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Abstract. A new stable numerical method, based on Chebyshev wavelets for numeri-
cal evaluation of Hankel transform, is proposed in this paper. The Chebyshev wavelets
are used as a basis to expand a part of the integrand, r f (r), appearing in the Hankel
transform integral. This transforms the Hankel transform integral into a Fourier-Bessel
series. By truncating the series, an efficient and stable algorithm is obtained for the nu-
merical evaluations of the Hankel transforms of order ν >−1. The method is quite
accurate and stable, as illustrated by given numerical examples with varying degree of
random noise terms εθi added to the data function f (r), where θi is a uniform random
variable with values in [−1,1]. Finally, an application of the proposed method is given
for solving the heat equation in an infinite cylinder with a radiation condition.
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1 Introduction

There are several integral transforms which are frequently used as a tool for solving nu-
merous scientific problems. It is well known that the Fourier transform (FT) is used
to obtain spatial spectrum of optical light [1]. Fourier optics is widely used in optical
instrument design, optical propagation through lenses and in quadratics graded index
mediums. Most classical optical systems like mirrors or lenses are axially symmetrical
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devices. In many practical problems, data are often acquired in such a form that is de-
sirable to perform a two-dimensional polar Fourier transform that is a Hankel transform
(HT) rather than the Cartesian forms. So, we transform the Cartesian coordinates into the
polar coordinates.

Let f (x,y) be an input field such that it can be separated as f (x,y)= f1(x) f2(y), where
f1 and f2 are independent functions. Then its two-dimensional Fourier transform f̂ is
also separable as the same symmetry property is transposed through a linear FT. Hence,
f̂ (u,v)= f̂1(u)· f̂2(v).

Changing to the polar coordinates and if f (r,θ) = f (r) is axially symmetrical, then
in [2], it was shown that

f̂ (k,ϕ)=
1

2

∞∫

0

d(r2) f (r)J0(kr)≡F0(k), (1.1)

which is also axially symmetrical in the Fourier frequency domain, where F0 is the Hankel
transform of order zero. The general Hankel transform pair with the kernel being Jν is
defined as

Fν(p)=

∞∫

0

r f (r)Jν(pr)dr, (1.2)

and HT being self reciprocal, its inverse is given by

f (r)=

∞∫

0

pFν(p)Jν(pr)dp, (1.3)

where Jν is the νth-order Bessel function of first kind.
The Hankel transform arises naturally in the discussion of problems posed in cylin-

drical coordinates and hence, as a result of separation of variables, involving Bessel func-
tions. The Hankel transform is frequently used as a tool for solving numerous scientific
problems. It is widely used in several fields like, elasticity [4], optics [5, 6], fluid mechan-
ics [7], seismology [8], astronomy and image processing [9–16]. The Hankel transform
becomes very useful in analysis of wave fields where it is used in mathematical han-
dling of radiation, diffraction, and field projection. Recently, it has been utilized to study
pseudo-differential operators. Singh and Pandey [17] used HT of order ν, ν∈R to study a
special class of pseudo-differential operator (PDO) (−x−1D)ν, D=d/dx and proved that
the (PDO) is almost an inverse of HT operator hν in the sense that

hνo(−x−1D)ν(ϕ)=h0(ϕ)

over certain Freshet space F, thus representing the PDO as a Fourier-Bessel series. Fur-

ther, in 1995, Singh [18], using the HT representation of the PDO, proved that e−αx2
,

Reα>0 are the eigenfunctions and e−x2/2 is a fixed point of (−x−1D)ν, ν∈C.
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Several papers have been written to the evaluation of the Hankel transform in gen-
eral and the zeroth order in particular. Analytical evaluations of (1.2) and (1.3) are rare
and their numerical computations are difficult because of the oscillatory behavior of the
Bessel function and the infinite length of the interval. Since seminal work by Siegman [19]
in 1977, a number of algorithms for the numerical evaluation of the Hankel transform
have been published for both zero-order [5,6,9–12,20–24] and high-order [25–33] Hankel
transform. Unfortunately, the efficiency of a method for computing Hankel transform
is highly dependent on the function to be transformed, and thus it is difficult to choose
the optimal algorithm for given function. In [21], the authors used Filon quadrature Phi-
losophy to evaluate zero-order Hankel transform. They separated the integrand into the
product of (assumed) slowly varying component and a rapidly oscillating one (in this
case, former is r f (r) and the later is Jν(pr)). This methods works quite well for comput-
ing F0(p), for p≥ 1, but the calculation of inverse Hankel transform is more difficult, as
F0(p) is no longer a smooth function but a rapidly oscillating one. Moreover, the error
is appreciable between 0< p<1. In 1998, Yu et al. [23] gave another method to compute
zero-order quasi discrete HT by approximating the input function by a Fourier-Bessel se-
ries over a finite integration interval. It lead to a symmetric transformation matrix for the
HT and the IHT that satisfies the discrete form of the Parseval theorem.

Later in 2004, Guizar-Sicairos et al. [34] obtained a powerful scheme to calculate the
HT of integer order ν≥0 by extending the zero-order HT algorithm of Yu [23] to higher
orders. Their algorithm is based on the orthogonality properties of Bessel functions. Post-
nikov [32], proposed, for the first time, a novel and powerful method for computing zero
and first order HT by using Haar wavelets. Refining the idea of Postnikov [32], we [35,36]
obtained two more algorithms for numerical evaluation of HT of order ν > 1 using lin-
ear Legendre multi-wavelets and rationalized Haar wavelets which were shown to be
superior to the other mentioned algorithms.

The data function f (r) when measured experimentally may contain some noise terms
affecting the accuracy of the algorithms for computing the HT. Thus, it is desirable to have
algorithms stable under small random perturbation in the data function.

The purpose of this communication is to present a stable algorithm that is quite ac-
curate and fast for numerical evaluation of the HT using Chebyshev wavelets. Test func-
tions with known analytic HT are used with random noise term εθi added to the data
function r f (r), where θi is a uniform random variable with values in [−1,1], to illustrate
the stability and efficiency of the proposed algorithm. As an application of the theory de-
veloped, we solve the heat flow problem in an infinite cylinder with radiation condition.

2 The Chebyshev wavelets

Wavelets are a class of function constructed from dilation and translation of a single func-
tion called the mother wavelet. When the dilation and translation parameters a and b
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vary continuously, the following family of continuous wavelets are obtained

ψab(t)= |a|−1/2ψ

(
t−b

a

)
, a,b∈R, a 6=0.

When the parameters a and b are restricted to discrete values as a = 2−k, b = n2−k, then,
we have the following family of discrete wavelets

ψkn(t)=2k/2ψ(2kt−n), k,n∈Z,

where the function ψ , the mother wavelet, satisfies
∫

R
ψ(t)dt=0.

We are interested in the case where ψkn constitutes an orthonormal basis of L2(R). A
systematic way to do this is by means of multiresolution analysis (MRA).

In 1910, Haar [37] constructed the first orthonormal basis of compactly supported
wavelets for L2(R). It has the form {2j/2ψ(2jt−k): j,k∈Z} where the fundamental wavelet
ψ is constructed as follows: Construct a compactly supported scaling function ϕ by the
two-scale scaling relation ϕ(t) = ϕ(2t)+ϕ(2t−1) together with the normalization con-
straint

∫
ϕ(t)dt=1. A solution of this recursion that represents ϕ in L2(R) is χ[0,1). Then

ψ(t)= ϕ(2t)−ϕ(2t−1). The Haar wavelets are piecewise continuous and have disconti-
nuities at certain dyadic rational numbers.

In seminal papers; Daubechies [38,39], constructed the first orthonormal basis of con-
tinuous compactly supported wavelets for L2(R). They have led to a significant literature
and development, both in theoretical and applied arenas.

Later in 1989, Mallet [40] studied the properties of multiresolution approximation and
proved that it is characterized by a 2π-periodic function. From any MRA, one can derive
a function ψ(t) called a wavelet such that {2j/2ψ(2jt−k) : j,k∈Z} is an orthonormal basis
of L2(R). The MRA showed the full computational power that this new basis for L2(R)
possessed. In the same year, Mallet [41] applied MRA for analyzing the information
content of the images.

Note that a system {ϕk :k∈Z} is called a Riesz basis if it is obtained from an orthonor-
mal basis by means of a bounded invertible operator [42].

Definition 2.1. The increasing sequence {Vk}k∈Z of closed subspaces of L2(R) with scaling
function ϕ∈V0 is called MRA if

(i).
⋃

kVk is dense in L2(R) and
⋂

kVk ={0},

(ii). f (t)∈Vk iff f (2−kt)∈V0,

(iii). {ϕ(t−n)}n∈Z is a Riesz basis for V0.

Note that (iii) implies that the sequence {2k/2 ϕ(2kt−n)}k,n∈Z is an orthonormal basis
for Vk.

Let ψ(t) be the mother wavelet, the ψ(t)=∑n∈Z an ϕ(2t−n) and {2k/2 ϕ(2kt−n)}k,n∈Z

forms an orthonormal basis for L2(R) under suitable conditions [38].
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For k = 1,2,3,··· and n = 1,2,3,··· ,2k−1, the Chebyshev wavelets ψnm(t) are defined
as [43]

ψnm(t)=





2k/2T̃m (2kt−2n+1), for
n−1

2k−1
≤ t<

n

2k−1
,

0, otherwise,
(2.1)

where

T̃m(t)=





1√
π

, m=0,

√
2

π
Tm(t), m>0,

(2.2)

and t is the time. The well known Chebyshev polynomials Tm(t) of the first kind and of
degree m are orthogonal with respect to the weight function w(t)= 1/

√
1−t2. They are

defined on [-1,1] by the following recurrence relation:

T0(t)=1, T1(t)= t and Tm+1(t)=2tTm(t)−Tm−1(t), m=1,2,3,··· .
Note that in dealing with Chebyshev wavelets the weight function w(t) have to be dilated
and translated as

wn(t)=w(2kt−2n+1),

to get orthogonal wavelets forming an orthonormal basis for L2
w[0,1].

3 Outline of algorithm

The function f (r) representing physical fields are either zero or have an infinitely long
decaying tail outside a disk of finite radius R. Hence, in most practical applications either
the signal f (r) has a compact support or for a given ε there exists a R>0 such that

∣∣∣
∫ ∞

R
r f (r)Jν(pr)dr

∣∣∣< ε,

which is the case if f (r)=O(rη), as r→∞, where η <−3/2. Therefore, in either case,

F̂ν(p)=

R∫

0

r f (r)Jν(pr)dr =

1∫

0

r f (r)Jν(pr)dr (by scaling) (3.1)

known as the finite Hankel transform (FHT) is a good approximation of the HT as given
by (1.2). The algorithm is efficient if f decays faster than r−3/2 outside some disk of
finite radius R which includes the majority of input signals of physical interest. Writing
r f (r)= g(r) in equation (3.1), we get

F̂ν(p)=

1∫

0

g(r)Jν(pr)dr. (3.2)
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We may expand g(r) as follows

g(r)=
∞

∑
n=1

∞

∑
m=0

cnmψnm(r), (3.3)

where

cnm = 〈g(r),ψnm(r)〉wn =
∫ 1

0
wn(r)g(r)ψnm(r)dr.

By truncating the infinite series (3.3) at levels n = 2k−1 and m = M, we obtain an ap-
proximate representation for g(r) as

g(r)≈
2k−1

∑
n=1

M

∑
m=0

cnmψnm (r)=CTΨ(r) , (3.4)

where the matrices C and Ψ are given by

C=[c10,c11,··· ,c1M,c20,··· ,c2M,··· ,c2k−10,··· ,c2k−1M]T, (3.5)

Ψ(r)= [ψ10(r),ψ11(r),··· ,ψ20(r),··· ,ψ2M(r),··· ,ψ2k−10(r),··· ,ψ2k−1M(r)]T . (3.6)

Substituting (3.4) in (3.2), we get

F̂ν(p)≈CT

1∫

0

Ψ(r)Jν(pr)dr. (3.7)

Taking M=2 and k=2, Eq. (3.7) reduces to

F̂ν(p)≈CT




1∫

0

ψ10(r)Jν(pr)dr,

1∫

0

ψ11(r)Jν(pr)dr,··· ,
1∫

0

ψ22(r)Jν(pr)dr




T

, (3.8)

where the six basis functions are given by

ψ10(r)=
2√
π

, ψ11(r)=
2
√

2√
π

(4r−1), ψ12(r)=
2
√

2√
π

[
2(4r−1)2−1

]
, 06r<

1

2
, (3.9a)

ψ20(r)=
2√
π

, ψ21(r)=
2
√

2√
π

(4r−3), ψ22(r)=
2
√

2√
π

[2(4r−3)2−1],
1

2
6r<1. (3.9b)

We re-label and write Eq. (3.8) as

F̂ν(p)≈ [c0,c1,c2,c3,c4,c5][I
0
ν , I1

ν , I2
ν , I3

ν , I4
ν , I5

ν ]
T , (3.10)
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where Ik
ν ’s are (k+1)th place integral in Eq. (3.8) and are evaluated by using the following

formulae:

a∫

0

Jν (t)dt=2 lim
N→∞

N

∑
n=0

Jν+2n+1(a), Reν>−1, [44, p. 333]

a∫

0

t1−ν Jν (t)dt=
1

2ν−1Γ(ν)
−a1−ν Jν−1(a) , [44, p. 333]

a∫

0

tµ Jν(t)dt=
aµΓ( ν+µ+1

2 )

Γ( ν−µ+1
2 )

lim
N→∞

N

∑
n=0

(ν+2n+1)Γ( ν−µ+1
2 +n)

Γ( ν+µ+3
2 +n)

Jν+2n+1(a),

Re(ν+µ+1)>0, [45, p. 480]. (3.11)

In 2004, Piessens [46] approximated the input field g(r) on [0,1] as

g(r)≈ rα
N

∑
k=o

cnT∗
k (r), (3.12)

where T∗
k (r) is the shifted Chebyshev polynomials of degree k and α>0 is a real parame-

ter. Thus approximating the Hankel transform F̂ν(p) as,

F̂ν(p)≈
N

∑
k=0

ck

1∫

0

rα Jν(pr)T∗
k (r)dr

=CT




1∫

0

rαT∗
0 (r)Jν(pr),

1∫

0

rαT∗
1 (r)dr,··· ,

1∫

0

rαT∗
N Jν(pr)dr




T

=[c0,c1,c2,··· ,ck][M0,M1,M2,··· ,MN]T , (3.13)

where

Ml =

1∫

0

rαT∗
l (r)Jν(pr)dr, l =0,1,··· ,N. (3.14)

These modified moments Ml’s (similar to I l
ν’s in Eq. (3.10)) satisfy a homogenous, lin-

ear, nine-term recurrence relation. But the forward and backward recursion are asymp-
totically unstable. However, the instability of forward recursion is less pronounced if
l 6 Rp/2, but for l > Rp/2 the loss of significant figures increases and forward recursion
is no longer applicable. In that case, these recurrence relations have to be solved as a
boundary value problem with six initial values and two end values, making the evalua-
tion of Ml’s more difficult than that of I l

ν’s.
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In our proposed method, the integrals I l
ν l=0,1,2,··· ,5 are extremely easy to evaluate.

For example,

I0
ν =

2√
π

1∫

0

Jν(pr)dr≈ 4

p
√

π

N

∑
n=0

Jν+2n+1(p).

Thus we see that these integrals I l
ν are approximated by finite sums of different orders

Bessel functions Jµ’s evaluated at the particular point p. Besides the simplicity of our
algorithm in computation over [46], it is also stable under the noise in the input field
where as the algorithm proposed in [46] is not tested for the stability.

4 Numerical results

In this section we discuss, the implementation of our numerical method and investigate
its accuracy and stability by applying it on numerical examples with known analytical
HT.

In all the examples, the exact data function is denoted by g(r) and the noisy data
function gε(r) is obtained by adding an ε random error to g(r) such that gε(ri)=g(ri)+εθi,
where ri = ih i = 1,2,··· ,L, Lh = 100 and θi is a uniform random variable with values in
[−1,1] such that

max
06i6L

|gε(ri)−g(ri)|6 ε.

The following examples are solved with and without random perturbations to il-
lustrate the efficiency and stability of our method by choosing four different values of
the random error ε as ε = 0,0.001,0.002 and 0.005 computing the error Ej(p) = Approx-
imate HT obtained from (3.10) with random error ε i - the exact HT, j = 0,1,2,3. The
various Ej(p)’s are shown in Figs. 2-3, 5-6, 8-9, 11-12, 14-15 and 17-18. Note that the
various graphs in the following examples are plotted by choosing the sample points as
p = 0.01(0.01)P, where P = 20 in Figs. 1, 4, 7, 10, 13, 16 and P = 100 in Figs. 2-3, 5-6, 8-9,
11-12, 14-15, 17-18.

We also use the discrete l2 norm and the continuous L2 norm in I =[0,P] to measure
errors as well. They are defined as:

‖ f‖2,I =

(
1

N

N

∑
i=1

| f (ri)|2
)1/2

(4.1)

and

‖ f‖2 =




P∫

0

| f (r)|2dr




1/2

, (4.2)

respectively.
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0 3.33 6.67 10 13.33 16.67 200.40.230.05710.110.290.460.630.8S0 p( )H0 p( ) p
Figure 1: The exact transform, S0(p) (solid line) and the approximate transform, H0(p) (dotted-line) truncated
at level N =20 and M =2.

0 20 40 60 80 1005
 
10 81.67
 
10 81.67  10 85
 10 88.33  10 81.17  10 71.5
 10 7E0 p( ) p

Figure 2: Error between exact transform, S0(p) and approximated transform H0(p) (without random noise).

0 20 40 60 80 1001
 10 47 .5
 10 55
 10 52 .5
 10 502 .5
 10 55
 10 5E1 p( )E2 p( )E3 p( ) p

Figure 3: Errors between exact transform and approximated transform with different random perturbations.

Example 4.1 (Sombrero function). A very important, and often used function, is the Circ
function that can be defined as

Circ(r/a)=

{
1, r6 a,
0, r> a.

(4.3)

The zeroth-order HT of Circ(r/a) is the Sombrero function [47], given by S0(p)= a2 J1(ap)
ap .

We use Eq. (3.10) to obtain the approximation for the FHT F̂0(p) of the Circ(r/a). This
approximation is compared with the exact HT S0(p) and is shown in Fig. 1. Figs. 2 and
3 represent the corresponding error E0(p) and Ej(p), j = 1,2,3, respectively. Note that
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0 3.33 6.67 10 13.33 16.67 200.050.02 10.007140.0360.0640.0930.120.15F 0 p( )H 0 p( ) p
Figure 4: The exact transform, F0(p) (solid line) and the approximate transform, H0(p) (dotted-line) truncated
at level N =50 and M =2.

0 2 0 40 60 80 1005
 10 42 .5
 10 4 02 .5
 10 45
 10 4E0 p( ) p

Figure 5: Error between exact transform, F0(p) and approximated transform H0(p) (without random noise).

0 20 40 60 80 1005
 10 42.5
 10 402.5  10 45
 10 4E1 p( )E2 p( )E3 p( ) p

Figure 6: Errors between exact transform and approximated transform with different random perturbations.

S0(p) and F̂0(p) are indicated by S0(p) (solid line) and H0(p) (dotted line) in Figs. 1 and
2 respectively.

Example 4.2. Let f (r)= 2
π [arccos(r)−r(1−r2)1/2], 06r61. Then,

F0(p)=2
J2
1 (p/2)

p2
, 06 p6∞ [21]. (4.4)

Barakat et al. [21], evaluated F0(p) numerically using Filon quadrature philosophy but
the associated error is appreciable for p>1; whereas our method gives almost zero error
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0 3.33 6.67 10 13.33 16.67 200.10.0570.0140.0290.0710.110.160.2F1 p( )H1 p( ) p
Figure 7: The exact transform, F1(p) (solid line) and the approximate transform, H1(p) (dotted-line) truncated
at level N =50 and M =2.

0 20 40 60 80 1000.0040.00270.001300.00130.00270.004E0 p( ) p
Figure 8: Error between exact transform, F1(p) and approximated transform H1(p) (without random noise).

0 20 40 60 80 1000.0040.00248
 10 48
 10 40.00240.004E1 p( )E2 p( )E3 p( ) p

Figure 9: Errors between exact transform and approximated transform with different random perturbations.

in that range. Note that F0(p) and F̂0(p) are indicated by F0(p) (solid line) and H0(p)
(dotted line) in Fig. 4 and the corresponding error graphs Ej(p) in Figs. 5 and 6.

Example 4.3. Let f (r)=(1−r2)1/2, 06r61. Then,

F1(p)=





π
J2
1 (p/2)

2p
, 0< p<∞,

0, p=0.

(4.5)

Barakat et al. [22], evaluated F1(p) numerically using Filon quadrature philosophy but
again the associated error is appreciable for p<1; whereas our method give almost zero
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0 3.33 6.67 10 13.33 16.67 200.20.100.10.20.30.40.5F0 p( )H0 p( ) p
Figure 10: The exact transform, F0(p) (solid line) and the approximate transform, H0(p) (dotted-line) truncated
at level N =50 and M =2 (ν=1/10).

0 20 40 60 80 1000.0 10.00790.00570.00360.00147. 142857
 10 40.00290.005E0 p( ) p

Figure 11: Error between exact transform, F0(p) and approximated transform H0(p) (without random noise)
(ν=1/10).

0 20 40 60 80 1000.010.0070.0040.0010.0020.005E1 p( )E2 p( )E3 p( ) p
Figure 12: Errors between exact transform and approximated transform with different random perturbations
(ν=1/10).

error in that range. The comparison of the approximation H1(p) (dotted line) with the
exact HT F1(p) (solid line) is shown in Fig. 7 and the corresponding error graphs Ej(p)
in Figs. 8 and 9.

Example 4.4. In this example, we choose as a test function the generalized version of the
top-hat function, given as f (r)= rν[H(r)−H(r−a)], a>0 and H(r) is the step function

H(r)=

{
1, r>0,
0, r<0.
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0 3.33 6.67 10 13.33 16.67 200.060.040.0200.020.040.06F5 p( )H5 p( ) p
Figure 13: The exact transform, F5(p) (solid line) and the approximate transform, H5(p) (dotted-line) truncated
at level N =50 and M =2 (ν=5).

0 20 40 60 80 1000.0040.00280.00164
 10 48
 10 40.002E5 p( ) p

Figure 14: Error between exact transform, F5(p) and approximated transform H5(p) (without random noise)
(ν=5).

0 20 40 60 80 1000.0030.002430.001860.001297.14286
 10 41.42857
 10 44.28571
 10 40.001E1 p( )E2 p( )E3 p( ) p

Figure 15: Errors between exact transform and approximated transform with different random perturbations
(ν=5).

Then,

Fν(p)=
Jν+1(p)

p
.

In [34], authors took a=1 and ν=4 for numerical calculations. We take a=1, ν=1/10,5
and observe that the errors are quite small as shown in Figs. 11 and 14 respectively. The
corresponding errors Ej(p) with different level of random noises are shown in Figs. 12
and 15 and Figs. 10 and 13 show the comparison between the exact transform and the
approximate transform for ν=1/10,5 respectively.
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0 5 10 15 200.200.20.40.60.811.2F0 p( )H0 p( ) p
Figure 16: The exact transform, F0(p) (solid line) and the approximate transform, H0(p) (dotted-line) truncated
at level N =65 and M =2.

0 20 40 60 80 1000.050.040.030.020.0100.010.02E0 p( ) p
Figure 17: Error between exact transform, S0(p) and approximated transform H0(p) (without random noise).

0 20 40 60 80 1000.040.0250.010.0050.02E1 p( )E2 p( )E3 p( ) p
Figure 18: Errors between exact transform and approximated transform with different random perturbations.

Example 4.5. The following example was solved numerically by Knockaert [15]. For

f (r)= e−r , its HT is F0(p)=
1

(1+p2)3/2
.

We solve the above problem by the proposed algorithm and observe that our method
give result comparable to [15]. Note that F0(p) and F̂0(p) are indicated by F0(p) (solid
line) and H0(p) (dotted line) in Figs. 16 and 17 respectively. Figs. 17 and 18 depict the
associated errors Ej(p) for j=0 and j=1,2,3 respectively.
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5 Application

As an application, we solve the heat equation in cylindrical coordinates inside an in-
finitely long cylinder of radius unity, by using the theory of Hankel transform developed
in the preceding pages. We seek a function u(r,t) ; where r is radius and t is time, (u does
not depend on θ and t) satisfying the differential equation

D2
r u+

1

r
Dru= Dtu (0< r<1, 0< t<∞) (5.1)

and the following initial and boundary conditions:

(i) As t→0+,u(r,t)→ f (r)= 2
π

[
arccos(r)−r(1−r2)1/2

]
, 0≤ r≤1.

(ii) As r→1−,Dru+Hu→0 for each fixed t>0, where H >0.

When u denotes the temperature within the cylinder, H > 0 means that heat is being
radiated away from the surface of the cylinder.

Let Ωv,r denotes the differential operator D2
r +

1
r Dr− ν2

r2 . Then the differential equation
(5.1) can be written as

Ω0,ru=
∂u

∂t
. (5.2)

The Dini expansion associated with f (r) is

B0(r)+
∞

∑
m=1

bm Jν(λmr), [ 48, p.596 ] (5.3)

where λm, m=1,2,3,··· , are the positive rots (arranged in ascending order of magnitude)
of the transcendental equation

zJ′ν(z)+HJν(z)=0, v≥−1

2
, (5.4)

bm, m=1,2,3,··· , are given by

bm =
2λ2

m

∫ 1

0
r f (r)Jν(λmr)dr

(λ2
m−ν2)J2

ν(λm)+ J′2ν (λm)
(5.5)

and B0(r) = 0 if H+ν > 0, which is the case for the present problem as ν = 0 and H > 0.
The condition of validity of (5.3) are given in the following theorem [48, p. 601].

Theorem 5.1. Let f (r) be a function defined over the interval (0,1), and let
∫ 1

0 r1/2 f (r)dr exist
and (if it is improper integral) let it be absolutely convergent. If f (r) has limited total fluctuation
in (a,b) where 0≤a<b≤1 then the series (5.3) converges to the sum 1

2 [ f (r+0)+ f (r−0)] at all
points r such that a+∆≤ r≤ b−∆ where ∆ is arbitrarily small; and the convergence is uniform
if f (r) is continuous in (a,b).
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Substituting Eqs. (3.1) and (5.5) into (5.3) and using the above theorem, we obtain the
following inversion theorem for the finite Hankel transform.

Theorem 5.2 (Inversion). Let f (r) satisfies condition of Theorem 5.1, then

f (r)= lim
N→∞

N

∑
m=1

2λ2
m F̂ν(λm)Jν(λmr)

(λ2
m−ν2)J2

ν(λm)+ J′2ν (λm)
. (5.6)

From the well known formula

Ω0,r J0(λmr)=−λ2
m J0(λmr), (5.7)

it follows from integration by parts that

∫ 1

0
[Ω0,r f (r)]rJ0(λmr)dr =

∫ 1

0
f (r)rΩ0,r J0(λmr)dr

=−λ2
m

∫ 1

0
f (r)rJ0(λmr)dr, (5.8)

if we put some suitable condition on f (r) such that the limit terms in integration by parts in (5.8)
vanish.

Applying the finite Hankel transform operator to Eq. (5.2) and using (5.8), we obtain

−λ2
mU(λm,t)=

∂U(λm,t)

∂t
,

where

U(λm,t)=
∫ 1

0
U(r,t)rJ0(λmr)dr,

so that
U(λm,t)= A(λm)e−λ2

mt.

The initial condition determines the constant A. Thus

A(λm)= F̂0(λm)=
∫ 1

0
f (r)rJ0(λmr)dr.

Hence
U(λm,t)= F̂0(λm)e−λ2

mt.

Therefore, by Inversion Theorem 5.2, we have

U(r,t)= lim
N→∞

N

∑
m=1

2F̂0(λm)e−λ2
mt J0(λmr)

J2
0 (λm)+ J2

1(λm)
, (5.9)

since J′0(r)=−J1(r).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 100.170.330.50.670.831f r( )u r( ) r
Figure 19: The initial condition function f (r) (solid line) and u(r)(= limt→0+ u(r,t)) (dotted line).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.040.0200.02E r( ) r
Figure 20: Error between f (r) and u(r).

We want to prove that u(r,t), given by (5.9) is truly a solution of (5.1) that satisfies
the given initial and boundary conditions. To achieve this, we need the following well
known estimates:

F0(λm)=O(λ
− 3

2
m ) as m→∞, [48, p. 595]

λm ∼π(m+
1

4
) as m→∞,

J2
0 (λm)+ J2

1 (λm)∼ 2

πλm
as m→∞.

Hence

F0(λm)[J2
0 (λm)+ J2

1(λm)]−1 =O(m−1/2) as m→∞.

Using the above estimates, we see that the series (5.9) and the series obtained by applying
Ω0,r and Dt separately under the summation sign of (5.9) converges uniformly on 0<r<1
and t>0. Hence by applying Ω0,r−Dt and using the fact

Ω0,r[J0(λmr)]=−λ2
m J0(λmr),

we see that (5.9) satisfies the differential equation (5.1).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 100.170.330.50.670.831u 0 r( )u 1 r( )u2 r( )u 3 r( ) r
Figure 21: The various profiles of the solutions u(r,t) at fixed times.

0.2 0.4 0.6 0.8 1 0 0.250.50.75100.10.20.30.4 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 0 0.250.50.75100.10.20.30.4 0.2 0.4 0.6 0.8
Figure 22: The solution u(r,t) (left) and ua(r,t) (right) for 0< t<1 and 0< r<1.

Let us verify the boundary condition (ii), we have

lim
r→1−

[Dru+Hu]

= lim
r→1−1

[
∞

∑
m=1

Dr

{
2F̂0(λm)e−λ2

mt J0(λmr)

J2
0(λm)+ J2

1 (λm)

}
+H

∞

∑
m=1

2F̂0(λm)e−λ2
mt J0(λmr)

J2
0 (λm)+ J2

1(λm)

]

and since the convergence is uniform, we can take the limr→ 1− inside the summation
sign and arrive at the conclusion, since λm’s are the roots of the equation

λJ′0(λ)+HJ0(λ)=0.

The initial condition (i) is already taken care of as we evaluated the constant A by
using it. Through Figs. 19-22, we establish the accuracy of the propose method. All

figures are drawn by truncating the series (5.9) at N =10. The presence of e−λ2
mt ensures

that even ten terms give satisfactory solution for t > 0. While evaluating the solution
u(r,t) from (5.9), we have evaluated F̂0(λm) first from its analytical expression given by
(4.4) and denote the solution thus obtained by u(r,t) in Figs. 19-22 and then evaluating
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Table 1: Error norm as function of ε in Example 4.1.

EXAMPLE 4.1 ERROR NORMS (DISCRETE l2) ERROR
ε N =10000 N =5000 N =1000 NORMS(L2)

0.000 0.00000005 0.00000003 0.00000001 0.00000046
0.001 0.00000955 0.00000675 0.00000296 0.00009609
0.002 0.00000677 0.00000576 0.00000257 0.00006790
0.005 0.00002572 0.00001969 0.00000879 0.00025728

Table 2: Error norm as function of ε in Example 4.2.

EXAMPLE 4.2 ERROR NORMS (DISCRETE l2) ERROR
ε N =10000 N =5000 N =1000 NORMS(L2)

0.000 0.00010522 0.00136662 0.00066664 0.00105925
0.001 0.00010561 0.00135265 0.00065982 0.00105815
0.002 0.00010671 0.00137143 0.00066898 0.00107677
0.005 0.00010790 0.00134560 0.00065637 0.00109293

Table 3: Error norm as function of ε in Example 4.3.

EXAMPLE 4.3 ERROR NORMS (DISCRETE l2) ERROR
ε N =10000 N =5000 N =1000 NORMS(L2)

0.000 0.00066952 0.00051330 0.00023021 0.00622474
0.001 0.00066813 0.00051254 0.00022987 0.00620880
0.002 0.00066986 0.00051298 0.00023005 0.00623324
0.005 0.00067195 0.00051507 0.00023100 0.00624634

F̂0(λm) by using the proposed algorithm for evaluation of the finite Hankel transform
as given by equation (3.8). This solution is denoted by ua(r,t) in the above mentioned
figures.

Fig. 19, compares the given initial condition f (r) with u(r,t) as t → 0+ and Fig. 20
shows the error corresponding error E(r)=u(r,0)− f (r). Fig. 21 depicts the various pro-
files of ui(r,t) at times t = 0, 1/100, 1/50 and 1/25, the various profiles are denoted by
u0, u1, u2 and u3. As the maximum possible error occurs in the neighbourhood of 0 and
0.001, we have restricted t in (0,1] in Fig. 22 representing u(r,t) and ua(r,t) respectively
and note that they are in good agreement in the range.

6 Error analysis

The numerical stability property of the algorithm is illustrated in Tables 1-6 where the
discrete l2 norm as well as L2 norm of the error is shown as a function of the amount
of noise ε in the data function, for Examples 4.1-4.5 respectively (Example 4.4 has two
Tables 4 and 5 for different order of HT for the same test function). We notice that in
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Table 4: Error norm as function of ε in Example 4.4 (ν=0.1).

EXAMPLE 4.4 (ν=1/10) ERROR NORMS (DISCRETE l2) ERROR
ε N =10000 N =5000 N =1000 NORMS(L2)

0.000 0.00150236 0.00107089 0.00047783 0.01503314
0.001 0.00153680 0.00109493 0.00048854 0.01537775
0.002 0.00148723 0.00105750 0.00047179 0.01488198
0.005 0.00147326 0.00104688 0.00046706 0.01474207

Table 5: Error norm as function of ε in Example 4.4 (ν=5).

EXAMPLE 4.4 (ν=5) ERROR NORMS (DISCRETE l2) ERROR
ε N =10000 N =5000 N =1000 NORMS(L2)

0.000 0.00060155 0.00722909 0.00335988 0.00573836
0.001 0.00059574 0.00723622 0.00336320 0.00567961
0.002 0.00060788 0.00721697 0.00335424 0.00580418
0.005 0.00059563 0.00719988 0.00334632 0.00573836

Table 6: Error norm as function of ε in Example 4.5.

EXAMPLE 4.5 ERROR NORMS (DISCRETE l2) ERROR
ε N =10000 N =5000 N =1000 NORMS(L2)

0.000 0.00891836 0.00630522 0.00282352 0.08897511
0.001 0.00892978 0.00631329 0.00282715 0.08908933
0.002 0.00883437 0.00624580 0.00279698 0.08813880
0.005 0.00878099 0.00620796 0.00278019 0.08760884

all the cases, the numerical stability of the proposed algorithm is confirmed. Moreover,
in the ǫ range 0.000 to 0.005 the discrete error norms are barely sensitive to changes in
h = 1/N in Examples 4.1, 4.3, 4.4 (ν = 1/10) and 4.5 and only slightly more sensitive to
changes in h in Examples 4.2 and 4.4 (ν=5).

7 Summary and conclusions

A new method based on the Chebyshev wavelets for the numerical evaluation of HT is
proposed and analyzed. As the basis functions used to construct the Chebyshev wavelets
are orthogonal and have compact supports, it makes them more useful and simple in
actual computations compared to the algorithm based on Chebyshev polynomials [46].
Also, since the number of mother wavelet’s components is restricted to one, they do
not lead to the growth of complexity of calculations. Our choice of wavelets make it
more attractive in their application in the applied physical problems as they eliminate
the problems connected with the Gibbs phenomenon taking place in [32, 34]. The error
associated with Filon quadrature philosophy [6], [21, 21] is appreciable for small p < 1
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compared to our algorithm.

The stability with respect to the data is restored and excellent accuracy is obtained
even for small sample interval and high noise levels in the data. Several test cases are
investigated by varying the number of sampling points N and amount of noise ε in the
data. We notice that in all the cases, the numerical accuracy and stability of the proposed
algorithm is confirmed.
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