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Abstract. Coupling the immersed boundary (IB) method and the lattice Boltzmann
(LB) method might be a promising approach to simulate fluid-structure interaction
(FSI) problems with flexible structures and complex boundaries, because the former
is a general simulation method for FSIs in biological systems, the latter is an efficient
scheme for fluid flow simulations, and both of them work on regular Cartesian grids.
In this paper an IB-LB coupling scheme is proposed and its feasibility is verified. The
scheme is suitable for FSI problems concerning rapid flexible boundary motion and a
large pressure gradient across the boundary. We first analyze the respective concepts,
formulae and advantages of the IB and LB methods, and then explain the coupling
strategy and detailed implementation procedures. To verify the effectiveness and ac-
curacy, FSI problems arising from the relaxation of a distorted balloon immersed in a
viscous fluid, an unsteady wake flow caused by an impulsively started circular cylin-
der at Reynolds number 9500, and an unsteady vortex shedding flow past a suddenly
started rotating circular cylinder at Reynolds number 1000 are simulated. The first
example is a benchmark case for flexible boundary FSI with a large pressure gradient
across the boundary, the second is a fixed complex boundary problem, and the third is
a typical moving boundary example. The results are in good agreement with the ana-
lytical and existing numerical data. It is shown that the proposed scheme is capable of
modeling flexible boundary and complex boundary problems at a second-order spatial
convergence; the volume leakage defect of the conventional IB method has been reme-
died by using a new method of introducing the unsteady and non-uniform external
force; and the LB method makes the IB method simulation simpler and more efficient.
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1 Introduction

The immersed boundary (IB) method has been developing rapidly since it was first in-
vented to simulate the heart valve flow by Peskin in 1972 [1]. Recently, it was viewed
as a general method for computer simulations of biological systems interacting with flu-
ids [2], and the successful simulations of three-dimensional human heart flows [3–5], in-
sect flight [6], aquatic animal locomotion [7, 8], filament flapping dynamics [9, 10], blood
cell aggregation [11, 12], biofilm processing [13] and parachute dynamics [14, 15] have
exhibited its great potential and profound perspective. However, the existing versions of
the IB method have some inadequacies, within which the solution of the fluid equations
is not efficient enough and needs to be improved [16]. Because the IB method’s fluid
equations must be solved in a regular Cartesian grid, one may think of taking the lattice
Boltzmann (LB) method as a substitute for the original spectral or finite-difference fluid
flow scheme. The LB method [17] is a regular lattice-based scheme for fluid flow simula-
tion, and its simplicity, efficiency, parallelism and aptness for many fluid flow problems
have been extensively verified [17–23]. The fact that both the IB method and the LB
method work on a regular grid or lattice makes the IB-LB coupling possible. Moreover,
the superiority of the LB method for fluid flow simulation may improve the IB method’s
efficiency.

An IB-LB coupling scheme might be promising for simulating fluid-structure inter-
action (FSI) and moving boundary problems. Some preliminary but successful attempts
have been conducted [10–12,24–28]. Feng in 2004 first published an IB-LB coupled scheme
for simulating particle-fluid interaction problems [24]. Later, Peng upgraded the scheme
by using a multi-block lattice and a multi-relaxation-time LB scheme to enhance stability
and to implement local grid refinement [25]. Shu improved the convergence of the cou-
pling scheme by correcting the velocity to enforce the physical boundary conditions [26].
Dupuis simulated the flow past an impulsively started cylinder [27]. Niu improved the
calculation of the boundary force on the fluid [28]. The above works were aimed at rigid
body-fluid interaction, and most of them used the flow past a cylinder or buoyant parti-
cles as the simulation example. On the other hand, for flexible boundary FSI simulations
by the IB-LB coupling, Zhang studied the red blood cell aggregation process [11, 12] and
Zhu proposed a 3D scheme for the sheet flapping phenomenon [10], showing profound
perspective of the approach. To date, only a few works on the IB-LB coupled scheme for
problems with flexible structures have been available.

This paper presents an IB-LB coupled scheme for flexible structure-fluid interaction
and complex boundary problems. It is the preparation for the future 3D simulation of
the human heart dynamics. The merits of the scheme are that it is suitable for rapid
moving boundary and large pressure gradient FSI problems, and the volume leakage is
relatively small. These will be verified by simulating typical problems. In the second
section, the concepts of the IB and LB methods and the detailed coupling algorithm will
be described. In the third section, three flow phenomena, respectively caused by the
oscillating relaxation of a distorted balloon, the impulsive startups of a circular cylinder
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and a rotating cylinder are simulated. The discussion and conclusions will be in the
fourth and fifth sections.

2 The IB-LB coupling scheme

2.1 The IB method for flexible immersed boundaries

2.1.1 The idea and formulation of the IB method

In the IB method, an Eulerian description of the Navier-Stokes (N-S) equations is used
for the fluid dynamics, and a Lagrangian description of curvilinear boundary structural
mechanics is used for objects immersed in the fluid. The immersed boundary is assumed
to consist of massless fibers, so that all of the force generated by distortions of the bound-
ary can be calculated easily and transmitted directly to the fluid. A 2D example with a
single closed immersed boundary fiber (curve) is shown in Fig. 1(a). The boundary curve
and the fluid domain are denoted by Γb and Ω f , respectively. Lowercase letters are used
for Eulerian variables, while uppercase letters are used for Lagrangian variables. Thus,
X(s,t) is a Lagrangian vector function of arc length s (in some reference configuration)
and time t, giving the location of points on Γb. The boundary effect is modeled by a sin-
gular Lagrangian force F(s,t) at the boundary point X(s,t). F(s,t) is determined by the
configuration of X(s,t) and it is properly transferred into the Eulerian forcing term f in
the N-S equations. The N-S equations are solved to determine the flow velocity and pres-
sure throughout the fluid domain Ω f . The immersed boundary moves at the local fluid
flow velocity since it is in contact with the surrounding fluid, while the flow velocity on
the boundary is consistent with the non-slip boundary condition. This scheme may be
governed by the following set of equations:

∂ρ

∂t
+∇·(ρu)=0, (2.1a)

∂(ρu)

∂t
+∇·(ρuu)=−∇p+ν∇·

[

ρ
(

∇u+(∇u)T
)]

+f, (2.1b)

dX(s,t)

dt
=U

(

X(s,t),t
)

=
∫

Ω f

u(x,t)δ
(

x−X(s,t)
)

dx, (2.1c)

F(s,t)=S f X(s,t), (2.1d)

f(x,t)=
∫

Γb

F(s,t)δ
(

x−X(s,t)
)

ds, (2.1e)

where u is the flow velocity, U the boundary speed, ρ the fluid density, p the flow pres-
sure, ν the fluid kinematic viscosity, x the fluid flow coordinate, X the boundary coordi-
nate, s the boundary fiber length, S f the boundary force generation operator, and δ(r)
the Dirac delta function. Eqs. (2.1a) and (2.1b) are the Navier-Stokes equations with
external force f in Eulerian form for the fluid flow, while Eqs. (2.1c) and (2.1d) are the
immersed boundary dynamic equations in Lagrangian form for the boundary. The left
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Figure 1: Schematic of the coupling idea of the immersed boundary method and the lattice Boltzmann method.

part of Eq. (2.1c) describes the boundary kinematics. Eq. (2.1d) denotes the constitutive
law of modeling the force F, which is generated from the configuration of the immersed
boundary due to its elasticity, with S f being problem-dependent. Eq. (2.1e) and the right
part of Eq. (2.1c) are the interaction equations of fluid and boundary, with the former for
spreading the Lagrangian force to the Eulerian force and the latter for imposing the flow
velocity on the boundary to obtain the boundary speed U. The interaction is realized by
using the coupling kernel, namely an integral operation on the Dirac delta function δ(r).

2.1.2 The discrete form of the interaction equations

The above equations are solved on a pair of computational grids: a cell-centered uniform
Cartesian grid for the Eulerian fluid flow variables and a discrete chain of points for the
Lagrangian boundary variables. As a 2D example in Fig. 1, the coordinates of the i, j-th
Eulerian grid node are xij=((i+1/2)∆x,(j+1/2)∆y) (i=0,1,··· ,n; j=0,1,··· ,m), assuming
the lower left corner of the domain is the origin. Thus uij denotes the value of u at xij. The
Lagrangian grid-points are identified by a single index k (k=0,1··· ,nb). Thus Fk denotes
the value of F at the k-th grid-point Xk.

The interaction between fluid nodes and boundary grid-points, governed by the in-
tegration against the Dirac delta function in the continuous Eqs. (2.1c) and (2.1e), is han-
dled by introducing a regularized discrete delta function δh. The discretized forms of
Eqs. (2.1c) and (2.1e), by using δh, may be expressed as

fij =∑
k

Fkδh(xij−Xk)∆sk, (2.2a)

dXk

dt
=Uk =∑

i,j

uijδh(xij−Xk)∆x∆y, (2.2b)
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where h=∆x=∆y is the fluid node spacing and ∆sk is the length of the k-th fiber segment.
Theoretically, ∆sk ≤ h/2 is necessary to guarantee the non-slip boundary condition

and to prevent fluid leakage across the boundary [16].

2.1.3 The discrete delta function

The discrete delta function δh appearing in Eqs. (2.2a) and (2.2b) is a smoothed approx-
imation to the Dirac delta function δ(r). The detailed derivation procedures and several
forms were presented in literature [16]. We apply the common form as follows:

δh(x,y)=
1

h2
φ
( x

h

)

φ
(y

h

)

, (2.3a)

φ(r)=











1
8

(

3−2|r|+
√

1+4|r|−4r2
)

, 0≤|r|<1,
1
8

(

5−2|r|−
√

−7+12|r|−4r2
)

, 1≤|r|<2,

0, |r|≥2.

(2.3b)

The stencil width of φ(r) is 4h, and its profile is shown in Fig. 2.

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

0.0

0.1

0.2

0.3

0.4

0.5

r

r

Figure 2: The profile of the regularized delta function φ(r).

2.1.4 Fluid-boundary interaction

Fig. 1(b) is a graphical representation of the force transformation from a single IB point
Xk to the nearby fluid nodes. Since the force at an IB point contributes to the Eulerian
force density over a 4h×4h square area in the discrete Eq. (2.2a), the integral operation
is known as the force spreading operation. Eq. (2.2a) defines the fluid force fij at node
xij as being calculated by the spreading effect from boundary forces Fk at all IB points Xk

(k = 0,1··· ,nb). However, because the stencil width of δh is 4h, as defined in (2.3b), the
Eulerian force density fij is affected only by the force Fk confined within |Xk−xij|62. On
the other hand, Eq. (2.2b) is a simple interpolation operation and works much like the
spreading operator but in reverse, and it defines the speed Uk at an IB point Xk by fluid
velocities uij at all fluid nodes xij (i = 0,1,··· ,n; j = 0,1,··· ,m). Again, only the velocities
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uij of the 16 nearest nodes (|Xk−xij|62) contribute to the boundary grid-point speed Uk.
Fig. 1(b) could almost be reused as a depiction of Eq. (2.2b) as well, but the interpolated
field at the IB point would be an average of the surrounding values, instead of being
much bigger than all of them. Therefore, though the summation operations of Eqs. (2.2a)
and (2.2b) are on all boundary grid-points and fluid nodes, only those within the stencil
width have nonzero influence. In other words, the interaction is locally defined in the
immersed boundary scheme.

2.1.5 Boundary force calculation

The boundary force F is defined by the fiber configuration. For the fiber with tension,
bending and fastening forces, Eq. (2.1d) can be practically expressed as

F= kc
∂2X

∂s2
−kγ

∂4X

∂s4
−k f (X−Z), (2.4)

in which kc is the fiber tension stiffness, kγ the fiber bending rigidity, k f the fastening
stiffness, and Z the fastening or target position of the fiber.

When discretized along the fiber arc length, Eq. (2.4) may be expressed in the finite
difference form:

Fk =kc

(Xk−1−2Xk+Xk+1

∆s2

)

−kγ

(Xk−2−4Xk−1+6Xk−4Xk+1+Xk+2

∆s4

)

−k f (Xk−Zk). (2.5)

After the fiber forces Fk (k = 0,1,··· ,nb) at fiber points are known, one can use Eq. (2.2a)
to calculate the forces that the boundary exerts on the fluid. Then, it is the task of the LB
method to solve the N-S equations with an external forcing term.

2.2 The LB method for fluid flow

The LB method operates on a regular lattice and decomposes the fluid domain into a set
of lattice nodes. The fluid is modeled as a group of fluid particles that are only allowed to
move between lattice nodes or stay at rest. The composition of the lattice nodes depends
on the chosen lattice model. The most common lattice model for two-dimensional sim-
ulations is the one using a square lattice with nine discrete velocity directions (denoted
as model D2Q9, shown in Fig. 1(c)), while the three-dimensional model normally uses a
cubic lattice with fifteen discrete velocity directions (model D3Q15) [17].

The motion of fluid particles is governed by the discrete lattice Boltzmann equation.
For problems with a body force, the common LB equation with Bhatnagar-Gross-Krook
(BGK) collision operator is

fα(x+eα∆t,t+∆t)− fα(x,t)=−
1

τ

[

fα(x,t)− f
eq
α (x,t)

]

+∆tgα(x,t), (2.6)

where fα is the particle velocity distribution function along the α-th particle velocity di-
rection, f

eq
α the equilibrium distribution function, gα the forcing term function, τ the re-

laxation factor, eα the discrete particle vector, x the lattice grid, and ∆t the time increment.
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Fig. 1(c) shows the discrete particle vectors eα(α=0,1,2,··· ,8) for model D2Q9. The three-
dimensional fifteen particle model D3Q15 has fifteen discrete particle vectors, namely
eα(α = 0,1,2,··· ,14). The equilibrium distribution functions are based on variables ρ, u
and eα, by defining [17]

f
eq
α =wαρ

[

1+3(eα ·u)+
9

2
(eα ·u)2−

3

2
|u|2

]

, (2.7)

where the weighting parameters are

wα =











4
9 , α=0,
1
9 , α=1,2,3,4,
1

36 , α=5,6,7,8,

for D2Q9 and

wα =











2
9 , α=0,
1
9 , α=1,2,··· ,6,
1

72 , α=7,8,··· ,14,

for D3Q15 in [17].
The macroscopic variables, namely the fluid density ρ and flow velocity u, are defined

in terms of the moments of the mesoscopic variable fα(x,t) by

ρ(x,t)=∑
α

fα(x,t), ρ(x,t)u(x,t)=∑
α

eα fα(x,t). (2.8)

The simulation procedures of the LB method are repeating the following steps: first, use
(2.7) to calculate f

eq
α ; second, evolve (2.6) to obtain fα; third, calculate ρ and u by (2.8);

and then insert ρ and u into (2.7) to get f
eq
α again.

Eq. (2.6) or a similar equation, along with gα=3wαf·eα, is widely accepted, and they are
applied in [24–28]. Yet the introduction of the external forcing term by ∆tgα only has first-
order convergence because fij is unsteady or non-uniform. For the problems concerning
rigid or slowly moving boundaries or a flexible boundary with small pressure gradient,
the first-order forcing introduction does not affect the global results. But for a fast moving
boundary or a flexible boundary with a large pressure gradient, a higher order method
is needed. To improve the accuracy of introducing the forcing term, Cheng presented a
second-order convergence scheme [29], where the LB equation changes to

fα(x+eα∆t,t+∆t)− fα(x,t)

=−
1

τ

[

fα(x,t)− f
eq
α (x,t)

]

+
∆t

2

[

gα(x,t)+gα(x+eα∆t,t+∆t)
]

, (2.9)

with forcing term function gα being expressed as

gα =wα

{

A+3B·
[

(eα−u)+3(eα ·u)eα

]}

, (2.10)
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in which A is the source term in the fluid continuity equation and B is the external forcing
term for the momentum equation. For Eqs. (2.1a) and (2.1b) here, we can just let A = 0
and B= f.

The LB model using Eqs. (2.9) and (2.10) has second-order accuracy for spatial reso-
lution of fluid flow with unsteady and non-uniform source and forcing terms, which is
consistent with the original LB model’s accuracy. The second-order nature comes from
the central-difference expression of the forcing term in (2.9) and the second-order term
(eα ·u)eα in (2.10). Because Eq. (2.9) is implicit, owing to the occurrence of the term
gα(x+eα∆t,t+∆t), an iterative procedure should be used at each time step. Normally,
convergent results can be reached within several cycles.

2.3 Coupling procedures

Fig. 1 shows the basic concepts of the new coupling idea. We use the LB method to solve
the fluid equations, namely the N-S Eqs. (2.1a) and (2.1b), use the force formula (2.5) to
calculate the boundary force, use the fluid node external force formula (2.2a) to spread
the boundary force to the fluid, and use formula (2.2b) to interpolate the speeds of the
boundary points from the velocities of the nearby fluid nodes. The exact procedures are
depicted in Fig. 3.
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Figure 3: Coupling procedures of the IB-LB coupled scheme in a coupling cycle.
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In every coupling cycle, an iteration process is needed because the scheme is semi-
implicit. Numbered by m, the iteration ends when the convergence check is satisfied.
Each iteration includes the following steps:

1. Impose the fluid velocity on the boundary and update the position of boundary point to X
n+1
k

by using formula (2.2b);

2. Calculate the force density F
n+1
k at the boundary points by using formula (2.5);

3. Spread the boundary point force F
n+1
k to the fluid external force f

n+1
ij by using formula (2.2a);

4. Calculate the LB method’s external forcing terms gn
α,ij and gn+1

α,ij from fluid external forces f
n
ij and

f
n+1
ij by using formula (2.10);

5. Perform the evolution of the LB equation (Eq. (2.9)) to obtain the distribution functions f n+1
α,ij ;

6. Calculate the fluid flow variables u
n+1
ij by formula (2.8);

7. Compare the boundary point force F
n+1
k at iteration step m+1 with that at iteration step m to

check the convergence.

If the convergence check is satisfied, then the calculation moves to the next coupling
cycle.

3 Scheme verification

3.1 Relaxation of a distorted balloon

To verify the effectiveness and accuracy of the proposed scheme, we compute a rapidly
moving flexible boundary problem considered by [31, 32], where a 2D distorted balloon
immersed in an incompressible fluid relaxes to its circular equilibrium shape. It may be
an appropriate benchmark case for both the immersed interface method (IIM) [31, 32]
and the IB method, because it is related to rapid boundary motion and large pressure
gradient, and most importantly, the measurement of volume leakage is very convenient.
In this example, a balloon is first distorted to a flower shape and the initial velocity and
pressure inside and outside it are assumed to be zero. When the balloon is released, the
balloon contraction drives the fluid to oscillate. The fluid flow and the balloon motion are
fully coupled. At the final equilibrium, the velocity will attenuate to zero and the inside
and outside pressures approach piecewise constant with a jump across the wall. Slightly
different from [31, 32] where the fluid is incompressible and the number of flower leaves
is five, we consider a weakly compressible fluid and a distorted six-leaf flower-shaped
balloon in this case.

The distorted initial shape of the balloon is expressed in the cylindrical coordinates
(r,θ) as

r(θ)= r0[1+εcos(kθ)], 0≤ θ≤2π,
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Figure 4: Velocity vectors and pressure distribution patterns induced by the relaxation of the distorted balloon
at different times, simulated by 200×200 lattice. (a) T =0.0, (b) T =0.5, (c) T =1.5, (d) T =2.5, (e) T =3.0,
(f) T =5.5, (g) T =7.5, (h) T =9.5, (i) T =14.0, (j) T =1000.0.



Y. Cheng, H. Zhang and C. Liu / Commun. Comput. Phys., 9 (2011), pp. 1375-1396 1385

where r0, θ and k are constant, with k being the number of leaves. Here we choose r0=0.5,
ε=0.4 and k=6, thus the initial shape is that in Fig. 4(a). The initial enclosed area (or vol-
ume) is Ai=r2

0(1+0.5ε2)π=0.848229 and the initial perimeter (length) is li=5.97229. If we
take the perimeter length at rest state (before distortion) to be lrest =0.5li =2.98615, then,
when the balloon relaxes to its equilibrium state, the radius, area and inside pressure
should be re = 0.5182599, Ae = 0.843811, pe = 0.001745, respectively. These are the ana-
lytical values with which the following numerical results are to be compared. Since no
explicit analytical formula is available, some of these values are calculated from implicit
analytical formulae by MathCAD.

We simulate this FSI problem on a [−1,1]×[−1,1] domain, with the initial velocity
u(x,y)= 0 and initial pressure p(x,y)= 0 on the whole field, and the pressure boundary
condition pside = 0 at the four sides. The first simulation uses an n×m = 200×200 LB
lattice to discretize the domain, and accordingly the 2r0 resolution is 100. The balloon
boundary is discretized to nb = 2200 points to ensure ∆sk ≤ h/2. The properties for the
balloon boundary are kc=1.0, kγ =0.0 and k f =0.0, and for the fluid are ν=0.1 and ρ=1.0.
The largest instant Reynolds number is Remax =(2r0×umax)/ν=100×0.241/0.1=241, in
which the maximum velocity is measured during the relaxation process. To monitor the
histories of flow and boundary parameters, some probe points are assigned. As shown
in Fig. 4(a), points a and b are the particular points of the boundary, and points c and d
are particular locations in the flow field.

Fig. 4 shows the velocity vectors and pressure distributions at typical times T =
0.0,0.5,1.5,2.5,3.0,5.5,7.5,9.5,14.0, and 1000.0, in which the interaction process of the fluid
and balloon is demonstrated. Fig. 5 shows the oscillating histories of the enclosed volume
A within the balloon, the radii ra and rb of the boundary points a and b, and the pressure
pc at the center point c of the flow field. To integrate the flow patterns and parameter his-
tories for better understanding of the physical process, the corresponding times in Fig. 4
are marked in Fig. 5. It is shown that the balloon contracting force firstly actuates the fluid
flow, generating abrupt pressure differences across the boundary, and then the pressure
gradients react to the boundary, additionally affecting the boundary motion and balloon
shape. The convex boundary regions move inward while the concave boundary regions
move outward. The exchanges of shape regions and the fluctuations of fluid flow demon-
strate a strong fluid-structure interaction phenomenon. This phenomenon is a decaying
periodic process, with the final steady state being the balance of the boundary force and
the inner pressure. The details may be described as follows. When the balloon begins
to relax, the boundary tension strongly pushes the resting fluid to flow rapidly inward
in the convex regions and outward in the concave regions (uxa,max = uxa|T=1.6 =−0.174,
uyb,max = uyb|T=0.05 = 0.241), generating abrupt pressure gradients across the boundary
(∆p|T=0.5 ≈ 0.056) and 12 vortices around the boundary (Fig. 4(b)). Accelerated by the
pressure gradients, the fluid continues to flow in the former directions and inversely
pushes the boundary to reverse these concave and convex shapes (Fig. 4(c), (d)). As the
reverse motion continues, the boundary tension increases and begins to retard the fluid,
forming apparent pressure gradients in the concave and convex regions, which are re-
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Figure 5: Oscillation histories of the radii, the enclosed volume and the center pressure during the early stage
of the relaxation of the distorted balloon, simulated by 200×200 lattice.

verse to the initial concave and convex regions (Fig. 4(e)). The fluid and boundary interact
in this manner, generating vivid regular vortex patterns and boundary shapes (Fig. 4(f),
(g)). The interaction and oscillation attenuate gradually due to viscosity (Fig. 4(f), (g))
and finally reach the equilibrium state (Fig. 4(j)), in which the velocity is zero and the
pressure has an abrupt jump between the inside and outside of the balloon.

Fig. 6 shows the pressure jump wire surface map at time T = 1000.0. It is apparent
that the pressures both inside and outside the balloon are flat and smooth but the jump
between them is sharp, with the transition region limited within the 4-lattice bandwidth.
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Figure 8: Long-range oscillation histories of the pressure and velocity of the relaxing balloon, simulated by
200×200 lattice.

Figs. 7 and 8 are the extension of Fig. 5. Fig. 7 depicts the long-range oscillating his-
tories of ra, rb and A, while Fig. 8 exhibits the corresponding fluctuations of pc, uxd and
uyd, which are the velocity components at flow field point d. We know that the large scale
oscillation, namely the exchanging motion between concave regions and convex regions,
lasts several cycles until being damped around time T = 30, indicating the deformation
process of the balloon shape. After T = 30, ra and rb oscillate with good synchroniza-
tion, indicating the elastic contraction and relaxation process of the balloon. This wavy
process gradually attenuates, and from time T=800 to 1000.0 all the boundary motion
and fluid flow disappear. Figs. 7 and 8 also provide some near-equilibrium parameters,
which are listed in Table 1 for comparison with the analytical solutions. From Table 1
we know that the numerical results agree very well with the analytical solutions, with
the relative volume error less than 0.5%, the relative radius errors less than 0.3%, the
relative pressure error less than 3.5%, and the velocity error less than 1.3E-5, indicating
a quite good volume conservation characteristic. The similar problem simulated by the
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Table 1: Parameters of the relaxed balloon (T=1000.0) compared with analytical solutions.

Parameters Area A Radius ra = rb Pressure pc Velocity uxd

Simulated 0.8403 0.5171 0.00168 1.3e-5
Analytical 0.8438 0.5183 0.00174 0.000
Difference 0.41% 0.23% 3.45% 1.3e-5

Table 2: Spatial convergence analysis of balloon relaxation at time T =2.0.

Lattice for 2r0 100 200 300 400 500 600
A|T=2.0 0.82542 0.82603 0.82621 0.82629 0.82634 0.82638

Volume Error EA 1.16E-3 4.13E-4 2.06E-4 1.06E-4 4.35E-5 0.0000
Order -1.4858 -1.7154 -2.31634 -3.9801

uxd|T=2.0 0.04073 0.03982 0.03963 0.03954 0.03949 0.03946
Velocity Error Eud 3.20E-2 9.25E-3 4.19E-3 2.05E-3 8.34E-4 0.0000

Order -1.7945 -1.9524 -2.4865 -4.0288
pc|T=2.0 0.00432 0.00330 0.00309 0.00301 0.00297 0.00294

Pressure Error Epc 4.67E-1 1.20E-1 5.05E-3 2.33E-2 8.92E-3 0.0000
Order -1.9638 -2.1302 -2.6960 -4.2961

conventional IB method results in 10% level of volume leakage, and when improved by
projection method, which needs much more computational effort, the value still remains
above the 1% level [30,33,35]. These suggest that the current IB-LB coupling has valuable
merits in volume conservation and computational efficiency.

To analyze the convergence feature, we keep the normalized parameters unchanged
and refine the fluid lattice, boundary grid and time step. The values in Fig. 9 and Table 2
are taken at normalized time T = 2.0 by different fluid lattice and boundary grid reso-
lutions. The relative errors, namely volume error EA, velocity error Eud at point d and
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Figure 9: Spatial convergence characteristics of the IB-LB coupling scheme for the balloon relaxation flow (at
time T =2.0), simulated by different lattice resolutions.
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pressure error Epc at point c, are defined based on the finest resolution of 2r0 =1.0 by 600
lattice, owing to no analytical solution being available. The time T=2.0 is special because
of being close to the time of the largest velocity or fastest boundary motion. Generally
speaking, the second-order convergence is evident for volume conservation, velocity and
pressure, consistent with the accuracy of the LB method. The higher convergence rates
in large resolution cases, namely resolutions 400 and 500, are not the real rates because
we substitute the values of resolution 600 for the analytical ones.

3.2 Flow past an impulsively started circular cylinder

The flow past an impulsively started circular cylinder is a benchmark case for verify-
ing a numerical method’s ability to treat curved complex boundary. In [27] the flow at
Reynolds number 550 was simulated. Here we simulate the Re = 9500 case, which was
studied both numerically and experimentally in [37]. We impose the non-slip boundary
condition by fastening the IB boundary to the target position. The target position Z in
Eq. (2.4) is described as the circular cylinder. Given a very large fastening stiffness k f , the
IB boundary will approximate to the circular cylinder. The parameters for this case are
Reynolds number Re=9500, cylinder radius r =1, far field uniform velocity U∞ =1, and
kinematic viscosity ν=2.10526E−4. The normalized time is defined as T=U∞t/r, where
t is the actual time. We use a 2000×2000 lattice to simulate the whole flow field, locate
the cylinder of 100 lattice in diameter at the center, discretize the IB boundary to nb =644
points, and set LB fluid flow properties u =0.1, ρ=1000, ν =2.10526E−3 and boundary
properties kc =1000, kγ =1000, k f =10000. The flow velocity within the cylinder is reset
to 0 at every time step.

Fig. 10 demonstrates the streamline and pressure distribution patterns at different
times T = 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 and 4.0, in which the emergence and develop-
ment of the so-called β and α vortices are vividly demonstrated. Fig. 11 gives two typical
streamline patterns from literature [37], in which higher-order finite-difference schemes
are used to solve the stream-function and vorticity formulae of the N-S equations. Our
corresponding flow patterns are consistent with these accurate results. The pressure
patterns show quite reasonable distributions with correct stagnation and focus points.
Fig. 12 shows the main wake length variation curve compared with the experimental
and numerical data of [37]. The present wake length values fit the experimental data
despite of some small deviations, although not as good as the results of the higher-order
finite-difference scheme. Generally speaking, our results of this Re = 9500 impulsively
started circular cylinder flow agree well with the existing data, and the IB-LB scheme’s
effectiveness for fixed complex boundaries is successfully verified.

3.3 Flow past an impulsively started rotating cylinder

The flow past an impulsively started rotating cylinder is selected to verify the IB-LB
scheme’s ability for moving rigid boundary problems. The boundary treatments are sim-
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Figure 10: Flow patterns around the impulsively started circular cylinder at Re = 9500 and times T=1.2, 1.6,
2.0, 2.4, 2.8, 3.2, 3.6 and 4.0. The coordinates are in the lattice unit.

Figure 11: Flow patterns around the impulsively started circular cylinder at Re = 9500, times T=2.0 and 4.0,
adopted from reference [37].

ilar to that for the above Re = 9500 impulsively started circular cylinder. The only dif-
ference is that the target position Z is updated based on the rotating speed. The relative
rotating speed is defined as α = rω/U∞, where ω is the angular velocity of the cylinder
about its axis. A 2000×2000 lattice for the flow field, the length of 25 lattice for the cylin-
der radius r, and nb=451 points for the boundary are applied. The properties for LB fluid
flow are u=0.1, ρ=1 and ν=0.005, and for IB boundary are kc =1, kγ =10 and k f =20.

Fig. 13 presents the streamline patterns induced by an anticlockwise rotating cylin-
der with Re = 1000, α = 1 at different times T = 4.0,7.0,12.0, and 16.0. The generation
and shedding of the wake vortex are clearly shown, which qualitatively agree with the
existing simulated results such as Fig. 14 from [38].

This case suggests that our scheme is capable of simulating moving rigid boundary
problems with large Reynolds number. For small Reynolds number problems, extensive
verifications have been conducted in [24–28].
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Figure 14: Flow patterns around the impulsively started rotating circular cylinder at Re = 1000, times T=7.0
and 16.0, adopted from reference [38].
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4 Discussion

The LB method can promote the computational efficiency of the IB methods. This is
partly because the finite-difference or spectral fluid flow solver in the conventional IB
methods is not so efficient, partly because the projection calculation for reducing the vol-
ume leakage further increases the burden, and partly because the parallel computation of
the LB method is much more efficient and easier to implement. These advantages have
been demonstrated by [24–28] concerning rigid boundary flows, and by [10–12] concern-
ing deformable and flexible boundary flows.

As stated in [16], the IB method has instability, volume leakage and near boundary
error problems, which are dependent on the fluid solver and the discrete delta function.
The instability hinders the simulation of problems with large boundary tension and pres-
sure gradient across the boundary. The volume leakage affects the volume conservation
in closed boundaries and the realization of the non-slip condition on the boundary, lead-
ing to a mismatch of fluid velocity and fiber speed. The fluid variables within the delta
stencil width near the boundary can only achieve first-order spatial accuracy, even if the
fluid solver is a high-order one, due to the first-order nature of the normal discrete delta
functions [39, 40].

To simulate strong flexible boundary FSI problems and larger Reynolds number rigid
boundary flows, the accuracy of boundary treatment, volume leakage and stability are all
need to be improved. This paper demonstrates that the proposed IB-LB coupling scheme
is suitable for these kinds of problems, because it can treat rapid boundary motion and
large pressure gradient with quite good effects. Intensive and detailed analysis on cou-
pling procedures, volume leakage and convergence is given, which is not available in the
existing literature.

In this work, we find that the proposed IB-LB scheme with the new forcing term
proposed in literature [29] is effective not only for minimizing the volume leakage and
errors near the boundary, but also for improving stability. Compared with the existing IB
methods, including the conventional IB method and the ones with volume conservation
improvement, the volume leakage occurred in the present simulations is smaller if not
the smallest, with only 0.41% for the balloon relaxation case here. The small volume
leakage is very important for retaining the inside pressure of a closed boundary. Using
the conventional IB method, the balloon will gradually shrink towards its rest state and
the inside pressure will finally disappear (see the Fig. 8.5 in [33]). On the other hand, if the
normal forcing term LB method is used (e.g., that in Eq. (2.6)), the balloon will gradually
inflate (negative volume leakage) and the inside pressure will accordingly increase, and
finally the balloon will burst owing to instability. Fig. 15 shows the volume histories by
the normal forcing term, comparing with that by the new forcing term. It is evident that
all simulations with the normal forcing term blow up before T=0.3, a very early stage of
the balloon relaxation. That is why we do not present the results by the normal forcing
term LB method in the previous section. The negative volume leakage is proportional
to the pressure gradients across the boundary, but the flux is from lower pressure region
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resolutions.

to higher pressure region. To simulate the large pressure jump problems, such as heart
flow, the volume leakage effect should be carefully treated. However, when simulating
open boundary [9, 10], rigid boundary [24–28] or small pressure jump [11, 12] problems,
this negative volume leakage is negligible.

The forcing term in Eq. (2.9) gives second-order spatial and temporal convergence ow-
ing to its central-difference form, which has been verified in [29]. This is consistent with
the LB method’s second-order accuracy (when δt/δx=c is fixed, the LB method is second-
order both in space and time). In the balloon relaxation case, all the volume, velocity and
pressure demonstrate second-order convergence characteristics in Fig. 9. Apart from the
tiny volume and velocity errors, the pressure error being 3.45% after time T=1000.0 in-
dicates quite good accuracy. The pressure jump between the inside and outside of the
balloon is sharp with the transition width 4h, which is consistent with the stencil width
of the discrete Dirac delta function δh. Theoretically we cannot further sharpen the tran-
sition unless a narrow stencil width δh is used. We have tried 6 forms of δh in [16, 39],
including the ones of 2h and 3h bandwidths, and concluded that Eq. (2.3b) is the best in
terms of stability and accuracy. The stability of our scheme is relatively good. One reason
may be that the second-order forcing term can combine the effects of the inside pressure
and outside pressure across the pressure jump, while the normal forcing term separates
the effects owing to the upwind nature. Another reason may be that the implicit iteration
at every time step helps stabilize numerical oscillations.

Some further improvements should be made to the proposed scheme. The first one
should be stability. Our experience shows that the scheme here has better stability than
the normal IB-LB schemes, but is still unable to simulate the balloon relaxation with a
Reynolds number larger than thousands. To simulate practical problems, such as the
ventricular systole FSI, large boundary tension and pressure difference as well as fast
flow velocity and boundary deformation need to be treated. On the other hand, the LB
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method itself has stability problems in these fast transient situations. The LB model with
a BGK collision operator used in this work is relatively weak, although it is simple. To fur-
ther improve stability, the multi-relaxation-time LB scheme [34, 41] should be applied in
future work. The second improvement should be avoiding fiber adherence. It is an open
problem for all IB methods. If there are two or more fibers located in the same position
or within the Dirac delta stencil width, it is very difficult to separate them. This problem
occurs in simulations such as red blood cell aggregation and heart valve FSI problems, in
which the boundaries (fibers) frequently come into contact. Because no effective method
has been found so far, we just let the two boundaries stay apart beyond a distance of 2h.
The third one should be three-dimensional treatment of boundary mechanical formula.
For the 2D problems such as the test cases here, using fiber to stand for boundary and
formulating the boundary force by Eq. (2.4) are appropriate. However, when 3D curva-
ture boundary surfaces need to be modeled, the existing fiber or fiber cluster depiction is
not convenient. Therefore, a fiber network approach should be proposed and examined
in future work.

5 Concluding remarks

This paper proposed an IB-LB coupling scheme for rapidly moving flexible boundary FSI
problems. It is a preparation for modeling the heart flows similar to [3–5] in the future.
The basic idea and detailed implementation procedures have been presented and the ef-
fectiveness has been verified. The novelty of the scheme comes from the better accuracy
and stability and the ability to treat rapidly moving boundary and large pressure gra-
dient across the boundary. These have been well verified by the successful simulation
of the distorted balloon relaxation, in which the intensive quantitative analysis has been
conducted. The scheme is also effective for complex rigid boundary flows, which was
verified by the simulations of large Reynolds number impulsively started cylinder and
rotating cylinder flows.

From this work we may conclude that (1) the LB method can properly work as the
fluid flow solver in the IB method; (2) the proposed IB-LB coupling scheme has advan-
tages in computational efficiency and volume conservation; (3) emphases should be laid
on intensive accuracy analysis and stability improvement in the future; and (4) applying
the scheme to more practical problems is also important for its further promotion.
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