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Abstract. Test-particle simulations provide a useful complement to the kinetic simula-
tions of many-body systems and their approximate treatment with multiple moments.
In a kinetic approach, systems are described at a microscopic level in terms of a large
number of degrees of freedom. Fluid or multiple moment approaches, however, pro-
vide a description at the macroscopic level, in terms of relatively few physical param-
eters involving averages or moments of particle distribution functions. Ideally, fully
kinetic descriptions should be done whenever possible. Due to their complexity, the
use of these approaches is often not practical in many cases of interest. In comparison,
the fluid approximation is much simpler to implement and solve. It can be used to
describe complex phenomena in multi-dimensional geometry with realistic boundary
conditions. Its main drawback is its inability to account for many phenomena tak-
ing place on fine space or time scales, or phenomena involving nonlocal transport.
Macroscopic approaches are also not adapted to describe large deviations from local
equilibrium, such as the occurrence of particle beams or otherwise strong anisotropy.
With the test-particle method, particle trajectories are calculated using approximated
fields obtained from a low level approach, such as multiple moments. Approximate
fields can also be obtained from experiments or observations. Assuming that these
fields are representative of actual systems, various kinetic and statistical properties of
the system can then be calculated, such as particle distribution functions and moments
thereof. In this paper, the test-particle method is discussed in the context of classical
statistical physics of many-body interacting point particles. Four different formula-
tions of the method are presented, which correspond to four broad categories of the
application encountered in the field of plasma physics and astronomy.
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1 Introduction

Test-particle calculations have been applied to study a broad class of problems in space
physics and astronomy. The underlying assumption in these applications is that, by fol-
lowing the evolution of particles in fields that are deemed to be good approximations of
those encountered in actual systems, useful information can be inferred concerning parti-
cle kinetics. In that sense, the test-particle approach provides a first order approximation
of kinetic properties of a system, given fields obtained from a macroscopic approach or
from measurements. In the absence of iterations and feedback from calculated parti-
cle trajectories, the results are generally not self-consistent. The approach is nonetheless
useful for understanding several aspects of particle transport and dynamics in complex
systems, in which a fully consistent kinetic calculation is not practical. This approach has
been applied to many problems related to particle transport and energisation in space
plasmas, and it continues to be a valuable complement to large scale simulations made
with fluid codes.

In the following, four types of formulations are presented that are representative of
the majority of the test-particle applications encountered in the literature. These are 1)
Trajectory Sampling, 2) Forward Monte Carlo, 3) Forward Liouville and 4) Backward Li-
ouville. In Section 3, each formulation is described in detail, and illustrated with simula-
tion results. For consistency, and in order to clearly illustrate similarities and differences
between the four approaches, each method is applied to the same physical problem: that
of a perpendicular plane shock in a collisionless plasma. This particular problem was
chosen for its simplicity. It is nonetheless sufficient to illustrate the use of each approach,
and display their similarities and differences. In this presentation, the test-particle ap-
proach is described in the context of classical mechanics of point particles with no internal
degrees of freedom. These assumptions may seem somewhat restrictive. They nonethe-
less encompass a broad class of near Earth plasmas and astronomical applications. In
cases where these assumptions need to be relaxed; for example, with ions having differ-
ent ionisation stages or electron excitation levels, some of the formalism can be readily
modified to accommodate for more general conditions.

The conditions of validity of the test-particle method depend on the particular for-
mulation considered. Given the absence of iterations between the particle and current
densities inferred from a test-particle calculation, and the fields used to calculate trajecto-
ries, a general condition for validity is that these fields be sufficiently close to being self-
consistent. A precise assessment of this condition is difficult to make a priori, as a measure
of self-consistency would require a fully kinetic calculation. A first assessment of consis-
tency can be made, for example, by comparing moments of the test-particle distribution
functions with corresponding quantities such as particle densities, fluxes or current den-
sities appearing in the macroscopic models used to approximate the fields. A further
assessment can, in principle be made by computing first order corrections to the fields
based on the approximate plasma distribution functions obtained in the test-particle ap-
proximation. In addition to the requirement of near consistency of the fields, two of the
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approaches presented rely on one extra assumption in order to be applicable. Specifi-
cally, both the Forward Liouville and Backward Liouville approaches assume that the
plasma is well described with the Vlasov equation, and that the single-particle Liouville
theorem is valid. In those cases, the plasma must be nearly collisionless and processes
such as charge exchange or inelastic collisions with other species should be negligible
for the length and time scales of interest. It is worth noting, however, that the other two
approaches considered (Trajectory Sampling and Forward Monte Carlo) are not limited
by these processes. These approaches can be applied even when the evolution of dis-
tribution functions is described by a full Boltzmann equation. In this case, however, in
addition to external fields, single particle trajectory calculations must account for stochas-
tic forces corresponding, for example, to Coulomb collisions, charge exchange or inelastic
collisions with neutral or ion species.

The remainder of the article is organised as follows. The physical problem consid-
ered to illustrate the four formulations of the method is described in Section 2. The four
formulations of the test-particle approach are then described in Section 3. In each case,
example applications are cited from published articles. The method is also illustrated
by applying it to the same physical problem mentioned above. A summary and some
concluding remarks are given in Section 4.

2 Case problem: Ideal MHD perpendicular plane shock

The solution to the ideal MHD perpendicular plane shock problem has been described
elsewhere [5]. It is summarised here for completeness. In the reference frame of the
shock, plasma comes toward the interface in the upstream region, and flows away from
it in the downstream or shocked region. In a perpendicular shock, the magnetic field is
perpendicular to the normal to the plane interface, as illustrated in Fig. 1. All physical
quantities are uniform on either side of the shock front, and they vary discontinuously at
the front, as prescribed by the Rankine-Hugoniot conditions. These conditions lead to a
set of algebraic equations that can be solved analytically to yield

v2 =
ρ1

ρ2
v1 = ζv1, (2.1)

B2 =
1

ζ
B1, (2.2)

p2 = p1+(1−ζ)ρ1v2
1−

1−ζ2

ζ2

B2
1

2µ0
, (2.3)
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1+4
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1/2µ0

)

3ρ1v2
1

. (2.4)

The electric field is calculated from the relation

~E=−~v1× ~B1 =−~v2× ~B2. (2.5)
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Figure 1: Illustration of the plane shock geometry in the rest frame of the shock. Flow is from left to right (+ŷ
direction). The electric field E is pointing into the page (−x̂ direction), and it has the same value on either
side of the shock front (dashed line). The magnetic field is in the +ẑ direction.

In deriving these equations, the polytropic index γ=CP/CV was assumed to be equal to
two for simplicity.

Eqs. (2.2) and (2.5) constitute the macroscopic approximation to the electromagnetic
fields that are used in the examples that follow. When applying the test-particle method
it is necessary to integrate particle trajectories. Certain integrations schemes; e.g., simple
leap frog or with explicit Runge-Kutta, only require the fields ~B and ~E themselves. Other
schemes however; e.g., high order symplectic, are formulated in terms of the Hamiltonian
and require the field potentials and their derivatives. In those cases, it is necessary to
determine the scalar and vector potentials that correspond to ~B and ~E. For the problem
considered here, those are

φi = xviBi (2.6)

and
~Ai =(0,xBi,0), (2.7)

where i = 1 or 2 for the upstream or downstream region respectively. When integrating
particle trajectories numerically, these expressions are actually modified so as to produce
a continuous (albeit sharp) transition between the upstream (1) and downstream regions.
This is obtained with
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φ2−φ1

2
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δ
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φ2+φ1

2
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and

~A=
~A2− ~A1
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+
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, (2.9)

where δ is set to one tenth the ion thermal gyroradius in the upstream region; δ=R1/10,
with

R1≡
√

2T1

m

m

qB1
. (2.10)

In what follows, unless stated otherwise, all coordinates are given in units of R1. The
physical parameters assumed in all the examples that follow are n1 = 106m−3, corre-
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sponding to ρ1 = n1×mp = 1.67×10−21kg/m3, T1 = 15.65eV, B1 = 4.01×10−9T and v1 =
4.95×105m/s. This corresponds to a plasma with β =0.783, and a magnetic Mach num-
ber M̃=4.24, where

M̃2 =v2
1/

(

γ
p1+B2

1/2µ0

ρ1

)

, (2.11)

and

β=
p1

B2/2µ0
(2.12)

is the ratio between the thermal pressure and the magnetic field pressure. With these
plasma parameters in the upstream region, the factor ζ is found to be ζ = 0.371, which
yields the value of the magnetic field in the downstream region B2 = 10.82×10−9T. The
electric field on either side of the shock front is E = 1.98×10−3V/m. In the example
applications of the test-particle method considered in Section 3, the only fields required
are the magnetic fields B1, B2, and the electric field E.

3 The test-particle method – Four different approaches

Test-particle modelling has been applied to study numerous problems in space physics.
While all approaches rely on the integration of particle trajectories in prescribed fields,
the specifics of their formulation and use of the results may vary significantly between
studies. In the following, four distinct approaches are presented, which encompass most
applications of the method found in the literature. These are referred to as:

1. Trajectory Sampling,

2. Forward Monte Carlo,

3. Forward Liouville,

4. Backward Liouville.

Each formulation is distinguished by the specific kinetic aspects of the system that it
focuses on, and by the underlying assumptions used in the analysis. For clarity, each ap-
proach is illustrated by applying it to the same orthogonal plane shock problem described
above.

3.1 Trajectory sampling

This approach consists of visualising individual particle trajectories, or groups of trajec-
tories to provide a qualitative understanding of transport, or more generally, the kinetic
properties of a system. An early application of the method was made by Speiser in a
study of the penetration of Dungey’s open magnetosphere by solar wind protons [11]
and a possible explanation for the observed distribution of auroral particles. Buchner
and Zenelyi also used this approach to study the dynamics of particles in high curvature
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Figure 2: Illustration of trajectories for representative particles across the shock front. Panel a shows the
trajectory of a particle for which the distribution function is maximum. The penetrations passed the shock
front, labeled i, j and k will be referred to in a later figure. Panel b is for particles uniformly distributed in
vx,vy, one standard deviation away from the maximum of f , in the upstream region. Similarly, panel c shows
trajectories of particles distributed uniformly in vx ,vy ten standard deviations away from the maximum. Dashed
curves show trajectories with multiple crossings of the shock front. Spatial coordinates are in units of the
upstream thermal gyroradius R1. The electric field is in the −x̂ direction.

regions of the plasma sheath, where the first adiabatic invariant breaks down [2]. Del-
court used a similar approach to study the energisation of O+ ions during the expansion
phase of a substorm [3].

Similarly, Takeuchi investigated possible energisation mechanisms in expanding mag-
netised plasma clouds by analysing single particle trajectories in prescribed electric and
magnetic fields [12].

Trajectory sampling is illustrated in Fig. 2, for the reference shock problem described
above. The figure shows several representative trajectories for particles crossing the
shock front. Inspection of these trajectories is useful in understanding, for example, how
particles may gain or loose energy as they cross the shock front. Thermal particles; that is,
particles that are near the maximum of the distribution function in the upstream region
(panels a and b) are seen to have their guiding centre shifted in the direction opposite
that of the electric field (to the right in the figure). As a result, those particles experience a
decrease in their average kinetic energy. More energetic particles, however (panel c) have
more complex trajectories. Some may cross the shock front more than once. Some may
have their guiding centre shifted either to the right, corresponding to a loss of average
kinetic energy, or to the left, corresponding to energisation. From this figure, periodic
particle bunching can be anticipated at penetrations into the downstream region, where
thermal particles slow down and turn around in their progression in y. At these locations,
the ion density is expected to have local maxima.

3.2 Forward Monte Carlo

This approach is the most straightforward and probably the most intuitive for relating
test-kinetic simulations with actual observations. It is similar to the PIC simulation ap-
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Figure 3: Density distribution resulting from a random injection of test-particles at y=−4R1. The dashed line
at y=0 indicates the position of the ideal MHD shock front.

proach, with the exception that the fields used to advance particle trajectories are speci-
fied a priori; that is, they are not calculated self consistently from moments obtained from
these trajectories. A typical application involves a random injection of particles consis-
tent with a given distribution in space and velocity in a region where this distribution is
presumed to be known. Trajectories are then integrated forward in time until particles
enter the regions of interest. By sampling the distribution of velocities over small volume
elements, it is then possible to calculate the velocity distribution function or its moments
at specific times and locations in the system. Several uses of this approach can be found
in the literature. For example, the method has been used to study the penetration of the
solar wind ions into the magnetosphere under northward IMF [1, 10], the generation the
formation and the distribution of Na clouds near the moon [7], the plasma sheet and ring
current from solar and polar ion sources [8], auroral O+ outflow [9] and ion energisation
in Mercury’s ionosphere during substorms [4]. The method is illustrated in Fig. 3, with a
distribution of particles in the x-y plane resulting from steady injection in the upstream
region. In this case, particles are injected randomly in x, and their distribution in velocity
is consistent with a shifted Maxwellian

f (v)=n
( m

2πT

)3/2
exp

(

−m(~v−~v0)2

2T

)

, (3.1)

where~v0=v0ŷ is the upstream drift velocity (in the shock frame of reference) of incoming
plasma. This figure provides a good graphical representation of the density profile down-
stream of the shock, with the ion density being proportional to the density of points in
the figure. A notable difference between this distribution and that implicit in the Hugo-
niot conditions is that 1) there is no discontinuous step in the density at the shock front,
and 2) the density profile exhibits periodic increases in the downstream region, with the
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first peak occurring approximately at y ≃ 4R1 into the shock region. Comparing with
Fig. 2 a and b, we see that as expected, the peaks in density coincide with the location
where thermal particles turn around in their motion in y. As it stands, however, the
figure contains no quantitative information. Such information, needed for example to
calculate actual densities, particle fluxes and the stress tensor, can readily be obtained
by attributing a statistical weight wi to each injected particle. The weights are then used
in calculating averages of the distribution function or moments thereof. The usual way
to determine weights in such a calculation is to take the ratio between the physical par-
ticle flux in the injection region and that of particles injected in the simulation. Thus,
for example, in the reference plane shock problem, the physical proton flux in the up-
stream region is Γphys. = nv0 = 4.95×1011m−2s−1. If, in the simulation, the injected flux

were Γsim. = 100m−2s−1, then the weight of injected protons would be wi = 4.95×109. In
general, the weight assigned to particles may vary depending on the time and position of
injection. This would correspond to possible temporal or spatial variations in the physi-
cal flux in the injection region. Once a weight has been assigned to a particle, however, it
remains constant through the entire simulation, or until the particle exits the simulation
domain. The main advantage of this approach is its simplicity. It essentially duplicates
nature, albeit with approximate fields and much fewer particles. Its main drawback, is
that it produces large statistical errors. This is particularly true when considering the
distribution function in regions of space where plasma density is low, or in regions of
velocity space where f is small. Statistical errors also increase when considering high ve-
locity moments of the distribution function, as these moments are more heavily weighted
by higher energy particles of which there are relatively fewer. Thus, for example, the av-
erage density over a given volume element δV would be given by the sum of all the
weights wi of particles in that volume divided by δV. Similarly, the x component of the
particle flux would be obtained from

Γx =
1

δV

N

∑
i=1

wivix, (3.2)

where the summation is restricted to particles contained within the volume element. Sim-
ilarly, the distribution function f would be computed over a small volume element by
partitioning velocity space into a number of bins, and adding all the particles within the
volume element and within the respective velocity bins, times the weight factors, and
dividing by δV and by the size of the velocity bins. It should be clear from this discus-
sion, that estimates made with this forward approach will contain large statistical errors
whenever the numbers of sampled particles are not sufficiently large. These numbers
can always be increased, in principle, by a) increasing the total number of particles used
in a simulation, b) considering larger sampling volumes, or c) taking averages in time.
Routine simulations can be made with up to 109 test-particles. For complex systems with
rapid transients or short scale length structures, however, this remains a limitation. Rela-
tive statistical errors, which scale as 1/

√

(N) where N is the number of particles involved
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in the sampling, would be particularly significant in regions of velocity space where f is
small, or when considering higher moments of f . In cases where a good estimate of the
distribution function is needed, a variant approach can be formulated, which results in
considerably lower levels of statistical errors.

3.3 Forward Liouville

This approach makes use of the fact that, for a collisionless plasma described by the
Vlasov equation, the single particle distribution function remains constant along parti-
cle trajectories. This is the equivalent of Liouville’s theorem applied to a single particle
distribution function. A straightforward improvement of the method described in the
previous subsection therefore consists of “tagging” each test-particle with the numerical
value of f calculated in the injection region (where f is known). When sampling the dis-
tribution function in a volume element δV, f is then obtained directly from the “tags”
on the given particle velocities in that volume element. The result is a distribution of
scattered (unstructured) points in velocity space, at which f is known exactly, without
statistical errors. This approach has recently been used to model non-gyrotropic ion dis-
tributions resulting from injection in non uniform magnetic and electric fields [13]. It
is otherwise less frequently encountered in the literature than the Forward Monte Carlo
method described in the previous sub section. This is likely due to the fact that it is
limited to collisionless plasmas for which the Liouville theorem applies. With plasmas
that are well approximated by the Vlasov equation, however, the use of the method is
essentially as straightforward as that of the Forward Monte Carlo method.

Results obtained with this method are presented in Fig. 4 for the plane shock problem
considered in the previous paragraphs. The left panel shows a distribution of scattered
points in vx, vy for particles sampled in the −104m/s≤vz ≤104m/s velocity interval; i.e.,
for −0.26 . vz/σ . 0.26. The main difference with the Forward Monte Carlo approach
is that here f is not inferred from counting particles in velocity bins in a given volume
element. It is therefore less affected by statistical error. Without the need for sampling in
velocity space, the only statistical errors are those associated with the (random) number
of particles in the sampling box in configuration space. This then provides a discretisation
of the distribution function on a scattered grid in velocity, averaged over a given volume
element. This, in turn, can be used to interpolate f onto a regular velocity grid, or directly
calculate moments of the distribution function with reduced statistical uncertainties.

3.4 Back-tracking Liouville

For collisionless plasmas described by the Vlasov equation, this approach provides the
most detailed description of particle kinetics without any statistical error. With the ex-
ception of numerical errors in integrating trajectories, the only errors are those resulting
from the approximate fields (electromagnetic or gravitational) used to integrate particle
trajectories, and in the discretisation of f in velocity. If the fields used in the integration
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of trajectories had exact temporal and spatial dependences, and if trajectories could be
integrated exactly, then the resulting f would also be exact. As the name suggests, the
approach consists of integrating particle trajectories at a given time t1, position ~r1 and
velocity ~v1 backward in time until the particle reaches an input region, say at time t0,
position ~r0 and velocity ~v0, where the distribution function is known. It then follows
from Liouville’s theorem, that the distribution function at 1 is obtained from that at 0

by f (~r1,~v1,t1)= f (~r0,~v0,t0). The main difference between this approach and the previous
one is that 1, the end point in phase space, is specified exactly a priori. It does not rely
on sampling over a volume element, as in the Forward Monte Carlo or Forward Liou-
ville approaches. It is therefore free from statistical sampling errors. This approach is
particularly well suited to model regions of phase space where f is small.

An illustration of the method is given in Fig. 5 for cut planes vz =0 of the distribution
function at three penetrations into the shocked region. These penetrations correspond to
y=2.000 for panel a, y=3.347 for b and y=3.869 for c. These correspond to the dashed
lines marked respectively i, j and k in Fig. 2 a. As expected, the number of maxima in
the distribution function coincides with the number of times a particle initially traveling
at the plasma drift velocity in the upstream region, crosses the specified value of y (see
Fig. 2a). It is interesting to note that panel c in Fig. 5 compares well with the distribution
function sampled in 3.9≤z≤4.0, in the Forward Liouville approach. The lower values of
f in Fig. 2 is a consequence of finite volume sampling and of the interpolations made on
the uniform velocity grid used for plotting. The occurrence of density maxima at y∼ 4
and y∼12 in Fig. 3 matches with values of y where particles traveling with the maximum
of the distribution function (Fig. 2a) turn around. Fig. 5 shows that at these values of
y, the distribution function is broadest in velocity space, which is consistent with the
occurrence of a density maximum at those positions.

A difficulty with this approach, which is not encountered in the previous two ap-
proaches, is that in the absence of finite volume sampling, the computed distribution
function can exhibit very complex structures. This is not apparent in the simple problem
considered here, where f was relative smooth and nearly periodic in the y coordinate. In
more complex systems, however, in the absence of symmetry or ignorable coordinates,
increasingly fine structures in the distribution function can develop as one moves away
from the source region. This difficulty was encountered, for example, when applying
the method to assess consistency between test-kinetic simulations and an MHD model of
Earth bow shock [6]. In that case, the distribution function was found to develop increas-
ingly complex features in velocity space, as one penetrates into the downstream region.
This point is illustrated in Fig. 6 with a profile of f in a velocity cut plane approximately
1.5 Earth radii into the plasma sheath region, along the sun-earth axis. In addition to the
short scale structures found in velocity space, these structures also vary on short scale
lengths in configuration space as one penetrates into the shocked plasma. These sharp
variations in velocity and configuration space would, of course be attenuated if f were
averaged over finite sampling volumes. Sampling is intrinsic in the previous approaches
(Forward Monte Carlo and Forward Liouville). The strength of the Backward Liouville
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Figure 4: Distribution function sampled in the domain −4≤x≤4, 3.9≤y≤4, −1≤z≤1 in configuration space,

for −104≤vz≤104. The left panel shows a scattered plot of f as a function of particle velocities in the domain.
The right panel shows colour contours of f interpolated on a structured grid. Velocities are normalised with

respect to the thermal velocity vth =
√

2T/m and f is multiplied by v3
th.

Figure 5: Colour contours of the distribution function in the vz =0 plane at three representative positions in the
downstream region. Panels a, b, c correspond to penetrations i, j and k in Fig. 2 a. Velocities are normalised
with respect to the thermal velocity vth =

√
2T1/m, and the distribution function is multiplied by v3

th.

Figure 6: Cut plane illustrating fine structure
in the proton distribution function in velocity
space approximately 1.5 Earth radii past the
bow shock into the plasma sheath, along the
sun-Earth axis.
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approach; its ability to produce detailed distribution functions at precise locations with-
out statistical sampling errors, may therefore be a source of limitation. An obvious solu-
tion to this shortcoming would involve spatial averages of f using a suitable quadrature
scheme. This would tend to smooth short scale variations in velocity and configuration
space, while retaining an adapted representation of f without statistical noise.

4 Summary and conclusion

The test-particle method is used in many studies of space plasmas as a complementary
approach between fluid or multiple moment models and fully kinetic models. Fluid mod-
els, such as ideal MHD, or Hall MHD are powerful tools for modelling complex systems
while accounting for realistic geometry together with multiple physical processes. These
models, however, are limited to the description of macroscopic properties of plasmas
that can be formulated in terms of local moments of distribution functions or gradients
thereof. Kinetic models, on the other hand, provide detailed information on particle dy-
namics, not accessible in fluid models and they are the only ones capable of describing
non local transport in low collosionality plasmas. Their complexity, however, tends to
limit them to relatively simple geometries and they are limited in the range of physical
processes that they can account for. In that context test-particles provide a useful bridge
between the two approaches. Using approximate fields obtained from macroscopic mod-
els, they can be applied to assess kinetic effects in complex systems under realistic con-
ditions. Several formulations of the test-particle method can be made, depending on the
purpose of the simulation, and the conditions of the plasma. In this review, four broad
approaches are described that are believed to encompass most applications encountered
in the literature. In one case, individual test-particle trajectories are considered as a tool
to understand transport or energisation of particles in complex systems. In most applica-
tions, test-particle simulations are used to calculate large scale properties of systems by
duplicating nature, albeit with much fewer macro-particles. The most straightforward of
these approaches, the Forward Monte-Carlo method, relies on sampling test-particles in
finite bins in configuration and, if needed, in velocity space. It can be applied to calculate
moments of the distribution function (e.g., the density and particle fluxes), or to discretise
the distribution function itself in velocity space. This approach is the one that involve the
largest statistical errors, but it is also the most broadly applicable, as it doesn’t rely on
Liouville’s theorem. In particular, it can readily be extended to include physical effects
such as collisions, charge exchange, ionisation and recombination. The other two formu-
lations presented, the Forward Liouville and the Backward Liouville approaches are less
subject to statistical errors because they rely less on particle sampling over bins in con-
figuration or velocity space. They do, however, rely on the use of Liouville’s theorem for
a single particle distribution function, and they are therefore only applicable to collision-
less plasmas. The Backward Liouville approach is in fact free from any particle sampling
and it therefore produces distribution functions that are free from statistical errors. This
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method, however, suffers from its success in that, the computed distribution functions
can show complex structures with short scale variations in velocity and configuration
space. A solution around this difficulty would consist of averaging f in space, using a
suitable quadrature scheme. In general, the choice of that scheme would be determined
by the system being studied, and by the region of space considered. It would be equiv-
alent to sampling the distribution function over finite volumes, but without statistical
errors.
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