolve the discontinuities at the interfaces. Taking a simple
arithmetic mean of the solution derivatives from the left and right is inconsistent, be-
cause the arithmetic mean of the solution derivatives does not take in account a possible
jump of the solutions. A number of numerical methods have been proposed in the liter-
ature, such as those by Bassi and Rebay [21, 22], Cockburn and Shu [23], Baumann and
Oden [24], Peraire and Persson [25], and many others. Arnold et al. [26] have analyzed
a large class of discontinuous Galerkin methods for second-order elliptic problems in a
unified formulation. All these methods have introduced in some way the influence of the
discontinuities in order to define correct and consistent diffusive fluxes. Lately, Gassner
et al. [27] introduced a numerical scheme based on the exact solution of the diffusive
generalized Riemann problem for the discontinuous Galerkin methods. Liu et al. [28],
and Luo et al. [29] used a BGK-based DG method to compute numerical fluxes at the in-
terface for the Navier-Stokes equations, which has the ability to include both convection
and dissipation effects. Unfortunately, all these methods seem to require substantially
more computational effort than the classical continuous finite element methods, which
are naturally suited for the discretization of elliptic problems. More recently, van Leer et
al. [30–32] proposed a recovery-based DG (rDG) method for the diffusion equation using
the recovery principle, that recovers a smooth continuous solution that in the weak sense
is indistinguishable from the discontinuous discrete solution.

Dumbser et al. [18–20] have originally introduced a new family of reconstructed DG
methods, termed PnPm schemes, where Pn indicates that a piecewise polynomial of de-
gree of n is used to represent a DG solution, and Pm represents a reconstructed poly-
nomial solution of degree of m (m ≥ n) that is used to compute the fluxes. The beauty
of PnPm schemes is that they provide a unified formulation for both finite volume and
DG methods, and contain both classical finite volume and standard DG methods as two
special cases of PnPm schemes, and thus allow for a direct efficiency comparison. When
n=0, i.e. a piecewise constant polynomial is used to represent a numerical solution, P0Pm
is nothing but classical high order finite volume schemes, where a polynomial solution
of degree m (m≥1) is reconstructed from a piecewise constant solution. When m=n, the
reconstruction reduces to the identity operator, and PnPn scheme yields a standard DG
method. Obviously, the construction of an accurate and efficient reconstruction operator
is crucial to the success of the PnPm schemes. Normally, this is achieved using a so-
called in-cell recovery similar to the inter-cell recovery originally proposed by Van Leer
et al., where recovered equations are obtained using a L2 projection, i.e., the recovered
polynomial solution is uniquely determined by making it indistinguishable from the un-
derlying DG solutions in the contributing cells in the weak sense. This recovery-based
PnPm schemes are termed rDG(PnPm) in this paper, where the lower case r indicates
that a higher order polynomial solution of degree m is obtained using a recovery princi-



366 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

pal, i.e., a weak interpolation. Nourgaliev et al. [33] have shown that in 1D, the resulting
recovery-based DG method using piecewise-constant approximation rDG(P0P2) is noth-
ing but FV-PPM method [37], linear rDG(P1P5) is 6th order accurate, quadratic rDG(P2P8)
is 9th-order accurate, and cubic rDG(P3P11) 12th-order accurate, versus the 2nd, 3rd, and
4th-order accuracy of the underlying DG method, while keeping the same number of the
degrees of freedom and being compact. This recovery-based DG method has been suc-
cessfully extended to 2D problems on quadrilateral grids. However, the resulting rDG
methods are not completely satisfactory, since the stencils in the recovery have to in-
volve the vertex-neighboring cells and thus destroy the compactness of the underlying
DG method. For instance, in the case of rDG(P0Pm) recovery, a quadratic polynomial
solution (m=2) in a cell can be fully recovered using piecewise constant solutions at that
cell and its two neighbors in 1D. However, a fully quadratic polynomial has six degrees
of freedom, and thus requires six cells in order to recover a quadratic solution in 2D.
Unfortunately, there are only five cells available on quadrilateral grids and four cells on
triangular grids, when only face-neighboring cells are used in the recovery. Clearly, most
of appealing features possessed by the rDG method are lost for the multidimensional
problems, and especially on unstructured arbitrary grids. The key issue is how to judi-
ciously choose a proper form of a recovered polynomial and a set of contributing cells in
such a way that the resulting recovered linear system is well conditioned, and thus can
be inverted. Instead of attempting to recover a full polynomial solution that has the same
number of degree of freedom as the number of recovered equations, Dumbser et al. only
recover a reduced polynomial solution that has less number of the degrees of freedom
than the number of the recovered equations. The resultant over-determined system is
then solved using a constraint least-squares method, that guarantees exact conservation,
not only of the cell averages but also of all higher order moments in the reconstructed
cell itself, such as slopes and curvatures.

The objective of the effort discussed in this paper is to present a reconstructed dis-
continuous Galerkin method, termed RDG(P1P2) in short, using a Taylor basis [13] for
computing the compressible flow problems on arbitrary grids, where the upper case
R denotes Reconstruction, being different from r for Recovery, an in-cell reconstruction
scheme [35] is used obtain a quadratic polynomial representation of the underlying lin-
ear DG solution, and an inter-cell reconstruction [36] on top of the in-cell reconstruction
is introduced to obtain a continuous quadratic polynomial solution on the union of two
neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance the
accuracy of the discontinuous Galerkin method by increasing the order of the underly-
ing polynomial solution. The inter-cell reconstruction is devised to remove an interface
discontinuity of the solution and its derivatives and thus to provide a simple, accurate,
consistent, and robust approximation to the diffusive fluxes. A parallel strategy is de-
vised for the resulting reconstruction discontinuous Galerkin method, which is based on
domain partitioning and Single Program Multiple Data (SPMD) parallel programming
model using Message-Passing-Interface (MPI) programming paradigm for distributed
memory parallel computing architectures. The developed RDG(P1P2) method is used



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 367

to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy,
efficiency, and robustness. The numerical results indicate that this RDG(P1P2) method
is able to obtain a third-order accurate solution at a slightly higher cost than its second-
order DG method and significantly increases its performance over the third order DG
method in terms of computing costs and storage requirements, and the inter-cell recon-
struction DG method is a simple alternative for an accurate, stable, consistent, and effi-
cient discretization of the viscous fluxes, and is capable of delivering the same accuracy
as BR2 scheme at a half of its computing costs. The good parallelization characteristics
of the RDG(P1P2) method are demonstrated, achieved by hiding communication latency
behind computation. The remainder of this paper is structured as follows. The governing
equations are listed in Section 2. The underlying reconstructed discontinuous Galerkin
method is presented in Section 3. Extensive numerical experiments are reported in Sec-
tion 4. Concluding remarks are given in Section 5.

2 Governing equations

The Navier-Stokes equations governing unsteady compressible viscous flows can be ex-
pressed as

∂U(x,t)

∂t
+

∂Fk(U(x,t))

∂xk
=

∂Gk(U(x,t))

∂xk
, (2.1)

where the summation convention has been used. The conservative variable vector U,
advective (inviscid) flux vector F, and viscous flux vector G are defined by

U=





ρ
ρui

ρe



, Fj =





ρuj

ρuiuj+pδij

uj(ρe+p)



, Gj =





0
σij

ulσlj+qj



. (2.2)

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, re-
spectively, and ui is the velocity of the flow in the coordinate direction xi. The pressure
can be computed from the equation of state

p=(γ−1)ρ

(

e−
1

2
ujuj

)

(2.3)

which is valid for perfect gas, where γ is the ratio of the specific heats. The components
of the viscous stress tensor σij and the heat flux vector are given by

σij =µ

(

∂ui

∂xj
+

∂uj

∂xi

)

−
2

3
µ

∂uk

∂xk
δij, qj =

1

γ−1

µ

Pr

∂T

∂xj
. (2.4)

In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number,
which is taken as 0.7 for air. µ represents the molecular viscosity, which can be deter-



368 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

mined through Sutherland’s law

µ

µ0
=

(

T

T0

)

3
2 T0+S

T+S
. (2.5)

µ0 denotes the viscosity at the reference temperature T0, and S is a constant which for are
assumes the value S=110◦K. The temperature of the fluid T is determined by

T =γ
p

ρ
. (2.6)

Neglecting viscous effects, the left-hand side of Eq. (2.1) represents the Euler equations
governing unsteady compressible inviscid flows.

3 Reconstructed discontinuous Galerkin method

The governing equation (2.1) is discretized using a discontinuous Galerkin finite element
formulation. To formulate the discontinuous Galerkin method, we first introduce the fol-
lowing weak formulation, which is obtained by multiplying the above conservation law
by a test function W, integrating over the domain Ω, and then performing an integration
by parts,

∫

Ω

∂U

∂t
WdΩ+

∫

Γ

FknkdΓ−
∫

Ω

Fk
∂W

∂xk
dΩ=

∫

Γ

GknkdΓ−
∫

Ω

Gk
∂W

∂xk
dΩ, ∀W∈V, (3.1)

where Γ(= ∂Ω) denotes the boundary of Ω, and nj the unit outward normal vector to
the boundary. We assume that the domain Ω is subdivided into a collection of non-
overlapping elements Ωe, which can be triangles, quadrilaterals, polygons, or their com-
binations in 2D and tetrahedra, prisms, pyramids, and hexahedra or their combinations
in 3D. We introduce the following broken Sobolev space V

p
h

V
p

h =
{

vh ∈ [L2(Ω)]m
: vh|Ωe ∈

[

Vm
p

]

∀Ωe ∈Ω
}

, (3.2)

which consists of discontinuous vector-values polynomial functions of degree p, and
where m is the dimension of the unknown vector and

Vm
p =span

{

∏xαi
i : 06αi 6 p, 06 i6d

}

, (3.3)

where α denotes a multi-index and d is the dimension of space. Then, we can obtain the
following semi-discrete form by applying weak formulation on each element Ωe

Find Uh ∈V
p

h such as

d

dt

∫

Ωe

UhWhdΩ+
∫

Γe

Fk(Uh)nkWhdΓ−
∫

Ωe

Fk(Uh)
∂Wh

∂xk
dΩ

=
∫

Γe

Gk(Uh)nkWhdΓ−
∫

Ωe

Gk(Uh)
∂Wh

∂xk
dΩ, ∀Wh∈V

p
h , (3.4)



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 369

where Uh and Wh represent the finite element approximations to the analytical solution U

and the test function W respectively, and they are approximated by a piecewise polyno-
mial function of degrees p, which are discontinuous between the cell interfaces. Assume
that B is the basis of polynomial function of degrees p, this is then equivalent to the fol-
lowing system of N equations,

d

dt

∫

Ωe

UhBidΩ+
∫

Γe

Fk(Uh)nkBidΓ−
∫

Ωe

Fk(Uh)
∂Bi

∂xk
dΩ

=
∫

Γe

Gk(Uh)nkBidΓ−
∫

Ωe

Gk(Uh)
∂Bi

∂xk
dΩ, 16 i6 N, (3.5)

where N is the dimension of the polynomial space. Since the numerical solution Uh is dis-
continuous between element interfaces, the interface fluxes are not uniquely defined. The
choice of these fluxes is crucial for the DG formulation. Like in the finite volume methods,
the inviscid flux function Fk(Uh)nk appearing in the boundary integral can be replaced
by a numerical Riemann flux function Hk(UL

h ,UR
h ,nk) where UL

h and UR
h are the conserva-

tive state vector at the left and right side of the element boundary. The computation of the
viscous fluxes in the boundary integral has to properly resolve the discontinuities at the
interfaces. This scheme is called discontinuous Galerkin method of degree p, or in short
notation DG(P) method. Note that discontinuous Galerkin formulations are very similar
to finite volume schemes, especially in their use of numerical fluxes. Indeed, the classical
first-order cell-centered finite volume scheme exactly corresponds to the DG(P0) method,
i.e., to the discontinuous Galerkin method using a piecewise constant polynomial. Con-
sequently, the DG(Pk) methods with k >0 can be regarded as a natural generalization of
finite volume methods to higher order methods. By simply increasing the degree P of the
polynomials, the DG methods of corresponding higher order are obtained.

The domain and boundary integrals in Eq. (3.5) are calculated using Gauss quadra-
ture formulas. The number of quadrature points used is chosen to integrate exactly poly-
nomials of order of 2p on the reference element. In 2D, two, three, and four points are
used for linear, quadratic, and cubic basis function in the boundary integrals. The do-
main integrals are evaluated using three, six, and thirteen points for triangular elements
and four, nine, and sixteen points for quadrilateral elements, respectively.

In the traditional DGM, numerical polynomial solutions Uh in each element are ex-
pressed using either standard Lagrange finite element or hierarchical node-based basis
as following

Uh =
N

∑
i=1

Ui(t)Bi(x), (3.6)

where Bi are the finite element basis functions. As a result, the unknowns to be solved are
the variables at the nodes Ui, as illustrated in Fig. 1 for linear and quadratic polynomial
approximations.



370 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

Q1/P1 Q2/P2

Figure 1: Representation of polynomial solutions using finite element shape functions.

On each cell, a system of N×N has to be solved, where polynomial solutions are
dependent on the shape of elements. For example, for a linear polynomial approximation
in 2D as shown in Fig. 1, a linear polynomial is used for triangular elements and the
unknowns to be solved are the variables at the three vertices and a bi-linear polynomial
is used for quadrilateral elements and the unknowns to be solved are the variables at
the four vertices. However, numerical polynomial solutions U can be expressed in other
forms as well. In the present work, the numerical polynomial solutions are represented
using a Taylor series expansion at the center of the cell. For example, if we do a Taylor
series expansion at the cell centroid, the quadratic polynomial solutions can be expressed
as follows

Uh =Uc+
∂U

∂x

∣

∣

∣

c
(x−xc)+

∂U

∂y

∣

∣

∣

c
(y−yc)+

∂2U

∂x2

∣

∣

∣

c

(x−xc)2

2
+

∂2U

∂y2

∣

∣

∣

c

(y−yc)2

2

+
∂2U

∂x∂y

∣

∣

∣

c
(x−xc)(y−yc) (3.7)

which can be further expressed as cell-averaged values and their derivatives at the center
of the cell:

Uh =Ũ+
∂U

∂x

∣

∣

∣

c
(x−xc)+

∂U

∂y

∣

∣

∣

c
(y−yc)+

∂2U

∂x2

∣

∣

∣

c

(

(x−xc)2

2
−

1

Ωe

∫

Ωe

(x−xc)2

2
dΩ

)

+
∂2U

∂y2

∣

∣

∣

c

(

(y−yc)2

2
−

1

Ωe

∫

Ωe

(y−yc)2

2
dΩ

)

+
∂2U

∂x∂y

∣

∣

∣

c

(

(x−xc)(y−yc)−
1

Ωe

∫

Ωe

(x−xc)(y−yc)dΩ

)

, (3.8)

where Ũ is the mean value of U in this cell. The unknowns to be solved in this for-
mulation are the cell-averaged variables and their derivatives at the center of the cells,
regardless of element shapes, as shown in Fig. 2.

In this case, the dimension of the polynomial space is six and the six basis functions



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 371

Figure 2: Representation of polynomial solutions using a Taylor series expansion for a cell-centered scheme.

are

B1 =1, B2 = x−xc, B3 =y−yc, B4 =
(x−xc)2

2
−

1

Ωe

∫

Ωe

(x−xc)2

2
dΩ,

B5 =
(y−yc)2

2
−

1

Ωe

∫

Ωe

(y−yc)2

2
dΩ, B6 =(x−xc)(y−yc)−

1

Ωe

∫

Ωe

(x−xc)(y−yc)dΩ. (3.9)

The discontinuous Galerkin formulation then leads to the following six equations

d

dt

∫

Ωe

ŨdΩ+
∫

Γe

Fk(Uh)nkdΓ=
∫

Γe

Gk(Uh)nkdΓ, i=1,

M5×5
d

dt

(

∂U

∂x

∣

∣

∣

c

∂U

∂y

∣

∣

∣

c

∂2U

∂x2

∣

∣

∣

c

∂2U

∂y2

∣

∣

∣

c

∂2U

∂x∂y

∣

∣

∣

c

)T

+R5×1 =0. (3.10)

Note that in this formulation, equations for the cell-averaged variables are decoupled
from equations for their derivatives due to the judicial choice of the basis functions and
the fact that

∫

Ωe

B1BidΩ=0, 26 i66. (3.11)

In the implementation of this DG method, the basis functions are actually normalized in
order to improve the conditioning of the system matrix (3.5) as follows:

B1 =1, B2 =
x−xc

∆x
, B3 =

y−yc

∆y
, B4 =

(x−xc)2

2∆x2
−

1

Ωe

∫

Ωe

(x−xc)2

2∆x2
dΩ,

B5 =
(y−yc)2

2∆y2
−

1

Ωe

∫

Ωe

(y−yc)2

2∆y2
dΩ, B6 =

(x−xc)(y−yc)

∆x∆y
−

1

Ωe

∫

Ωe

(x−xc)(y−yc)

∆x∆y
dΩ,

(3.12)

where ∆x=0.5(xmax−xmin), and ∆y=0.5(ymax−ymin), and xmax, xmin, ymax, and ymin are the
maximum and minimum coordinates in the cell Ωe in x-, and y-directions, respectively.
A quadratic polynomial solution can then be rewritten

Uh = Ũ+
∂U

∂x

∣

∣

∣

c
∆xB2+

∂U

∂y

∣

∣

∣

c
∆yB3+

∂2U

∂x2

∣

∣

∣

c
∆x2B4+

∂2U

∂y2

∣

∣

∣

c
∆y2B5+

∂2U

∂x∂y

∣

∣

∣

c
∆x∆yB6. (3.13)



372 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

The above normalization is especially important to alleviate the stiffness of the system
matrix for higher-order DG approximations.

This Taylor-basis DG method has a number of attractive features. Theoretically, this
formulation allows us to clearly see the similarity and difference between DG and FV
methods. In fact, the discretized governing equations for the cell-averaged variables and
the assumption of polynomial solutions on each cell are exactly the same for both fi-
nite volume and DG methods. The only difference between them is the way how they
obtain high-order (>1) polynomial solutions. In the finite volume methods, the polyno-
mial solution of degrees p are reconstructed using the mean values of the neighboring
cells, which can be obtained using either TVD/MUSCL or ENO/WENO reconstruction
schemes. Unlike the FV methods, the DG methods compute the derivatives in a manner
similar to the mean variables. This is compact, rigorous, and elegant mathematically in
contrast with arbitrariness characterizing the reconstruction schemes with respect how to
compute the derivatives and how to choose the stencils in the FV methods. Furthermore,
higher order DG methods can be easily constructed by simply increasing the degree p of
the polynomials locally, in contrast to the finite volume methods which use the extended
stencils to achieve higher order of accuracy. In addition, the Taylor-basis DG method
makes the implementation of both in-cell and inter-cell reconstruction schemes straight-
forward and simple [35, 36].

However, in comparison to the reconstructed FV methods, the DG methods have a
significant drawback in that they require more degrees of freedom, an additional do-
main integration, and more Gauss quadrature points for the boundary integration, and
therefore more computational costs and storage requirements. On one hand, the recon-
struction methods that FV methods use to achieve higher-order accuracy are relatively
inexpensive but less accurate and robust. One the other hand, the DG methods that
can be viewed as a different way to extend a FV method to higher orders are accurate
and robust but costly. It is appealing to develop a numerical method that combines the
efficiency of the reconstruction methods and the accuracy of the DG methods. The ”re-
constructed DG” methods, originally proposed by Dumbser et al. [18–20], and termed
PnPm schemes represent a first step in this direction. The key issue is how to construct
an accurate and efficient reconstruction operator, i.e., how to obtain a higher order poly-
nomial solution from an underlying DG solution. Normally, this is achieved using a
so-called in-cell recovery where recovered equations are obtained using a L2 projection
in the weak sense. However, recovery is not the only way to obtain a higher-order poly-
nomial representation of an underlying DG solution. Rather, reconstruction widely used
in the finite volume methods provides an alternative, probably a better choice to obtain a
higher-order polynomial representation. Although our discussion in this work is mainly
focused on the RDG(P1P2) method in 2D, its extension to higher-order and 3D DG meth-
ods is straightforward. In the case of RDG(P1P2) method, a linear polynomial solution
Ui in any cell i is

Ui = Ũi+UxiB2+UyiB3. (3.14)



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 373

Using this underlying linear polynomial DG solution in the neighboring cells, one can
reconstruct a quadratic polynomial solution UR

i as follows:

UR
i = ŨR

i +UR
xiB2+UR

yiB3+UR
xxiB4+UR

yyiB5+UR
xyiB6. (3.15)

In order to maintain the compactness of the DG methods, the reconstruction is required to
involve only von Neumann neighborhood, i.e., the adjacent cells that share a face with the
cell i under consideration. There are six degrees of freedom, and therefore 6 unknowns
must be determined. The first three unknowns can be trivially obtained, by requiring
the consistency of the RDG with the underlying DG: 1) The reconstruction scheme must
be conservative, and 2) The values of the reconstructed first derivatives are equal to the
ones of the first derivatives of the underlying DG solution at the centroid i. Due to the
judicious choice of Taylor basis in our DG formulation, these three degrees of freedom
simply coincide with the ones from the underlying DG solution, i.e.,

ŨR
i = Ũi, UR

xi =Uxi, UR
yi =Uyi. (3.16)

As a result, only three second derivatives need to be determined. This can be accom-
plished by requiring that the point-wise values and first derivatives of the reconstructed
solution and of the underlying DG solution are equal at the cell centers for all the adjacent
face neighboring cells. Consider a neighboring cell j, one requires

Uj = Ũi+UxiB2+UyiB3+UR
xxiB4+UR

yyiB5+UR
xyiB6,

∂U

∂x

∣

∣

∣

j
=Uxi

1

∆xi
+UR

xxi

B2

∆xi
+UR

xyi

B3

∆xi
,

∂U

∂y

∣

∣

∣

j
=Uyi

1

∆yi
+UR

yyi

B3

∆yi
+UR

xyi

B2

∆yi
, (3.17)

where the basis functions B are evaluated at the center of cell j, i.e., B=B(xj,yj). This can
be written in a matrix form as follows:







B
j
4 B

j
5 B

j
6

B
j
2 0 B

j
3

0 B
j
3 B

j
2













UR
xxi

UR
yyi

UR
xyi






=









Uj−(UiB
j
1+UxiB

j
2+UyiB

j
3)

∆xi
∆xj

Uxj−Uxi

∆yi

∆yj
Uyj−Uyi









=







R
j
1

R
j
2

R
j
3






, (3.18)

where R is used to represent the right-hand-side for simplicity. Similar equations can be
written for all cells connected to the cell i with a common face, which leads to a non-
square matrix. The number of face-neighboring cells for a triangular and a quadrilateral
cell is three and four, respectively. Correspondingly, the size of the resulting non-square
matrix is 9×3 and 12×3, respectively. This over-determined linear system of 9 or 12
equations for 3 unknowns can be solved in the least-squares sense. In the present work,
it is solved using a normal equation approach, which, by pre-multiplying through by the



374 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

matrix transpose, yields a symmetric linear 3×3 system of equations as follows















∑
j
(B

j
4B

j
4+B

j
4B

j
4) ∑

j
B

j
4B

j
5 ∑

j
(B

j
4B

j
6+B

j
2B

j
3)

∑
j

B
j
4B

j
5 ∑

j
(B

j
5B

j
5+B

j
3B

j
3) ∑

j
(B

j
5B

j
6+B

j
2B

j
3)

∑
j
(B

j
4B

j
6+B

j
2B

j
3) ∑

j
(B

j
5B

j
6+B

j
2B

j
3) ∑

j
(B

j
6B

j
6+B

j
2B

j
2+B

j
3B

j
3)





















UR
xxi

UR
yyi

UR
xyi







=















∑
j
(B

j
4R

j
1+B

j
2R

j
2)

∑
j
(B

j
5R

j
1+B

j
3R

j
3)

∑
j
(B

j
6R

j
1+B

j
3R

j
2+B

j
2R

j
3)















. (3.19)

This linear system of 3×3 can be then trivially solved to obtain the second derivatives of
the reconstructed quadratic polynomial solution.

This reconstructed quadratic polynomial solution is then used to compute the do-
main and boundary integrals of the underlying DG(P1) method in Eq. (3.5). The result-
ing RDG(P1P2) is expected to have the third order of accuracy at a moderate increase of
computing costs in comparison to the underlying DG(P1) method. The extra costs are
mainly due to the least-squares reconstruction, which is relatively cheap in comparison
to the evaluation of fluxes, and an extra Gauss quadrature point, which is required to
calculate the domain integrals for the triangular element (four quadrature points). Like
in the DG(P1), two quadrature points are used to calculate the boundary integrals, and
four points are used to calculate the domain integrals for quadrilateral elements. In com-
parison to DG(P2), this represents a significant saving in terms of flux evaluations. Fur-
thermore, the number of degrees of freedom is considerably reduced, which leads to a
significant reduction in memory requirements, and from which implicit methods will
benefit tremendously. The cost analysis for the FV(P1), DG(P1), RDG(P1P2) and DG(P2)
is summarized in Table 1, where the memory requirement for storing only the implicit
diagonal matrix is given as well, and which grows quadratically with the order of the DG
methods. We would like to emphasize that the storage requirements for the implicit DG
methods are extremely demanding, especially for higher-order DG methods.

The discretization of the Navier-Stokes equations requires the evaluation of the vis-
cous fluxes at a cell interface, which has to properly resolve the discontinuities at the
interfaces. Taking a simple arithmetic mean of the viscous fluxes from the left and right
cells is inconsistent, because the arithmetic mean of the solution derivatives does not take
into account a possible jump of the solutions. In the reconstructed RDG(P1P2) method, a
continuous quadratic polynomial solution UR is reconstructed on the union of two cells
Ωij(= Ωi∪Ωj) adjacent to the interface based on the reconstructed in-cell discontinuous
Galerkin solution in the two abutting elements. This reconstructed smooth solution is
then used to compute the viscous fluxes at the interface. Without lose of generality, let us



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 375

Table 1: Cost analysis for different numerical methods in 2D.

FV(P1) DG(P1) RDG(P1P2) DG(P2)
Number of quadrature points 1 2 2 3
for boundary integrals
Number of quadrature points 0 3(triangle) 4 6
for domain integrals 4(quadrilateral) 4 9
Reconstruction Yes No Yes No

Order of Accuracy O(h2) O(h2) O(h3) O(h3)
Storage for Implicit Diagonal 25 words 225 225 900
Matrix Per element

consider the case of RDG(P1P2) method, where the reconstructed solution UR, similar to
the underlying DG solution on Ωi, can be expressed in Ωij using a Taylor basis as follows:

UR = Ũij+U
ij
x B2(x)+U

ij
y B3(x)+U

ij
xxB4(x)+U

ij
yyB5(x)+U

ij
xyB6(x), (3.20)

where Ũij is the mean value of UR on Ωij, and the derivatives are the point-wise value
at the center of Ωij. There are six degrees of freedom, and therefore six unknowns to be
determined. However, the cell-average value Ũij can be trivially obtained, by requiring
the reconstruction scheme to be conservative, a fundamental requirement. Due to the
judicious choice of Taylor basis in our DG formulation, this leads to

Ũij =
ŨiΩi+ŨjΩj

Ωi+Ωj
. (3.21)

The remaining five degrees of freedom can be determined by requiring that the recon-
structed solution and its derivatives are equal to the underlying and reconstructed DG
solution and its derivatives at cells i and j. Consider cell i, one obtains

Ui = Ũij+U
ij
x B2i+U

ij
y B3i+U

ij
xxB4i+U

ij
yyB5i+U

ij
xyB6i,

∂U

∂x

∣

∣

∣

i
∆xi =

(

U
ij
x

∂B2i

∂x
+U

ij
xx

∂B4i

∂x
+U

ij
xy

∂B6i

∂x

)

∆xi,

∂U

∂y

∣

∣

∣

i
∆yi =

(

U
ij
y

∂B3i

∂y
+U

ij
yy

∂B5i

∂y
+U

ij
xy

∂B6i

∂y

)

∆yi,

UR
xxi =U

ij
xx

∂2B4i

∂x2
∆x2

i UR
yyi =U

ij
yy

∂2B5i

∂y2
∆y2

i ,

UR
xyi =U

ij
xy

∂2B6i

∂x∂y
∆xi∆yi, (3.22)

where the basis function B is evaluated at the center of cell i, i.e., Bi = B(xj,yj). This can



376 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

be written in a matrix form as follows:



































B2i B3i B4i B5i B6i
∂B2i

∂x
∆xi 0

∂B4i

∂x
∆xi 0

∂B6i

∂x
∆xi

0
∂B3i

∂y
∆yi 0

∂B5i

∂y
∆yi

∂B6i

∂y
∆yi

0 0
∂2B4i

∂x2
∆x2

i 0 0

0 0 0
∂2B5i

∂y2
∆y2

i 0

0 0 0 0
∂B6i

∂x∂y
∆xi∆yi



















































U
ij
x

U
ij
y

U
ij
xx

U
ij
yy

U
ij
xy

















=





























Ui = Ũij

∂U

∂x

∣

∣

∣

i
∆xi

∂U

∂y

∣

∣

∣

i
∆yi

UR
xxi

UR
yyi

UR
xyi





























.

(3.23)

Similar equations could be derived for the cell j, which leads to a non-square matrix. The
size of the resulting non-square matrix is 12×5. This over-determined linear system of 12
equations for 5 unknowns can be solved in the least-squares sense. In the present work, it
is solved using a normal equation approach, which, by pre-multiplying through by ma-
trix transpose, yields a symmetric linear system of equations 5×5. This linear system of
equations can be then trivially solved to obtain the five derivatives of the reconstructed
continuous quadratic polynomial solution. This reconstructed smooth quadratic polyno-
mial solution is then used to compute the viscous and heat fluxes in the Navier-Stokes
equations at the interfaces. Similar to the recovered DG methods, the inter-cell recon-
struction is compact, as it only involves two cells adjacent to the interfaces. Unlike the
recovery-based DG methods, the reconstructed DG method only reconstructs a smooth
polynomial solution of the same order as the underlying DG solution, thus there is no
need to judiciously choose a proper form of a recovered polynomial and make sure that
the recovered system is well conditioned and can be inverted. As the computation of the
viscous and heat fluxes requires the differentiation of the solution in the direction normal
to the interfaces and the reconstruction is anisotropic due to the embedded 1D interpo-
lation problem in the direction connecting the centers of two cells i and j, it is natural to
increase the accuracy of the reconstructed polynomial solution in that direction. This can
be done by adding a cubic term in that direction to the reconstructed polynomial solution
(3.20), which reads

UR = Ũij+U
ij
x B2(x)+U

ij
y B3(x)+U

ij
xxB4(x)+U

ij
yyB5(x)+U

ij
xyB6(x)+U

ij
ξξξ B7(ξ), (3.24)

where

B7(ξ)=
ξ3

6∆ξ3
−

1

Ωij

∫

Ωij

ξ3

6∆ξ3
dΩ,

ξ =(x−xij)•n=(x−xij)nx+(y−yij)ny . (3.25)



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 377

This inter-cell reconstruction leads to an over-determined system of 12 equations with
6 unknowns. The numerical experiments indicate that the use of this inter-cell recon-
struction significantly increases the accuracy of RDG method for the discretization of the
diffusive fluxes, at a moderate increase of the computing costs and storage requirements.
This scheme for the discretization of the viscous and heat fluxes will be referred to as
RDG(P1P2+) method from now on, where + indicates that the reconstructed polynomial
solutions contain a higher order term in the normal direction to the interface.

It is worth to note that the application of this inter-cell reconstruction to DG(P0)
method where the first derivative is approximated using a second-order central differ-
encing method demonstrates that this reconstruction DG method automatically provides
the coupling terms required for the stability and leads to a 5-point second-order scheme
for the diffusive operator (second derivative) in 1D on a uniform grid, contrary to most
of discretization methods that lead to a 3-point stencil second-order method. This analy-
sis indicates the potential of this reconstruction method for the accurate and robust dis-
cretization of the viscous fluxes on highly non-uniform, highly stretched, and highly dis-
torted grids, as it is practically impossible to obtain a second-order accurate and compact
cell-centered finite volume method for multi-dimensional problems on such grids.

This reconstructed DG method has been implemented in a well-tested 2D DG code
[13–17, 29]. In this code, a fast, low-storage p-multigrid method [16, 17] is developed to
obtain steady state solutions, and an explicit three-stage third-order TVD Runge-Kutta
scheme is used to advance solution in time for the unsteady flow problems. Many up-
wind schemes have been implemented for the discretization of the inviscid fluxes, al-
though HLLC scheme is exclusively used for the approximate solution of the Riemann
problem in this work. The RDG methods, like DG methods, are highly parallelizable, as
they are data-wise compact and each element is independent. Since the elements are dis-
continuous, and the inter-element communications are minimal, domain decomposition
approach can be efficiently employed for parallelization. Therefore in the parallel imple-
mentation of the discontinuous Galerkin method on distributed memory parallel com-
puting architectures, the computational domain is partitioned among the available pro-
cessors and the information at the partition boundary faces, i.e., faces having its left and
right cells on different processors, only needs to be exchanged between the correspond-
ing neighboring processors. Moreover, it also naturally fits to Single Program Multiple
Data (SPMD) parallel programming model. For this, Message-Passing-Interface (MPI)
programming paradigm for distributed memory systems has been employed. Particu-
lar attention is paid on hiding communication latency behind computation in the flux
computation part.

4 Numerical examples

Unless stated otherwise, all computations are conducted on a Dell XPS M1210 laptop
computer (2.33 GHz Intel(R) Core(TM) 2 CPU T7600 with 4GBytes memory) using a Suse
11.0 Linux operating system.



378 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

Figure 3: Sequences of four successively globally refined triangular meshes 16×5, 32×9, 64×17, 128×33 for
computing subsonic flow past a circular cylinder.

4.1 Subsonic flows past a circular cylinder

This is a well-known test case: subsonic flow past a circular cylinder at a Mach number
of M∞ = 0.38. This test case is chosen to verify if a formal order of the convergence
rate of the RDG(P1P2) method can be achieved for the compressible Euler equations on
unstructured grids. Fig. 3 shows four successively refined o-type grids having 16×5,
32×9, 64×17, and 128×33 points, respectively. The first number is the number of points
in the angular direction, and the second number is the number of points in the radial
direction. The radius of the cylinder is r1 = 0.5, the domain is bounded by r33 = 20, and
the radii of concentric circles for 128×33 mesh are set up as

ri = r1

(

1+
2π

123

i−1

∑
j=0

αj

)

, i=2,··· ,33,

where α =1.1580372. The coarser grids are generated by successively coarsing the finest
mesh. Numerical solutions to this problem are computed using FV(P1), DG(P1), DG(P2),
and RDG(P1P2) methods on these four grids to obtain quantitative measurement of the
order of accuracy and discretization errors. The detailed results for this test case are
presented in Tables 2-5. They show the mesh size, the number of degrees of freedom,
the L2-error of the solutions, and the order of convergence. In this case, the following
entropy production ε defined as

ε=
S−S∞

S∞

=
p

p∞

(

ρ∞

ρ

)γ

−1



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 379

Table 2: Subsonic circular cylinder test case: reconstructed FV(P1) is order of O(h2).

Mesh No. DOFs L2-error Order
16×5 80 2.37148E-01 -
32×9 288 7.76551E-01 1.595
64×17 1,088 1.36962E-02 2.551
128×33 4,224 3.54568E-03 1.951

Table 3: Subsonic circular cylinder test case: DG(P1) is order of O(h2).

Mesh No. DOFs L2-error Order
16×5 360 5.68722E-02 -
32×9 1,536 1.07103E-02 2.443
64×17 6,144 1.67302E-03 2.688
128×33 24,576 2.34369E-04 2.838

Table 4: Subsonic circular cylinder test case: DG(P2) is order of O(h3).

Mesh No. DOFs L2-error Order
16×5 768 8.40814E-03 -
32×9 3,072 5.26017E-04 4.055
64×17 12,288 4.48952E-05 3.536
128×33 4,9152 4.16294E-06 3.434

Table 5: Subsonic circular cylinder test case: RDG(P1P2) is order of O(h3).

Mesh No. DOFs L2-error Order
16×5 360 1.91161E-02 -
32×9 1,536 9.72523E-04 4.358
64×17 6,144 8.00571E-05 3.615
128×33 24,576 9.33899E-06 3.102

is served as the error measurement, where S is the entropy. Note that the entropy pro-
duction is a very good criterion to measure accuracy of the numerical solutions, since
the flow under consideration is isentropic. Fig. 4 shows the computed Mach number
contours in the flow field obtained by FV(P1) on the128×33 mesh, DG(P1) on the 64×17
mesh, and DG(P2) and RDG(P1P2) on the 32×8 mesh, respectively. One can see that the
results obtained by DG(P2) on the 32×8 mesh are more accurate than the ones obtained
by DG(P1) on the 64×17 mesh, which in turn are more accurate than the ones obtained
by FV(P1) on the 128×33 mesh. Both RDG(P1P2) and DG(P2) solutions are virtually
identical for this case. However, the DG(P2) does yield a slightly more accurate solution
than the RDG(P1P2) at the same grid resolution. This can be seen in Fig. 5, providing the
details of the spatial convergence of each method for this numerical experiment. As ex-
pected, the DG method exhibits a full O(hp+1) order of convergence. The reconstructed
DG(P1) method does offer a full O(hp+2) order of the convergence, adding one order
of accuracy to the underlying DG(P1) method. Fig. 6 illustrates that higher order DG



380 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

Figure 4: Computed Mach number contours in the flow field obtained by the FV(P1) method on 128×33 mesh
(top left), DG(P1) method on 64×17 mesh (top right), DG(P2) method on 32×9 mesh (bottom left), and
RDG(P1P2) on 32×9 mesh (bottom right) for subsonic flow past a circular cylinder at M∞ =0.38.

Figure 5: Convergence history for subsonic flow past
a circular cylinder for FV(P1), DG(P1), DG(P2),
and RDG(P1P2) methods.

Figure 6: L2-errors of numerical solutions vs. the
number of degrees of freedom for subsonic flow past
a circular cylinder by FV(P1), DG(P1), DG(P2), and
RDG(P1P2) methods.

methods require significantly less degrees of freedom than lower order ones for the same
accuracy. Moreover, the RDG(P1P2) outperforms DG(P2), by measuring the number of
the degrees of freedom required to achieve the same accuracy.



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 381

Figure 7: The quadrilateral grid with a stretching ratio of 1.2 (top left), the quadrilateral grid with a stretching
ratio of 1.3 (top right), the hybrid grid (bottom left), and the triangular grid (bottom right).

4.2 Blasius boundary Layer

The laminar boundary layer over an adiabatic flat plate at a free-stream Mach number of
0.2 and a Reynolds number of 100,000 based on the freestream velocity and the length of
the flat plate is considered in this test case, where the computational domain is bounded
from -0.5 to 1 in the x-direction and 0 to 1 in the y-direction, and the flat plate starts
at point (0,0) and extends to (1,0). This problem is chosen to illustrate that RDG(P1P2)
method is able to maintain the same level of the accuracy as RDG(P2) method for the
numerical solution of the Navier-Stokes equations, as the Blasius solution can be used to
measure accuracy of the numerical solutions. Computations are performed on four grids:
two quadrilateral grids, one hybrid grid, and one triangular grid, shown in Fig. 7, to as-
sess the accuracy and consistence of the RDG(P1P2) method on different types of grids.
The first two grids used in this test case have the same number of grid points (61×17),
with 20 cells ahead of the flat plate and 40 cells for the flat plate, the same distribution
of the grid points in the x-direction, but a different distribution of grid points in the y-
direction. In order to cluster points near the wall, the point distribution in the y-direction
follows a geometric stretching. The stretching ratio is the ratio of the heights of the two
successive elements. A stretching ratio of 1.2 and 1.3 is used for the two meshes in the
computation, respectively. For the grid with a stretching ratio of 1.2, the height of the
first element is 0.1291E-02, and the cell sizes in the x-direction for the first element at
the leading and trailing edges of the flat plate are 0.12086e-02 and 0.110386, respectively.



382 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

Figure 8: Logarithmic plot of the computed skin friction coefficient distribution along the flat plate obtained
by the RDG(P2), and RDG(P1P2) solutions on the quadrilateral grid with a stretching ratio of 1.2 in the y-
direction (top left), the quadrilateral grid with a stretching ratio of 1.3 in the y-direction (top right), the hybrid
grid (bottom left), and the triangular grid (bottom right).

When a stretching ratio is set to 1.3, the first grid-spacing off the wall is 0.155869E-03. The
last two grids consist of 900 grid points, and 105 boundary points, with 31 grid points on
the flat plate. The height of the first element is 0.3464E-03 and 0.82649E-03 at the leading
and trailing edge of the flat plate respectively. As a result, the quadrilateral grid with a
stretching ratio of 1.3 provides the best grid resolution for the boundary layers, and the
quadrilateral grid with a stretching ratio of 1.2 has the least grid points in the boundary
layers. The numerical results obtained by RDG(P2), and RDG(P1P2) on these four grids
are presented, and compared with the theoretical one given by the well-known Blasius
solution. Fig. 8 shows the logarithmic plot of the computed skin friction coefficient ob-
tained by RDG(P2) and RDG(P1P2) solutions, respectively. Figs. 9 and 10 compare the
profiles of velocity component in the x-, and y-direction at x =0.2 obtained by RDG(P2)
and RDG(P1P2) solutions with Blasius solution, respectively. One can observe that both
RDG(P2) and RDG(P1P2) solutions agree very well with the theoretical Blasius solution,
even with as few as four grid cells in the boundary layer. Comparing the numerical



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 383

Figure 9: Comparison of the velocity profiles in the x-direction at x = 0.2 obtained by the RDG(P2), and
RDG(P1P2) solutions on the quadrilateral grid with a stretching ratio of 1.2 in the y-direction (top left), the
quadrilateral grid with a stretching ratio of 1.3 in the y-direction (top right), the hybrid grid (bottom left), and
the triangular grid (bottom right).

solutions on the two quadrilateral grids, one can observe a consistent convergence of
both reconstructed RDG(P2) and RDG(P1P2) methods. The more grid points are in the
boundary layer, the more accurate the numerical solutions are, regardless of the highly
non-uniformity of the grids. Note that most of the cell-centered finite volume methods
are unable to obtain a consistent convergence on highly non-uniform grids and will pro-
duce a more accurate solution on the less stretching ratio grid. The numerical solutions
obtained by the RDG(P1P2) method are very close to the ones produced by the RDG(P2)
scheme, demonstrating that the in-cell reconstruction RDG(P1P2) method is able to de-
liver the same accuracy, convergence, and stability as the original DG(P2) scheme. Fi-
nally, by comparing the computed results between the hybrid and triangular grids, one
can clearly understand the justification of using the hybrid grids for the computation of
the viscous flows. A triangular grid has twice many grid cells than a quadrilateral grid,
and yet yields much less accurate solutions than its hybrid counterpart.



384 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

Figure 10: Comparison of the velocity profiles in the y-direction at x = 0.2 obtained by the RDG(P2), and
RDG(P1P2) solutions on the quadrilateral grid with a stretching ratio of 1.2 in the y-direction (top left), the
quadrilateral grid with a stretching ratio of 1.3 in the y-direction (top right), the hybrid grid (bottom left), and
the triangular grid (bottom right).

4.3 Subsonic flows past a NACA0012 airfoil

The second test case involves a subsonic flow past a NACA0012 airfoil at a Mach number
of 0.5, and an angle of attack 0◦, and a Reynolds number of 5000 based on the freestream
velocity and the chord length of the airfoil. An adiabatic wall is assumed in this test
case. The Reynolds number is close to the upper limit of a steady flow. This computa-
tion is performed on a hybrid grid using RDG(P2+), and RDG(P1P2+) methods. Fig. 11
shows the computational grid used in this test case, consisting of 2,495 triangular ele-
ments, 549 quadrilateral elements, 1,856 grid points, and 121 boundary faces, and the
computed Mach number contours in the flow field obtained by RDG(P1P2+) method. A
distinguishing feature of this test case is the separation of the flow occurring near the
trailing edge, which causes the formation of two small recirculation bubbles in the wake
region. This can be clearly seen from the velocity vector plot in the vicinity of the trailing
edge as shown in Fig. 12. The computed skin friction coefficients and pressure coeffi-



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 385

Figure 11: Unstructured mesh (left) (ntria= 3,469, npoin= 3,346, nbfac= 157) and computed Mach number
contours by the RDG(P2+) (right) for subsonic flow past a NACA0012 airfoil at M∞ =0.5, Re=5,000, α=0◦.

Figure 12: Velocity vector plot in the vicinity of the trailing edge for subsonic flow past a NACA0012 airfoil at
M∞ =0.5, Re=5,000, α=0◦.

cients obtained by RDG(P2+), and RDG(P1P2+) are compared in Fig. 13, where the two
solutions are virtually identical in this test case, again demonstrating that the developed
reconstructed RDG(P1P2+) method is able to deliver the same accuracy as the RDG(P2+)
method.

4.4 Parallel performance

The inviscid subsonic flow at a Mach number of 0.38, and an angle of attack of 0◦ past
a circular cylinder is considered again in this test case to assess the performance of the
developed parallelization. The computation is performed on a triangular element mesh
consisting of 45362 elements, 22,888 grid points, and 414 boundary points. Fig. 14 shows
the mesh split into 8 blocks using METIS [38] and for this test case the parallel perfor-



386 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

Figure 13: Computed skin friction coefficient distributions (left) and pressure coefficients (right) on the airfoil
obtained by the RDG(P2) and RDG(P1P2).

04
812

0 4 8 12Number of ProcessorsS peed up IDEA Lp�multigrid
Figure 14: Partitioned mesh (left) and parallel speed-ups for the subsonic flow around a circular cylinder.

mance up to 12 processors on an Ethernet based cluster having dual multicore processors
on the nodes, where one can observe the favorable parallelization of the RDG method.
For the test case, a maximum of 4 nodes of the cluster has been used, with 3 processes
mapped to each node for the 12 processors case.

5 Conclusion

A reconstructed discontinuous Galerkin RDG(P1P2) method has been presented for the
solution of the compressible Navier-Stokes equations on arbitrary grids. An in-cell re-
construction is developed to obtain a piecewise quadratic polynomial solution from the
underlying piecewise linear DG solution using a conservative least-squares method. The



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 387

reconstructed quadratic polynomial solution is used for the computation of the inviscid
fluxes and for the reconstruction of a continuous quadratic polynomial solution using
a so-called inter-cell reconstruction. The reconstructed continuous quadratic polynomial
solution on the union of two neighboring is then used for the discretization of the viscous
and heat fluxes at the cell interfaces. The developed RDG(P1P2) method has been par-
allelized using MPI and used to compute a variety of flow problems on arbitrary grids
to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results
indicate that the developed RDG(P1P2) method is third-order accurate at a cost slightly
higher than its underlying second-order DG method, at the same time providing a bet-
ter performance than the third order DG method, in terms of both computing costs and
storage requirements.

Acknowledgments

This manuscript has been authored by Battelle Energy Alliance, LLC under contract
No. DE-AC07-05ID14517 (INL/CON-10-17571) with the U.S. Department of Energy. The
United States Government retains and the published, by accepting the article for publi-
cation, acknowledges that the United States Government retains a nonexclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The first
author would like to acknowledge the partial support for this work provided by the INL
staff-faculty exchange program, while he was in residence at Idaho National Laboratory,
Idaho Falls, ID. The first and last authors would also like to acknowledge the partial
support for this work provided by the NSF under project No. NSF-DMS0914706.

References

[1] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Los
Alamos Scientific Laboratory Report, LA-UR-73-479, 1973.

[2] B. Cockburn, S. Hou and C. W. Shu, TVD Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: the multidimensional case, Math-
ematics of Computation, Vol. 55, pp. 545-581, 1990.

[3] B. Cockburn and C. W. Shu, The Runge-Kutta discontinuous Galerkin method for conser-
vation laws V: multidimensional system, Journal of Computational Physics, Vol. 141, pp.
199-224, 1998.

[4] B. Cockburn, G. Karniadakis and C. W. Shu, The development of discontinuous Galerkin
method, in: Discontinuous Galerkin Methods, Theory, Computation, and Applications, B.
Cockburn, G. E. Karniadakis and C. W. Shu (Eds.), Lecture Notes in Computational Science
and Engineering, Springer-Verlag, New York, 2000, Vol. 11, pp. 5-50, 2000.

[5] F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 2D
Euler equations, Journal of Computational Physics, Vol. 138, pp. 251-285, 1997.

[6] H. L. Atkins and C. W. Shu, Quadrature free implementation of discontinuous Galerkin
method for hyperbolic equations, AIAA Journal, Vol. 36, No. 5, 1998.



388 H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389

[7] F. Bassi and S. Rebay, GMRES discontinuous Galerkin solution of the compressible Navier-
Stokes equations, Discontinuous Galerkin Methods, Theory, Computation, and Applica-
tions, B. Cockburn, G. E. Karniadakis and C. W. Shu (Eds.), Lecture Notes in Computational
Science and Engineering, Springer-Verlag, New York, 2000, Vol. 11, pp. 197-208, 2000.

[8] T. C. Warburton and G. E. Karniadakis, A discontinuous Galerkin method for the viscous
MHD equations, Journal of Computational Physics, Vol. 152, pp. 608-641, 1999.

[9] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms, anal-
ysis, and applications, Texts in Applied Mathematics, Vol. 56, 2008.

[10] P. Rasetarinera and M. Y. Hussaini, An efficient implicit discontinuous spectral Galerkin
method, Journal of Computational Physics, Vol. 172, pp. 718-738, 2001.

[11] B. T. Helenbrook, D. Mavriplis and H. L. Atkins, Analysis of p-multigrid for continuous and
discontinuous finite element discretizations, AIAA Paper, 2003-3989, 2003.

[12] K. J. Fidkowski, T. A. Oliver, J. Lu and D. L. Darmofal, p-Multigrid solution of high-order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, Journal
of Computational Physics, Vol. 207, No. 1, pp. 92-113, 2005.

[13] H. Luo, J. D. Baum and R. Löhner, A discontinuous Galerkin method using Taylor basis for
compressible flows on arbitrary grids, Journal of Computational Physics, Vol. 227, No. 20,
pp. 8875-8893, 2008.

[14] H. Luo, J. D. Baum and R. Löhner, On the computation of steady-state compressible flows
using a discontinuous Galerkin method, International Journal for Numerical Methods in
Engineering, Vol. 73, No. 5, pp. 597-623, 2008.

[15] H. Luo, J. D. Baum and R. Löhner, A Hermite WENO-based limiter for discontinuous
galerkin method on unstructured grids, Journal of Computational Physics, Vol. 225, No.
1, pp. 686-713, 2007.

[16] H. Luo, J. D. Baum and R. Löhner, A p-multigrid discontinuous Galerkin method for the
Euler equations on unstructured grids, Journal of Computational Physics, Vol. 211, No. 2,
pp. 767-783, 2006.

[17] H. Luo, J. D. Baum and R. Löhner, A fast, p-multigrid discontinuous Galerkin method for
compressible flows at all speeds, AIAA Journal, Vol. 46, No. 3, pp. 635-652, 2008.

[18] M. Dumbser, D. S. Balsara, E. F. Toro and C. D. Munz, A unified framework for the construc-
tion of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes,
Journal of Computational Physics, Vol. 227, pp. 8209-8253, 2008.

[19] M. Dumbser and O. Zanotti, Very high order PNPM schemes on unstructured meshes for
the resistive relativistic MHD equations, Journal of Computational Physics, Vol. 228, pp.
6991-7006, 2009.

[20] M. Dumbser, Arbitrary high order PNPM Schemes on unstructured meshes for the com-
pressible Navier-Stokes equations, Computers & Fluids, Vol. 39, pp. 60-76, 2010.

[21] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier-Stokes equations, Journal of Computational
Physics, Vol. 131, pp. 267-279, 1997.

[22] F. Bassi and S. Rebay, Discontinuous Galerkin solution of the Reynolds-averaged Navier-
Stokes and k-ω turbulence model equations, Journal of Computational Physics, Vol. 34, pp.
507-540, 2005.

[23] B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion system, SIAM Journal of Numerical Analysis, Vol. 35, pp. 2440-2463,
1998.

[24] C. E. Baumann and J. T. Oden, A discontinuous hp finite element method for the Euler and



H. Luo et al. / Commun. Comput. Phys., 9 (2011), pp. 363-389 389

Navier-Stokes equations, International Journal for Numerical Methods in Fluids, Vol. 31, pp.
79-95, 1999.

[25] J. Peraire and P. O. Persson, The compact discontinuous Galerkin method for elliptic prob-
lems, SIAM Journal on Scientific Computing, Vol. 30, pp. 1806-1824, 2008.

[26] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, Vol. 39, No.
5, pp. 1749-1779, 2002.

[27] G. Gassner, F. Lorcher and C. D. Munz, A contribution to the construction of diffusion fluxes
for finite volume and discontinuous Galerkin schemes, Journal of Computational Physics,
Vol. 224, No. 2, pp. 1049-1063, 2007.

[28] H. Liu and K. Xu, A Runge-Kutta discontinuous Galerkin method for viscous flow equa-
tions, Journal of Computational Physics, Vol. 224, No. 2, pp. 1223-1242, 2007.

[29] H. Luo, L. Luo and K. Xu, A discontinuous Galerkin method based on a BGK scheme for
the Navier-Stokes equations on arbitrary grids, Advances in Applied Mathematics and Me-
chanics, Vol. 1, No. 3, pp. 301-318, 2009.

[30] B. van Leer and S. Nomura, Discontinuous Galerkin method for diffusion, AIAA Paper,
2005-5108, 2005.

[31] B. van Leer and M. Lo, A Discontinuous Galerkin method for diffusion based on recovery,
AIAA Paper, 2007-4083, 2007.

[32] M. Raalte and B. van Leer, Bilinear forms for the recovery-based discontinuous Galerkin
method for diffusion, Communication of Computational Physics, Vol. 5, No. 2-4, pp. 683-
693, 2009.

[33] R. Nourgaliev, H. Park and V. Mousseau, Recovery discontinuous Galerkin Jacobian-free
Newton-Krylov method for multiphysics problems, Computational Fluid Dynamics Review
2009, 2009, to appear.

[34] H.T Huynh, A reconstruction approach to high-order schemes including discontinuous
Galerkin for diffusion, AIAA Paper, 2009-0403, 2009.

[35] H. Luo, L. Luo, R. Nourgaliev and V. Mousseau, A reconstructed discontinuous Galerkin
method for the compressible Euler equations on arbitrary grids, AIAA Paper, 2009-3788,
2009.

[36] H. Luo, L. Luo, R. Norgaliev, V. A. Mousseau and N. Dinh, A reconstructed discontinuous
Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, Journal
of Computational Physics, Vol. 229, No. 19, pp. 6961-6978, 2010.

[37] P. Colella and P. R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical
simulations, Journal of Computational Physics, Vol. 54, No. 1, pp. 115-173, 1984.

[38] G. Karypis and V. Kumar, A fast and high quality scheme for partitioning irregular graphs,
SIAM Journal on Scientific Computing, Vol. 20, pp. 359-392, 1999.


