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Abstract. In this paper, we propose a simple model of opinion dynamics to construct
social networks, based on the algorithm of link rewiring of local attachment (RLA)
and global attachment (RGA). Generality, the system does reach a steady state where
all individuals’ opinion and the complex network structure are fixed. The RGA en-
hances the ability of consensus of opinion formation. Furthermore, by tuning a model
parameter p, which governs the proportion of RLA and RGA, we find the formation
of hierarchical structure in the social networks for p > pc. Here, pc is related to the
complex network size N and the minimal coordination number 2K. The model also re-
produces many features of large social networks, including the ”weak links” property.

PACS: 87.23.Ge, 89.75.Fb
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1 Introduction

Networks have in recent years undergone a remarkable development and have emerged
as an invaluable tool for describing and quantifying complex systems in many branches
of science [1]. It has been realized that many real complex networks, including social net-
works such as peer-to-peer social networks [2] and acquaintance networks [3], the tech-
nology networks such as the power grids [3,4], and biological networks such as the food
webs [5] and metabolic networks [6], all share some distinctive characteristic properties.
One such property is the ”small-world effect”, which means that the average shortest
path length between vertices in network is short, usually scaling logarithmically with
the size N of network. Another is the hierarchical structure, which means that vertices
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are divided into groups that further subdivided into groups of groups, and so forth over
multiple scales, in network [1]. Examples include the ecological niches in food webs, the
modules in biochemical networks and communities in social networks [1, 7–9].

The community structure, the gathering of vertices into groups such that there is a
higher density of edges within groups than between them [9], is a crucial property of so-
cial network and draws many scientists’ attention to research how to detect and identify
the communities within networks. Recently, a number of approaches, such as the divi-
sive algorithm based on the edge betweenness [8, 10], the modularity algorithm [11], the
self-contained algorithm [12] and a physical approach based on notions of voltage drops
across networks [13], have been proposed. Another important problem is the mechanism
of emergence of the hierarchical structure, especially the communities in social networks.
Clauset et al. proposed a hierarchical random graph to study the hierarchical structure
and predict the missing links in networks [1]. González et al. proposed a model of mo-
bile agents to construct social networks and found the emergence of a giant cluster in the
universality class of two-dimensional percolation above a critical collision rate [14]. And
Kumpula et al. proposed a weight-topology dynamics model to generate a weighted
networks with communities [15]. Nevertheless, the understanding of the hierarchical
structure property in complex networks remains a challenge.

On the other hand, recent years have witnessed an attempt by physicists to research
the collective phenomena emerging from the interactions of individuals as elementary
units in social structure [16]. Castellano et al. review a wide list of topics of collective
phenomena ranging from opinion and cultural and language dynamics to crowd behav-
ior, hierarchy formation, human dynamics, and social spreading [16]. Many previous
works have studied on static substrates: the interaction pattern is fixed and only opinion,
not connections, are allowed to change [16]. This is the case of the dynamics on networks.
The opposite case is the dynamics of networks: the links between vertices are formed or
removed according to such fixed vertex properties, such as the network formation de-
pending on the present degree [17] and weights [18] of the existing vertices. In fact, real
social systems are mostly in between these two extreme cases: both intrinsic property
of vertices (like opinions) and connections among them vary in time over comparable
temporal scales. The interaction between those two evolutions is then a natural issue to
be researched. Holme and Newman [19] proposed a simple model for the coevolution
of opinions and social networks in a situation in which both adapt to the other with a
single parameter φ. They found that the model undergoes a continuous phase transition
as the parameter φ is varied. Stauffer et al. proposed the model of the coevolution of
individual economic characteristics and socioeconomic networks, where links between
agents with similar characteristics are more stable than those between agents with vastly
different characteristics [20]. They found that a simple scaling law describes the number
of distinct surviving characteristic realizations as a function of the number of agents and
the number of possible distinct characteristics realizations. Allahverdyan and Petrosyan
studied a model for a statistical network formed by interactions between its nodes and
links, where each node can be in one of two states and the node-link interaction facilitates
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linking between the like nodes [21]. They found that herding and collaboration are not
efficient either because linking is too costly or noises are too strong.

In the present paper, we propose a simple model of opinion formation to construct
social networks with community property. Our present work is based somewhat on ideas
that presented in [19–21], such as two nodes connected via a third one tend to link directly
and nodes with the same property (for example the same opinions) tend to connect, etc.
However, our present model shows the intrinsic interactionism between the property of
vertices (like opinions) and the connections among them, which is different from that
in [19] where the opinions of vertices and the connections among them vary in time with
probability (1−φ) and φ respectively.

The rest of the paper is structured as follows. In the following section, we present a
simple model of the opinion dynamics in adaptive social network; then, we analyze the
crucial role of the rewiring of local attachment (RLA) and the rewiring of global attach-
ment (RGA) in the opinion formation and the emergence of the community structure in
social network(s); finally, we discuss the results obtained.

2 Model

As well known, many complex networks arising in real complex systems play the role of
underlying frameworks where dynamics occur. Examples include the opinion (rumors,
disease) spreads in our society, the computer virus spreads in Internet and the electric
current flows through the power grid. The obvious questions are how the dynamics and
its underlying network structure interact with each other and how the hierarchical struc-
ture of complex network emerges. To see this, we propose a simple model of continuous
opinion dynamics to construct social network with hierarchical structure, based on the
algorithm of link rewiring of local attachment (RLA) and global attachment (RGA). RLA
refers to forming ties with one’s network neighbors — ”friends of friends” [15]. RGA, in
contrast, refers to forming ties independently of the geodesic distance and is attributed
to forming social ties through sharing the same activities, [15] take the opinion in our
present work for example. As for the opinion dynamics, we choose the celebrated Def-
fuant model (D model) of continuous opinion dynamics [22–25]. Each individual (i.e.,
vertex or node in network) has a continuous opinion varying from zero to one. Each in-
dividual selects randomly one of its neighbors and checks first if an exchange of opinions
makes sense. If the two opinion differ by less than ǫ (0<ǫ<1), each opinion moves partly
in the direction of the other, by amount µ△s, where △s is the two opinions difference and
µ the convergence parameter (0<µ≤0.5); otherwise, the two refuse to discuss seriously
and no opinion is changed. The parameter ǫ is called confidence bound or confidence
parameter.

For convenience, our model starts from a lattice consisting of N vertices arranged in a
ring. Each vertex is connected to all of its neighbors up to some fixed range K to make the
network with the minimal coordination number 2K, which is the minimal links of each
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Figure 1: (color online) The model algorithm. (a): a degree local search starts from active vertex i to its
confidence nearest neighbor m and then to its second-nearest neighbor n, which is the confidence neighbor of
m. Then, vertex i rewires its rewiring link to the chosen vertex n. (b): the active vertex i rewires its rewiring
link to one of vertices, which are not the neighbors of i, in the whole network randomly. (c): the active vertex
i creates (2K−ki) links to random vertices while its current links ki <2K. The same signal of vertices are the
confidence ones, for example, the pair of vertices i (circle) and m (circle) is the confidence one and the pair of
vertices i and j (square) is not the confidence one in (a) and (b). The dot line with cross will be divided into
two rewiring lines, and then each rewiring line rewires to another vertex according to the arrow. The dash line
represents the new rewired one or the new added one.

vertex during the evolution process of our model. Initially, each vertex has a continuous
opinion from zero to one chosen from a uniform distribution. At time step t, the vertex
i’s opinion is labeled as si(t). Then, at each time step, one vertex and one of its neighbors,
says vertices i and j, are chosen as the active vertices randomly. If |si(t)−sj(t)|< ǫ, i.e.,
the two opinions differ by less than the confidence parameter ǫ, then each opinion moves
partly in the direction of the other as follows:

{

si(t+1)= si(t)+µ[sj(t)−si(t)];
sj(t+1)= sj(t)+µ[si(t)−sj(t)].

(2.1)

Otherwise, the link between vertices i and j is broken and divided into two links, which
are called as the rewiring links of vertices i and j respectively. One end of each of those
two links is attached to vertices i and j respectively, the other ends of those two links
are rewired according to RLA with probability p and according to RGA with probability
(1−p), which is different from the original rule in the D model, see (a) and (b) in Fig. 1
respectively. Here, p is a tunable parameter, which shows the competition between the
RGA and the RLA during the evolution process of our model. For convenience, we call
the two vertices the confidence pair while their opinions differ by less than ǫ in network.
More specially, vertex i chooses one of its confidence neighbors, vertex m, with probabil-
ity km/∑l∈Γ

′
i
kl , where Γ

′

i is the subgraph of vertex i’s confidence neighbors and km is the

connectivity degree of vertex m. If the chosen vertex m has other confidence neighbors,
which are not the neighbors of vertex i, apart from i, it chooses one of them, say n, with
probability kn/(∑l∈Γ

′
m

kl−ki). Then, vertex i rewires its rewiring link to the vertex n by

the introduction of their common confidence neighbor m. We call this rewiring attach-
ment mechanism as the rewiring of local attachment (RLA), which is difference from that
in [15] and enhances the local interaction in social network, see Fig. 1(a). Second, one
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vertex, denoted by l, of vertices which are not connected to i by a link is chosen with
probability 1/N

′

i , where N
′

i is the number of vertices that are not connected to i by a link

in the whole network. Hence, 1/N
′

i varies as time elapses. Then, vertex i rewires its
rewiring link to the chosen vertex l. The mechanism corresponds to establishing a new
interaction in the whole network by its own action, and we call it the rewiring of global
attachment (RGA), Fig. 1(b). Simultaneously, the vertex j also rewires its rewiring link to
other vertices following the mentioned algorithm of vertex i above. Finally, if a vertex,
says i, has links less than the minimal links 2K, i.e., ki < 2K, it creates (2K−ki) links to
other vertices in network randomly and its opinion also is reset from the uniform distri-
bution randomly in order to adapt the social environment, see Fig. 1(c). Therefore, the
network size of the system and the minimal links of each vertex remain fixed at N and
2K respectively.

3 Results

We investigate by numerical simulations the coevolution of the complex network struc-
ture and the opinion dynamics. Generality, the system of opinion dynamics reaches a
fragmentation state or consensus state, which is related to the confidence parameter ǫ

that also been found in many previous works about D mode and is not shown here, as
time t elapses. Here, the fragmentation state is defined as that individuals can be divided
into two or more camps according to their opinions. Each camp has its opinion that dif-
ferent from others obviously. The consensus state is defined as that all the individuals
share the same opinion, see the inset of Fig. 2.

In order to show the crucial role of the adaptive complex network structure in the
dynamics of opinion formation, we study the evolution process of our model with the
parameters N =1000, 2K =10, µ=0.1 and ǫ=0.3, since the system reaches the consensus
state that is independent of the p. We define the critical time tc as the time when the
system reaches the consensus state first, see the Inset of Fig. 2. In Fig. 2 we represent the
evolution of the critical time tc as a function of the tunable parameter p. We find that tc

increases with increasing p, i.e., the weaker is the local attachment during our model, the
easier the system reaches the consensus state. Furthermore, comparing with the previous
works about D model [22–25], we find that the RGA enhances the ability of consensus of
opinion formation.

As mentioned above, the system will reach a steady state where the opinion dynamics
and the complex network structure do not change again as time elapses. Hence, we
focus on the complex network structure properties, such as the clustering coefficient,
the characteristic path length and the community property, when the system reaches the
steady state. There exists the two limit cases about the tunable parameter p. One limit
case is p = 0, where the link which connects the pair of active vertices whose opinions
differ by more than ǫ is always rewired according to the RGA. The characteristic path
length L(0) and clustering coefficient C(0) are smaller than those in random network till
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Figure 2: The critical time tc when all the individuals share the same opinion as a function of the tunable
parameter p. Here, each dot has been averaged over 10 realizations. Inset: a special case of opinion evolution
as a function of time t for p=0.1. The parameters of the model are: N =1000, 2K =10, ǫ=0.3 and µ=0.1.

the coevolution of the complex network structure and the opinion dynamics is dynamical
steady. The other is p=1, where the link which connects the pair of active vertices whose
opinion differ by more than ǫ is always rewired according to the RLA. We find that the
clustering coefficient C(1)=0.606, which is close to that (C=0.642) in the original regular
lattice. More interestingly, the characteristic path length L(1)=9.85 is much smaller than
that (L=62.86) in the original regular lattice. Hence, the complex network constructed by
the model with parameter p=1 has the small-world effect, which means that the average
shortest path length between vertices in the network is short and the clustering coefficient
of the network is larger than that of the random network. What’s more, we also find that
the degree distributions are Gaussian and exponential for p = 0 and p = 1, see the insets
of Fig. 3(a) and (b) respectively.

On the other hand, we pay most of our attention to the tunable parameter p, which
shows the role of competition between the algorithms of RLA and RGA in our present
model. In Fig. 3, we represent the normalized characteristic path length L(p)/L(1) and
clustering coefficient C(p)/C(1) as a function of parameter p. We find that the charac-
teristic path length L(p) and the clustering coefficient C(p) increases with the tunable
parameter p increasing, and C(p) increases faster than L(p) as p increases. From Fig. 3,
we find that the larger is the tunable parameter p, the more and the stronger communi-
ties the network will be divided into. Interestingly, each community in the model is the
confidence one, i.e., the difference of each pair of vertices’ opinion is less than the con-
fidence parameter ǫ in the same community. There also exists a few vertices (or links),
which have a larger betweenness centrality and play the crucial role of bridge in connect-
ing different communities, belonging to more than one community in the network, see
the blue vertices and links in Fig. 4. Hence, the network has the ”weak links” property.
This formation process of the communities in the model is confirmed in Fig. 4, where we
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Figure 3: (color online). Normalized Characteristic path length L(p) and Clustering coefficient C(p) as a
function of the tunable parameter p. The data are normalized by the values L(1) = 9.85 and C(1) = 0.606.
Insets: the degree distribution of the adaptive social networks for (a), p = 0 in normal-normal representation
and (b), p=1 in log-normal representation. The parameters of the model are: N =1000, 2K =10, ǫ =0.3 and
µ=0.1.

p0 0.3 0.6 0.8 1

Figure 4: (color online). The complex network structure for several values of p in our model have been
studied. Those networks are made up of 100 nodes, in order to have a vivid process picture of the emergence
of communities in the model with the tunable parameter p increasing. The blue vertices and links have been
emphasized, since each of them has a larger betweenness centrality and plays the crucial role of bridge in
connecting different communities. The parameters of the complex network are: N = 100, 2K = 4, ǫ = 0.3 and
µ=0.1.

represent the formation process of communities in our model with various p. Further-
more, we also analyze the degree distribution as a function of p. We find that the degree
distribution is between the Gaussian distribution (p=0) and the exponential distribution
(p=1), which not shown here.

The formation of communities in complex networks can be quantified by modularity
Q [9, 10]:

Q=∑
i

(eii−a2
i ), (3.1)

where eij is the fraction of all edges in the network that link vertices in community i to
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Figure 5: (color online) The modularity Q as a function of the number of communities Nc with various tunable
parameters (a) p=0.2, (b) p=0.6 (square) and p=1 (circle) for the complex networks with the same N=100,
2K=4. (c) The evolution of the maximum modularity Qmax as a function of the network size N with the same
p=0.6 and 2K =4. (d) The Qmax as a function of the tunable parameter p in complex networks with different
coordination number 2K. The dash line is Qmax =0.3. The parameters are ǫ=0.3 and µ=0.1.

vertices in community j and ai = ∑j eij represents the fraction of edges that connect to
vertices in community i. In practice, it is found that the modularity value above about
0.3 is a good indicator of signification community structure in a network [9].

Generally, we calculate Q for each split of a network into communities as we move
down the dendrogram, and look for local peaks in its value, which indicate particularly
satisfactory splits [10]. In Fig. 5, we represent the evolution of the modularity Q as a
function of the number of communities Nc with various parameter (a) p=0.2, (b) p=0.6
(square) and p=1 (circle). We find that there are only one or two peaks, and the positions
of those peaks correspond closely to the expected number Nc of communities that the
original network is divided into. In order to analyze the comparison between RLA and
RGA in the formation of complex system structure, we define Qmax, which plays the
role of order parameter and indicates the best expected divisions of complex systems,
as the maximum value among all peaks. In Fig. 5, Qmax are (a) 0.0734 for p = 0.2, (b)
0.288≃0.3 for p=0.6 and 0.493 for p=1. On the other hand, we find that Qmax increases
with p increasing, see Fig. 5(d). The larger is the parameter p, the larger the maximum
modularity Qmax is. Furthermore, Qmax>0.3 for p>pc , where pc is related to the complex
system size N and the coordination parameter 2K. The larger is the complex system size
N, the smaller the maximum modularity Qmax is, see the Fig. 5(c). In Fig. 5(d), we find
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that the maximum modularity Qmax decreases with 2K increasing for p > 0.5. All those
results show that the factor of RLA enhances the formation of community structure in
the adaptive social networks.

4 Conclusions

In summary, we discuss the emergence of community structure in adaptive social net-
work, which inspired by some previous celebrated model, such as the small-world net-
work model [26], the scale-free network model [17] and the weighted complex network
model [15]. Generality, the system reaches a steady state, i.e., the opinions and the social
network structure do not change again for t→∞. The RGA enhances the ability of con-
sensus of opinion formation. Most important of all, the larger is the tunable parameter p,
the larger the modularity Q of the complex network is. The modularity Q>0.3 for p> pc ,
where pc is related to the initial complex network parameters N and 2K. Namely, the RLA
enhances the formation of community structure in complex social system. Our present
work provides a new perspective and tools to understand the formation of community
structure and the evolution of opinion dynamics in our real society directly.
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