
Commun. Comput. Phys.
doi: 10.4208/cicp.091209.080410s

Vol. 9, No. 3, pp. 520-541
March 2011

Numerical Simulation of Time-Harmonic Waves

in Inhomogeneous Media using Compact High

Order Schemes

Steven Britt1, Semyon Tsynkov1,∗ and Eli Turkel2

1 Department of Mathematics, North Carolina State University, Box 8205,
Raleigh, NC 27695, USA.
2 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv,
Tel Aviv 69978, Israel.

Received 9 December 2009; Accepted (in revised version) 8 April 2010

Available online 17 September 2010

Dedicated to the memory of our dear friend, David Gottlieb

Abstract. In many problems, one wishes to solve the Helmholtz equation with vari-
able coefficients within the Laplacian-like term and use a high order accurate method
(e.g., fourth order accurate) to alleviate the points-per-wavelength constraint by re-
ducing the dispersion errors. The variation of coefficients in the equation may be due
to an inhomogeneous medium and/or non-Cartesian coordinates. This renders exist-
ing fourth order finite difference methods inapplicable. We develop a new compact
scheme that is provably fourth order accurate even for these problems. We present
numerical results that corroborate the fourth order convergence rate for several model
problems.
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1 Introduction

In many problems in computational electrodynamics one considers media with variable
properties. Our goal is to obtain high order schemes for the corresponding wave prop-
agation problems. Consider the two dimensional (TEz) Maxwell equations in frequency
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space:

−iωµHz =
∂Ex

∂y
−

∂Ey

∂x
,

−iωEx =
1

ε

∂Hz

∂y
, iωEy =

1

ε

∂Hz

∂x
.

Combining those into a single second order equation, we have:

0=
∂

∂x

(1

ε

∂Hz

∂x

)

+
∂

∂y

(1

ε

∂Hz

∂y

)

+µω2Hz.

More generally, we consider the following 2D variable coefficient Helmholtz equation:

∂

∂x

(

a(x,y)
∂u

∂x

)

+
∂

∂y

(

b(x,y)
∂u

∂y

)

+k2(x,y)u(x,y)=0. (1.1)

We emphasize that in many cases it is both easier and cheaper to solve a single second
order equation, such as Eq. (1.1), rather than the underlying system of first order equa-
tions, see, e.g., [16, 17, 20]. We also stress that the coefficients of Eq. (1.1) vary inside the
derivatives. Hence, a straightforward Padé approximation will not work. Because of the
pollution effect [3, 6], second order accurate schemes are very inefficient, especially for
high frequencies. Our aim is to construct a fourth order accurate finite difference scheme,
which would have a compact 9 point stencil in two dimensions (and 27 points in three di-
mensions). Note that having a small stencil or, in other words, having the same (second)
order of the difference equation as that of the differential equation, yet with high order
accurate approximation, is convenient, as it considerably simplifies setting the boundary
conditions [5, 7] and also leads to a narrower bandwidth of the resulting matrix.

Nehrbass, Jevtic, and Lee studied ways of reducing the phase error [19]. They used a
5 point stencil and replaced the weight of the center node using a Bessel function. Harari
and Turkel [15] constructed a fourth order approximation for the Helmholtz equation
subject to Dirichlet boundary conditions. The method was based on Padé expansions.
It was extended by Singer and Turkel [22] to Neumann boundary conditions. They also
introduced an approach referred to as equation based. In this approach, one finds the
truncation error of a classical second order method and then uses the Helmholtz equation
and its derivatives to eliminate this truncation error to the next order. In both cases, the
coefficients a and b in (1.1) were required to be constant, though k could be a smooth func-
tion of x and y. A different approach was used by Caruthers, Steinhoff, and Engels [8],
who based a difference approximation on Bessel functions. This approach requires that
all the coefficients be constant. Under this assumption one can even construct sixth order
accurate approximations, see, e.g., [18, 23, 26].

Besides the variation of physical properties of the medium leading to Eq. (1.1), the
coefficients of a differential equation may vary because the equation is expressed in non-
Cartesian coordinates. In the recent paper [7], we have constructed a fourth order accu-
rate compact finite difference scheme for the Helmholtz equation in polar coordinates. In
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that paper, the variation of coefficients was present only in one out of the two coordinate
directions (radial). This, in particular, enabled the application of an FFT-based solver
and the construction of exact nonlocal artificial boundary conditions for the simulation
of waves that scatter off a target and then propagate toward infinity. In this paper our key
goal is to allow for the variation of the coefficients a and b in both coordinate directions,
and we solve the Helmholtz equation on a bounded domain. For higher wavenumbers,
we consider a complex Robin boundary condition to avoid resonances. To construct a
compact fourth order accurate scheme, we employ an equation based approach. We note
that the paper [7] contains a more detailed bibliography survey.

For the most part, the analysis in the current paper addresses the two-dimensional
case. However, in Section 3 we show that the extension to three dimensions is straight-
forward.

2 2D variable coefficient Helmholtz equation

We now construct a compact fourth order accurate finite difference scheme for the vari-
able coefficient Helmholtz equation (1.1).

First, we reformulate Eq. (1.1) as formal ODEs given by

∂

∂x

(

a(x,y)
∂u

∂x

)

= Fx
def
= f −k2u−

∂

∂y

(

b(x,y)
∂u

∂y

)

, (2.1a)

and

∂

∂y

(

b(x,y)
∂u

∂y

)

= Fy
def
= f −k2u−

∂

∂x

(

a(x,y)
∂u

∂x

)

. (2.1b)

Then, we approximate the left-hand sides of (2.1a) and (2.1b) at the grid node (m,n) with
second order accuracy as follows:

∂

∂x

(

a(x,y)
∂u

∂x

)

=
1

h

(

am+ 1
2 ,n

um+1,n−um,n

h
−am− 1

2 ,n

um,n−um−1,n

h

)

+O(h2), (2.2a)

and

∂

∂y

(

b(x,y)
∂u

∂y

)

=
1

h

(

bm,n+ 1
2

um,n+1−um,n

h
−bm,n− 1

2

um,n−um,n−1

h

)

+O(h2). (2.2b)

Adding (2.2a) and (2.2b) and then approximating the non-differentiated term and the
right-hand side of (1.1) as

(

k2u
)

m,n
and fm,n respectively, we obtain a second order ap-

proximation of (1.1). Our aim is to extend (2.2) to a fourth order accurate approximation.
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Analysis of the truncation error for the finite differences of (2.2) yields the following:

1

h

(

am+ 1
2 ,n

um+1,n−um,n

h
−am− 1

2 ,n

um,n−um−1,n

h

)

=
∂

∂x

(

a(x,y)
∂u

∂x

)

+
h2

12

(

auxxxx+2axuxxx+
3axxuxx

2
+

axxxux

2

)

+O(h4), (2.3a)

1

h

(

bm,n+ 1
2

um,n+1−um,n

h
−bm,n− 1

2

um,n−um,n−1

h

)

=
∂

∂y

(

b(x,y)
∂u

∂y

)

+
h2

12

(

buyyyy+2byuyyy+
3byyuyy

2
+

byyyuy

2

)

+O(h4). (2.3b)

In order to eliminate the O(h2) error terms in (2.3a), we first differentiate the ODE (2.1a)
twice in x and obtain a system of three equations with respect to uxx, uxxx, and uxxxx:

axux+auxx = Fx, (2.4a)

axxux+2axuxx+auxxx =
∂Fx

∂x
, (2.4b)

axxxux+3axxuxx+3axuxxx+auxxxx =
∂2Fx

∂x2
. (2.4c)

Solving each equation of (2.4) for the highest derivative of u, we obtain

uxx =
1

a
(Fx−axux), (2.5a)

uxxx =
1

a

(∂Fx

∂x
−axxux−2axuxx

)

, (2.5b)

uxxxx =
1

a

(∂2Fx

∂x2
−axxxux−3axxuxx−3axuxxx

)

. (2.5c)

Substituting (2.5a) into (2.5b) and substituting (2.5a) and (2.5b) into (2.5c), we arrive at
equations that contain only first derivatives of u on the right-hand side:

uxx =
1

a
(Fx−axux), (2.6a)

uxxx =
1

a

(∂Fx

∂x
−axxux−

2ax

a
(Fx−axux)

)

, (2.6b)

uxxxx =
1

a

[

∂2Fx

∂x2
−axxxux−

3axx

a
(Fx−axux)−

3ax

a2

( ∂Fx

∂x
−axxux−

2ax

a
(Fx−axux)

)

]

. (2.6c)

By substituting expressions (2.6a), (2.6b), and (2.6c) for uxx, uxxx, and uxxxx, respectively,
into the O(h2) terms on the right-hand side of (2.3a), we get

auxxxx+2axuxxx+
3axxuxx

2
+

axxxux

2

=
∂2Fx

∂x2
−

ax

a

∂Fx

∂x
+

(2a2
x

a2
−

3axx

2a

)

Fx+
(

−
axxx

2
+

5axxax

2a
−

2a3
x

a2

)

ux. (2.7)
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In order to achieve an overall fourth order accuracy for (2.3a), it is sufficient to approxi-
mate the terms multiplied by h2/12 with second order accuracy. So we need to approxi-
mate the right-hand side of (2.7) with second order accuracy. For simplicity, assume that
all derivatives of a and b on the right-hand side of (2.7) are known analytically.† Then,
we find expressions for Fx, ∂Fx/∂x, and ∂2Fx/∂x2, which is done with the help of formula
(2.1a):

Fx = f −k2u−byuy−buyy, (2.8a)

∂Fx

∂x
= fx−

[

bxyuy+byuxy+bxuyy+buyyx+(k2u)x

]

, (2.8b)

∂2Fx

∂x2
= fxx−

[

byxxuy+2byxuyx+byuyxx+bxxuyy+2bxuyyx+buyyxx+(k2u)xx

]

. (2.8c)

We use the standard five node stencil to approximate (k2u)x, (k2u)xx, uy, uyy, fx, and
fxx in (2.8) by central differences with second order accuracy. We then approximate the
remaining terms uxy, uyyx, uxxy, and uxxyy on a compact 3×3 stencil (which contains four
additional corner nodes) also with second order accuracy as follows:

uxy =
1

2h

(um+1,n+1−um−1,n+1

2h
−

um+1,n−1−um−1,n−1

2h

)

+O(h2),

uxxy =
1

h2

(um+1,n+1−um+1,n−1

2h
+

um−1,n+1−um−1,n−1

2h
−2

um,n+1−um,n−1

2h

)

+O(h2),

uyyx =
1

h2

( um+1,n+1−um−1,n+1

2h
+

um+1,n−1−um−1,n−1

2h
−2

um+1,n−um−1,n

2h

)

+O(h2),

uxxyy =
1

h2

(um+1,n+1+um+1,n−1−2um+1,n

h2
+

um−1,n+1+um−1,n−1−2um−1,n

h2

−2
um,n+1+um,n−1+2um,n

h2
)
)

+O(h2).

Altogether, we obtain a second order accurate approximation of all the terms on the right-
hand sides of equalities (2.8) on a 3×3 stencil:

Fx = fm,n−(k2u)m,n−
by

2h
(um,n+1−um,n−1)−b

um,n+1−2um,n+um,n−1

h2
+O(h2), (2.9a)

∂Fx

∂x
= fx−

[

bxyuy+byuxy+bxuyy+buyyx+(k2u)x

]

=
fm+1,n− fm−1,n

2h
−

[

bxy

2h
(um,n+1−um,n−1)+

by

4h2
(um+1,n+1−um−1,n+1

−um+1,n−1+um−1,n−1)+
bx

h2
(um,n+1+um,n−1−2um,n)+

b

2h3
(um+1,n+1−um−1,n+1

+um+1,n−1−um−1,n−1−2(um+1,n−um−1,n))+
(k2u)m+1,n−(k2u)m−1,n

2h

]

+O(h2), (2.9b)

†Otherwise, we can also replace them by finite differences, although this may require a larger stencil.
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∂2Fx

∂x2
= fxx−[byxxuy+2byxuyx+byuyxx+bxxuyy+2bxuyyx+buyyxx+(k2u)xx]

=
fm+1,n+ fm−1,n−2 fm,n

h2
−

[

byxx

2h
(um,n+1−um,n−1)+

byx

2h2
(um+1,n+1−um−1,n+1

−um+1,n−1+um−1,n−1)+
by

2h3
(um+1,n+1−um+1,n−1+um−1,n+1−um−1,n−1

−2(um,n+1−um,n−1))+
bxx

h2
(um,n+1+um,n−1−2um,n)+

bx

h3
(um+1,n+1−um−1,n+1

+um+1,n−1−um−1,n−1−2(um+1,n−um−1,n))+
b

h4
(um+1,n+1+um+1,n−1

+um−1,n+1+um−1,n−1+4um,n−2(um,n+1+um,n−1+um+1,n+um−1,n))

+
(k2u)m+1,n−2(k2u)m,n+(k2u)m−1,n

h2

]

. (2.9c)

Since there is symmetry between the derivatives in the x and y directions, the entire previ-
ous argument can be duplicated in the y direction. Namely, we start with differentiating
equation (2.1b) twice in y [cf. formula (2.4)], and then we express the O(h2) term on the
right hand side of (2.3b) via uy, Fy, ∂Fy/∂y, and ∂2Fy/∂y2 [cf. formula (2.7)]. In order to
obtain a compact discretization, we approximate the resulting terms with second order
accuracy on a 3×3 stencil, yielding:

Fy = fm,n−(k2)um,n−
ax

2h
(um+1,n−um−1,n)−a

um+1,n−2um,n+um−1,n

h2
+O(h2), (2.10a)

∂Fy

∂y
= fy−[axyux +axuxy+ayuxx+auxxy+(k2u)y]

=
fm,n+1− fm,n−1

2h
−

[ axy

2h
(um+1,n−um−1,n)+

ax

4h2
(um+1,n+1−um−1,n+1

−um+1,n−1+um−1,n−1)+
ay

h2
(um+1,n+um−1,n−2um,n)+

a

2h3
(um+1,n+1

−um+1,n−1+um−1,n+1−um−1,n−1−2(um,n+1−um,n−1))

+
(k2u)m,n+1−(k2u)m,n−1

2h

]

+O(h2), (2.10b)

∂2Fy

∂y2
= fyy−[axyyux +2axyuxy+axuxyy+ayyuxx+2ayuxxy+auxxyy+(k2u)yy]

=
fm,n+1+ fm,n−1−2 fm,n

h2
−

[ axyy

2h
(um+1,n−um−1,n)+

axy

2h2
(um+1,n+1−um−1,n+1

−um+1,n−1+um−1,n−1)+
ax

2h3
(um+1,n+1−um−1,n+1+um+1,n−1−um−1,n−1

−2(um+1,n−um−1,n))+
ayy

h2
(um+1,n+um−1,n−2um,n)+

ay

h3
(um+1,n+1

−um+1,n−1+um−1,n+1−um−1,n−1−2(um,n+1−um,n−1))+
b

h4
(um+1,n+1

+um+1,n−1+um−1,n+1+um−1,n−1+4um,n−2(um,n+1+um,n−1+um+1,n

+um−1,n))+
(k2u)m,n+1−2(k2u)m,n+(k2u)m,n−1

h2

]

. (2.10c)
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Finally, assembling all the terms, we obtain a fourth order accurate approximation for
Eq. (1.1) on a compact 3×3 stencil:

1

h

(

am+ 1
2 ,n

um+1,n−um,n

h
−am− 1

2 ,n

um,n−um−1,n

h

)

+
1

h

(

bm,n+ 1
2

um,n+1−um,n

h

−bm,n− 1
2

um,n−um,n−1

h

)

−
h2

12

[

∂2Fx

∂x2
−

ax

a

∂Fx

∂x
+

(2a2
x

a2
−

3axx

2a

)

Fx +
(

−
axxx

2

+
5axxax

2a
−

2a3
x

a2

)um+1,n−um−1,n

2h

]∣

∣

∣

∣

m,n

−
h2

12

[

∂2Fy

∂y2
−

by

b

∂Fy

∂y
+

(2b2
y

b2
−

3byy

2b

)

Fy

+
(

−
byyy

2
+

5byyby

2b
−

2b3
y

b2

) um,n+1−um,n−1

2h

]∣

∣

∣

∣

m,n

+(k2u)m,n = fm,n. (2.11)

In formula (2.11), the terms in parentheses premultiplied by h2/12 are evaluated on the
grid with second order accuracy using formulae (2.9) and (2.10).

3 Three dimensions

The extension to three dimensions is straightforward. The Helmholtz equation (1.1) is
replaced by

∂

∂x

(

a(x,y,z)
∂u

∂x

)

+
∂

∂y

(

b(x,y,z)
∂u

∂y

)

+
∂

∂z

(

c(x,y,z)
∂u

∂z

)

+k2(x,y,z)u=0. (3.1)

Then, Eq. (2.1a) is replaced by

∂

∂x

(

a
∂u

∂x

)

= Fx
def
= f −k2u−

∂

∂y

(

b
∂u

∂y

)

−
∂

∂z

(

c
∂u

∂z

)

, (3.2)

and similarly for the other two coordinates. The derivation from formula (2.2) through
formula (2.7) remains as before. Finally, Eq. (2.8) are replaced by

Fx = f −k2u−
∂

∂y

(

b
∂u

∂y

)

−
∂

∂z

(

c
∂u

∂z

)

,

∂Fx

∂x
= fx−(k2u)x−

∂2

∂x∂y

(

b
∂u

∂y

)

−
∂2

∂x∂z

(

c
∂u

∂z

)

,

∂2Fx

∂x2
= fxx−(k2u)xx−

∂3

∂2x∂y

(

b
∂u

∂y

)

−
∂3

∂2x∂z

(

c
∂u

∂z

)

.

Replacing the derivatives by finite differences as in (2.9) and similarly in the y and z
directions results in a compact 3×3×3 stencil.

4 Boundary conditions

In order to maintain high order accuracy, it is necessary that all the boundary conditions
be accurate to the same order as the interior scheme, see [11].
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4.1 Dirichlet boundary condition

We first consider the variable coefficient Helmholtz equation with constant wavenumber
k on a square domain D={(x,y)|−s/2< x< s/2, −s/2<y< s/2}:

−
∂

∂x

(

a
∂u

∂x

)

−
∂

∂y

(

b
∂u

∂y

)

−k2u=− f , (x,y)∈D, (4.1)

subject to a zero Dirichlet boundary condition:

u(x,y)=0, when x=±
s

2
or y=±

s

2
. (4.2)

The assumption k = const is not necessary, and is introduced in Eq. (4.1) only for conve-
nience.

Discretization of the Dirichlet boundary condition (4.2) is completely straightforward.
Consider a Cartesian grid on the square D:

{

(xm,yn)
∣

∣

∣
m=−

M

2
,··· ,

M

2
, n=−

M

2
,··· ,

M

2

}

, (4.3)

where
M=

s

h
, xm =m·h, yn =n·h.

Since the scheme (2.11) is built on a compact 3×3 stencil, it does not require any addi-
tional ”numerical” boundary conditions, and we simply approximate (4.2) as follows

um,n =0, if m=±
M

2
or n=±

M

2
,

which yields fourth order accuracy.
It is known, however, that when solving the Helmholtz equation on a bounded do-

main subject to a Dirichlet boundary condition, resonances may occur, which means that
the solution may become non-unique.‡ To avoid this undesirable phenomenon, we em-
ploy additional considerations when choosing the wavenumber k.

Let the variable coefficients a = a(x,y) and b = b(x,y) in Eq. (4.1) be smooth and
bounded on D̄. In addition, we require that

ν
def
= min

{

min
(x,y)∈D̄

a(x,y), min
(x,y)∈D̄

b(x,y)
}

>0. (4.4)

Inequality (4.4) implies, in particular, that the operator

Lu≡−
∂

∂x

(

a
∂u

∂x

)

−
∂

∂y

(

b
∂u

∂y

)

, (4.5)

‡It is common in the diffraction theory to refer to the loss of uniqueness by the solution as to a resonance.
This happens when the wavenumber (squared) in the Helmholtz equation appears to be an eigenvalue of
the corresponding negative Laplacian.
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subject to the same Dirichlet boundary condition (4.2) is self-adjoint and positive definite
on the space W2

2,0(D).§ To guarantee uniqueness of the solution u to problem (4.1) with

boundary condition (4.2), we need to ensure that k2 is not an eigenvalue of the operator
L of (4.5), (4.2). This is done by estimating the smallest eigenvalue λmin of L, i.e., its
eigenvalue closest to zero, and then choosing k accordingly.

As shown in [25, Section 150], the following estimate holds for the smallest eigenvalue
of L:

λmin≥
ν

cD
,

where ν is defined in formula (4.4), and cD is the constant from the Friedrichs inequality.
For a square domain, it is easy to prove (see [24, Section 115]) that cD = s2 (the area of the
square). Consequently:

λmin≥
ν

s2
. (4.6)

Inequality (4.6) implies that choosing the wavenumber k so that

k2
<

ν

s2
(4.7)

is sufficient for avoiding the resonances and hence guaranteeing uniqueness of the solu-
tion, see [1, 2], since then the sum λmin−k2 will remain positive.

In fact, estimate (4.6) is conservative and can be sharpened. If, for example, L is
the negative Laplace operator so that a ≡ b ≡ 1 and ν = 1, then the first eigenfunction
is v = cos(πx/s)cos(πy/s) and the minimum eigenvalue is λmin = 2π2/s2. Hence, for
practical purposes we freeze coefficients and estimate the minimum eigenvalue of L by
merely replacing the coefficients a and b in (4.5) by their minimum value ν of (4.4). This
leads to a weaker constraint on k instead of (4.7):

k2
<

2π2ν

s2
. (4.8)

In the numerical experiments of Section 5.1, we make sure that inequality (4.8) holds.
We emphasize that this is a sufficient but not necessary condition for the solution to be
unique.

4.2 Local Sommerfeld-type boundary conditions

To be able to test the performance of the scheme for larger values of k, the constraint
given by inequality (4.8) must be alleviated. A convenient way of doing that is to change
the boundary condition so that the problem is no longer self-adjoint. Then, its spectrum
becomes essentially complex, and no real value k2 can be an eigenvalue.

§This space is a completion in the norm W2
2 (D) of the set of functions C2

0(D̄)⊂C2(D̄) that are twice contin-

uously differentiable on D̄ and are equal to zero on ∂D. For self-adjointness on W2
2,0(D), in addition to (4.4)

one also needs to require an upper bound on the coefficients a and b, and on absolute values of their first
derivatives, see [25, Sections 145, 148, 149].
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In [11], Erlangga and Turkel derive a fourth order accurate scheme for a simplified
absorbing boundary condition

∂u

∂x
+iβu=0.

Furthermore, they present computational evidence that if the interior scheme is fourth
order accurate but the absorbing boundary condition is only second order accurate, then
the global accuracy is second order.

Hereafter, we set the local Sommerfeld-type, i.e., complex Robin, boundary condi-
tions on two opposite sides of the square D:

∂u

∂x
+iku=0, if x=

s

2
, (4.9a)

∂u

∂x
−iku=0, if x=−

s

2
, (4.9b)

and keep a homogeneous Dirichlet boundary condition on the other pair of opposite
sides:

u(x,y)=0, if y=±
s

2
. (4.10)

We emphasize that we do not intend to simulate the radiation of waves toward infinity by
means of boundary conditions (4.9a) and (4.9b). The problem is still solved on a bounded
region (a square), and our goal is rather to avoid the eigenvalues in the interior.

Boundary conditions (4.9a) and (4.9b) are approximated on the grid with fourth order
accuracy using compact differencing. For convenience, they are set at half-nodes:¶

ux
M− 1

2 ,n
+ikuM− 1

2 ,n =0, (4.11a)

ux 1
2 ,n
−iku 1

2 ,n =0. (4.11b)

We will treat the left boundary of the square x=−s/2, and the analogous case of the right
boundary x = s/2 will follow by symmetry. First, we approximate (4.11b) with second
order accuracy as follows:

ux 1
2 ,n
−iku 1

2 ,n =
u1,n−u0,n

h
−

(h/2)2

6
uxxx 1

2 ,n
−ik

u1,n +u0,n

2
+ik

(h/2)2

2
uxx 1

2 ,n
+O(h4). (4.12)

In order to eliminate the O(h2) terms in (4.12), it is sufficient to approximate the deriva-
tives (uxxx)1/2,n and (uxx)1/2,n with second order accuracy. We will use formulae (2.6a)
and (2.6b), taking into account that since f (x,y) is compactly supported inside the square,

¶As shown in [11], we can also obtain a fourth order accurate approximation to (4.9) with the boundary
condition imposed at a full node.
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we can assume that near the boundary f ≡0. For the derivative (uxx)1/2,n, this yields:

uxx 1
2 ,n

=
1

a
(Fx−axux)

∣

∣

∣

1
2 ,n

=
1

a 1
2 ,n

(

−(k2u) 1
2 ,n−by 1

2 ,n

u 1
2 ,n+1−u 1

2 ,n−1

h

−b 1
2 ,n

u 1
2 ,n+1−2u 1

2 ,n+u 1
2 ,n−1

(h/2)2
−ax 1

2 ,n

u1,n−u0,n

h

)

+O(h2). (4.13)

Similarly, for (uxxx)1/2,n we obtain:

uxxx 1
2 ,n

=
1

a

(∂Fx

∂x
−axxux−

2ax

a
(Fx−axux)

)∣

∣

∣

1
2 ,n

=
1

a 1
2 ,n

[

−
(

bxy 1
2 ,n

h
(u 1

2 ,n+1−u 1
2 ,n−1)+

by 1
2 ,n

4(h/2)2
(u1,n+1−u0,n+1−u1,n−1+u0,n−1)

+
bx 1

2 ,n

(h/2)2
(u 1

2 ,n+1+u 1
2 ,n−1−2u 1

2 ,n)+
b 1

2 ,n

2(h/2)3
(u1,n+1−u0,n+1+u1,n−1−u0,n−1

−2(u1,n−u0,n))+
(k2u)1,n−(k2u)0,n

h

]

−axx 1
2 ,n

u1,n−u0,n

h
−

2ax 1
2 ,n

a 1
2 ,n

(

−(k2u) 1
2 ,n

−by 1
2 ,n

u 1
2 ,n+1−u 1

2 ,n−1

h
−b 1

2 ,n

u 1
2 ,n+1−2u 1

2 ,n+u 1
2 ,n−1

(h/2)2
−ax 1

2 ,n

u1,n−u0,n

h

)

+O(h2). (4.14)

Formulae (4.13) and (4.14) still contain the values of u at semi-integer grid locations. To
have a scheme that would only operate with full-node values, we replace u1/2,n by the
second order approximation

u 1
2 ,n≈

u1,n+u0,n

2
,

and proceed similarly for the terms u1/2,n+1, u1/2,n−1, and (k2u)1/2,n. Using this modifica-
tion, we obtain a fourth order accurate approximation of the boundary condition (4.9b)
in the form:

(u1,n−u0,n

h
−

h2

24
uxxx 1

2 ,n

)

−ik
( u1,n+u0,n

2
−

h2

8
uxx 1

2 ,n

)

=0, (4.15)

where the terms uxx1/2,n
and uxxx1/2,n

are evaluated according to (4.13) and (4.14), respec-
tively. Similarly, the boundary condition (4.9a) is approximated as

(uM,n−uM−1,n

h
−

h2

24
uxxx

M− 1
2 ,n

)

+ik
( uM,n+uM−1,n

2
−

h2

8
uxx

M− 1
2 ,n

)

=0, (4.16)

where the terms (uxx)M−1/2,n and (uxxx)M−1/2,n are evaluated according to the analogues
of (4.13) and (4.14), respectively.
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The results of computations with Sommerfeld-type boundary conditions are reported
in Section 5.2. We emphasize that even though we set boundary conditions of differ-
ent types on the adjacent sides of the rectangle [Sommerfeld and Dirichlet, see formulae
(4.9a), (4.9b) and (4.10)], our numerical experiments show that this does not lead to any
problems related to the corners of the domain.

5 Numerical results

To achieve the desired fourth order of accuracy in our compact finite difference approxi-
mation, the test solutions u=u(x,y) for Eq. (4.1) must be at least 6 times continuously dif-
ferentiable. Additionally, to satisfy the boundary condition (4.2) or boundary conditions
(4.9), it is also convenient to choose the solution to be compactly supported inside the
square D. We have found it easiest to devise such test solutions using polar coordinates,
and then convert back to Cartesian coordinates for the actual computations. Specifically,
we take a smooth and compactly supported function of r and multiply it by a smooth 2π
periodic function of θ for generality. In doing so, to guarantee regularity at r=0, we addi-
tionally require that the function of r be equal to zero at the origin along with sufficiently
many of its derivatives. Then, we substitute the resulting

u(r,θ)=u
(
√

x2+y2, arctan
(

y/x
)

)

into the left-hand side of Eq. (4.1) and derive the right-hand side f = f (x,y), which is
subsequently used in the scheme.

Our implementation was written in MATLAB, and the linear system obtained from
our scheme is solved via MATLAB’s built-in direct sparse solver. The computations were
performed on a 2.16 GHz Intel Core 2 Duo MacBook Pro with 2 Gb of RAM running on
Mac OS X.

The results in the following examples demonstrate fourth order convergence with
respect to the grid size, and a somewhat faster than linear growth of the time required to
compute the solution.

5.1 Dirichlet boundary condition

5.1.1 Example 1

For our first example, we use a test solution u, based on a trigonometric function of r,
and coefficients a and b as follows:

u(x,y)=

{

sin6(2r)cos(θ), r<
π
2 ,

0, r>
π
2 ,

=

{

sin6(2
√

x2+y2)cos(arctan(y/x)), r<
π
2 ,

0, r>
π
2 ,
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a(x,y)=1+e−x2−y2
,

b(x,y)=1+
x2+y2

1+x2+y2
.

The domain in this case is a square of side length s=4, centered at the origin. The value
of k was chosen to be k=1. Note, that in this case

ν= min
(x,y)∈D̄

{a(x,y),b(x,y)}=min{1+e−2π2
,1+0}=1,

and so we see that (4.8) is satisfied since

2π2ν

s2
=

2π2

16
≈1.2337>1= k2 .

Table 1 compares the error of the numerical and exact solutions on a series of grids of
step-sizes h given in the leftmost column. From column 3 we clearly see the fourth order
convergence. Column 5 shows that computational complexity of the direct solver scales
somewhat faster than linear as the grid is refined.

Table 1: Grid convergence and matrix inversion times for Example 1, k=1.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/4 1.6539×10−2 - 4.6021×10−3 -

1/8 1.1852×10−3 3.7355 2.1428×10−2 4.6562

1/16 8.2482×10−5 3.7907 .10537 4.9174

1/32 5.2872×10−6 3.9497 .5424 5.1475

1/64 3.3186×10−7 3.9915 3.4023 6.2726

1/128 2.0752×10−8 3.9990 22.800 6.7014

5.1.2 Example 2

In this example, we use a test solution u which is derived from a polynomial in r, with a
and b as follows:

u(x,y)=

{

r6(1−r2)6sin(θ), r<1,

0, r>1,

=

{

(x2+y2)3(1−x2−y2)6sin(arctan(y/x)), r<1,

0, r>1,

a(x,y)=1+
arctan(xy)

2π
,

b(x,y)=1+
x2+y2

1+x2+y2
.
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Note, that a is an asymmetric function of x and y, whereas both a and b were radially
symmetric in the first example. The domain is a square of side length s=4 centered at the
origin. We choose k=1 and so (4.8) is satisfied since

ν= min
(x,y)∈D̄

{a(x,y),b(x,y)}=min
{

1+
arctan(−1)

2π
,1+0

}

=
7

8
,

and
2π2ν

s2
=

2π2(7/8)

16
≈1.0795>1= k2 .

The computational results are summarized in Table 2. Column 3 clearly shows the fourth
order convergence.

Table 2: Grid convergence and matrix inversion times for Example 2, k=1.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/4 2.1504×10−3 - 4.9804×10−3 -

1/8 6.1167×10−5 5.9293 1.7237×10−2 3.4610

1/16 2.0265×10−6 5.4940 9.3481×10−2 5.4232

1/32 1.2938×10−7 3.9577 .50478 5.3999

1/64 7.6192×10−9 4.1207 3.4859 6.9057

1/128 4.6582×10−10 4.0443 13.129 3.7662

5.1.3 Example 3

We now use a test solution u which includes an exponential function in r:

u(x,y)=

{

(1−r2)6(1−e−r2
)6sin(cos(θ)), r<1,

0, r>1,

=

{

(1−x2−y2)6(1−e−x2−y2
)6sin(cos(arctan(y/x))), r<1,

0, r>1,

a(x,y)=1+
arctan(x+y)

2π
,

b(x,y)=1+
e−x2−y2

1+e−x2−y2 .

The domain is a square of side length s = 4 centered at the origin. We choose k = 1 and
verify that (4.8) is satisfied. We have

ν= min
(x,y)∈D̄

{a(x,y),b(x,y)}=min
{

1+
arctan(−2)

2π
,1

}

≈0.8238,

and
2π2ν

s2
≈

2π2(0.8238)

16
≈1.0163>1= k2 .
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Table 3: Grid convergence and matrix inversion times for Example 3, k=1.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/4 7.2679×10−5 - 4.0316×10−3 -

1/8 3.0646×10−6 4.8698 1.7305×10−2 4.2924

1/16 9.0079×10−8 5.8328 9.7753×10−2 5.6489

1/32 5.7535×10−9 3.9568 .61776 6.3196

1/64 3.3678×10−10 4.1333 3.3931 5.4926

1/128 2.0400×10−11 4.0631 22.082 6.5078

Table 3 summarizes the numerical results. As before, column 3 demonstrates the fourth
order convergence, and column 5 shows that computational complexity scales faster than
linear as the grid dimension increases.

5.2 Sommerfeld-type boundary conditions

We re-run the three examples of Section 5.1, but for higher values of the wavenumber,
k=20 and k=40. To avoid resonances, i.e., guarantee uniqueness of the solution, we use
a Sommerfeld-type boundary condition (4.9), approximated with fourth order accuracy
as in (4.15) instead of the Dirichlet boundary condition (4.2). In all of the following com-
putations, we take a square domain of side length s = 4. Other than the change in the
boundary conditions and the value of k, Examples 4, 5, and 6 and Examples 7, 8, and 9
use the exact same test solutions and coefficients of the Helmholtz equation as Examples

Example 4

Table 4: Grid convergence and matrix inversion times for Example 4, k=20.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 2.0126×10−3 - 3.4113×10−2 -

1/16 1.0670×10−4 4.3432 0.19399 5.6868

1/32 6.3499×10−6 4.0991 1.0658 5.5080

1/64 4.0061×10−7 3.9813 7.2026 6.7409

1/128 2.5054×10−8 3.9987 48.745 6.7677

Example 5

Table 5: Grid convergence and matrix inversion times for Example 5, k=20.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 4.6930×10−4 - 2.9426×10−2 -

1/16 1.5384×105 5.5232 .20017 6.8024

1/32 8.9785×10−7 4.1393 1.1548 5.7688

1/64 4.8405×10−8 4.3068 8.3947 7.2697

1/128 2.7099×10−9 4.2263 53.000 6.3135
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1, 2, and 3, respectively, presented in Section 5.1. We note that as all our test solutions are
compactly supported inside the square computational domain, they satisfy the bound-
ary conditions (4.9). The third column of Tables 4, 5, and 6 and Tables 7, 8, and 9 clearly
demonstrates the fourth order convergence in each of the examples.

Example 6

Table 6: Grid convergence and matrix inversion times for Example 6, k=20.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 1.6277×10−5 - 3.4923×10−2 -

1/16 3.7661×10−7 6.5743 .21660 6.2024

1/32 2.3499×10−8 4.0033 1.2078 5.5760

1/64 1.4508×10−9 4.0246 7.4962 6.2065

1/128 8.9214×10−11 4.0327 59.104 7.8845

Example 7

Table 7: Grid convergence and matrix inversion times for Example 7, k=40.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 1.3362×10−4 - 1.7520×10−2 -

1/16 1.7489×10−5 2.7640 .15897 9.0737

1/32 9.3741×10−7 4.3194 1.0825 6.8094

1/64 5.3381×10−8 4.1905 8.1212 7.5021

1/128 3.4192×10−9 3.9512 57.942 7.1347

Example 8

Table 8: Grid convergence and matrix inversion times for Example 8, k=40.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 1.2893×10−5 - 3.3510×10−2 -

1/16 7.2638×10−6 1.3323 .18749 5.5950

1/32 2.7735×10−7 5.1176 1.1141 5.9422

1/64 3.9907×10−8 2.6363 10.869 9.7563

1/128 2.1505×10−9 4.3077 46.765 4.3025

Example 9

Table 9: Grid convergence and matrix inversion times for Example 9, k=40.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 5.1486×10−7 - 3.3502×10−2 -

1/16 2.9599×10−7 1.3189 .18520 5.5281

1/32 1.1909×10−8 4.9855 1.5352 8.2894

1/64 7.4657×10−10 3.9939 7.6294 4.9696

1/128 4.7180×10−11 3.9779 41.294 5.4124
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5.3 Comparison to the second order scheme

To demonstrate the gains provided by the proposed fourth order method, we recompute
the solutions that correspond to k=40 using the standard central difference second order
scheme written on a five node stencil. All the settings and parameters for Examples 10,
11, and 12 below are exactly the same as those for Examples 7, 8, and 9 in Section 5.2,
except for the change in the discretization. The results of second order computations are
summarized in Tables 10, 11, and 12. The third column of each table corroborates the
anticipated rate of grid convergence.

Example 10

Table 10: Grid convergence and matrix inversion times for Example 10.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 1.7131×10−3 - 2.1341×10−2 -

1/16 5.0216×10−4 1.8470 .11583 5.4274

1/32 1.4332×10−4 1.8718 .67270 5.8079

1/64 3.0600×10−5 2.1641 3.8144 5.6703

1/128 7.6862×10−6 1.9953 25.660 6.7269

Example 11

Table 11: Grid convergence and matrix inversion times for Example 11.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 3.2175×10−5 - 1.6759×10−2 -

1/16 4.7681×10−5 .82146 .10944 6.5301

1/32 1.4624×10−5 1.8057 .64743 5.9158

1/64 2.9564×10−6 2.2241 3.9461 6.0951

1/128 4.2946×10−7 2.6237 25.098 6.3602

Example 12

Table 12: Grid convergence and matrix inversion times for Example 12.

h ||u−unum||∞ Convergence Rate Time(s) Time Scaling

1/8 9.7856×10−7 - 1.9636×10−2 -

1/16 5.0916×10−7 1.3863 .12473 6.3524

1/32 2.5638×10−7 1.4092 .67060 5.3763

1/64 5.8207×10−8 2.0987 3.8213 5.6983

1/128 1.5103×10−8 2.9631 25.046 6.5543

To compare the performance of the new compact fourth order scheme against that of
the standard second order scheme, we plot the error versus the grid size and the matrix
inversion time versus the grid size for both schemes on the same figure. Figs. 1 and 2
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Figure 1: Logarithmic plot of error versus grid size
for the 2nd and 4th order methods applied to Ex-
amples 7 and 10.
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Figure 2: Logarithmic plot of time versus grid size
for the 2nd and 4th order methods applied to Ex-
amples 7 and 10. Difference at h=1/128 is 32.282
seconds.
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Figure 3: Logarithmic plot of error versus grid size
for the 2nd and 4th order methods applied to Ex-
amples 8 and 11.
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Figure 4: Logarithmic plot of time versus grid size
for the 2nd and 4th order methods applied to Ex-
amples 8 and 11. Difference at h=1/128 is 21.667
seconds.

below correspond to Examples 7 and 10, Figs. 3 and 4 correspond to Examples 8 and
11, and Figs. 5 and 6 correspond to Examples 9 and 12. We see that for roughly twice
the computational effort or less on every given grid, the fourth order method enables a
major improvement in accuracy. Fig. 1 shows, for example, that the accuracy attained by
the second order scheme on the grid with size h=1/128 is achieved by the fourth order
scheme already between h = 1/16 and h = 1/32. Hence, for a fixed accuracy the fourth
order method requires about 20 to 25 per cent less CPU time to solve the linear system in
addition to a reduced storage by a factor of about 4 in each direction.
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Figure 5: Logarithmic plot of error versus grid size
for the 2nd and 4th order methods applied to Ex-
amples 9 and 12.
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Figure 6: Logarithmic plot of time versus grid size
for the 2nd and 4th order methods applied to Ex-
amples 9 and 12. Difference at h=1/128 is 16.248
seconds.

Moreover, to better understand the overall computational cost, we have analyzed
separately its other major component–the cost of setting up the matrix. For Examples 9
and 12 on the grid with size h=1/128, the time to set up the matrix was 31.078 seconds
for the new compact fourth order method based on a 9-point stencil, and 12.229 seconds
for the central difference second order method based on a 5-point stencil. This is not
surprising given that the matrix of the 9-point scheme will have approximately twice as
many non-zero entries compared to the matrix of the 5-point scheme, and also that indi-
vidual coefficients of the fourth order scheme are given by more elaborate expressions.
We expect though that as the mesh gets finer or we treat three dimensional problems, the
setup time will become insignificant relative to the solution time. This is also true if mul-
tiple problems are solved with different boundary conditions or right hand sides where
changes to the matrix are minimal.

6 Discussion

We have developed and tested a fourth order accurate finite difference scheme for the
variable coefficient Helmholtz equation. In doing so, the variation of coefficients is al-
lowed under the first derivatives in the second order differential operator. Elliptic PDEs
of this type appear in many applications, for example, the propagation of time-harmonic
electromagnetic waves through the media with variable permittivity, or the propagation
of time-harmonic acoustic waves through the media with variable speed of sound.

In two space dimensions, the proposed scheme uses a compact 3×3 stencil. The de-
sign fourth order convergence rate of the scheme has been corroborated experimentally
for a variety of cases, including those with a high wavenumber k.

A fourth order scheme has a reduced phase error compared with a second order
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scheme [15], and so reduces the pollution error. Direct numerical comparison of the new
fourth order scheme with the standard central difference second order scheme shows
substantial gains in accuracy.

A key advantage of the proposed scheme is that its narrow 3×3 stencil yields a sec-
ond order finite difference equation (whereas the order of accuracy is fourth). As the
order of the difference equation matches that of the original differential equation, the
scheme requires no additional boundary conditions beyond those needed for the differ-
ential equation itself. In contradistinction to that, a fourth order accurate scheme on the
conventional broad stencil yields a fourth order difference equation and so requires an
extra pair of boundary conditions, see, e.g., [4, 12, 13].

Another advantage of the proposed scheme is that the resultant matrix has a narrower
bandwidth. Indeed, for an N×N Cartesian grid the dimension of the matrix is N2×N2,
and the bandwidth is ∼ 2(N+1)+1. This is close to the bandwidth that characterizes
the central difference second order scheme, ∼ 2N+1; and experimentally, we have seen
that the cost of inverting the matrix by a direct method in the fourth order case does not
exceed that for the second order case by more than roughly a factor of two. If, however,
the conventional broad stencil is used to build a fourth order approximation, then the
bandwidth of the matrix becomes ∼4N+1. Hence, one can expect that direct solvers will
perform better for the compact scheme than for the conventional fourth order scheme.
Moreover, we are not aware of any efficient reordering strategies in the literature that
would help reduce the bandwidth from about 4N to somewhere around 2N. This is
especially true as reordering is thought to be most useful when applied to real positive
definite matrices [9, 10, 14], whereas our matrices are never positive definite, often not
symmetric either, and may even have complex entries (in the case of Sommerfeld-type
boundary conditions). On the other hand, in the future we plan to transition from direct
solvers to iterative solvers. In that case, the bandwidth will become less of an issue.
However, the ease of setting the boundary conditions will still remain attractive.

We emphasize that our scheme is expected to attain its design accuracy only for suf-
ficiently smooth coefficients. It is not our intention to use the proposed scheme directly
for solving differential equations with discontinuous coefficients. Indeed, discontinuities
in a(x,y) or b(x,y) will lead to the loss of accuracy (of this scheme, as well as of any other
scheme, if implemented in a direct way) and hence to a deterioration of performance.
To analyze the propagation of waves through the more realistic inhomogeneous media
that involve material discontinuities, we will combine the proposed scheme with the
methodology based on Calderon’s projections and the method of difference potentials,
see [21, 27]. This methodology does not involve any one-sided differencing or other fea-
tures that may adversely affect its numerical performance and/or lead to non-physical
effects. Yet it allows to accommodate complex geometries on regular structured grids
with no loss of accuracy. In doing so, the variation of coefficients presents no obstacle,
unlike methods based on boundary integral equations.

The proposed fourth order accurate scheme has been extended to three space dimen-
sions where it uses a compact 3×3×3 stencil.
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