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Abstract. We investigate the critical nucleus and equilibrium morphologies during
precipitation of a second-phase particle in a solid. We show that a combination of
diffuse-interface description and a constrained string method is able to predict both
the critical nucleus and equilibrium precipitate morphologies simultaneously with-
out a priori assumptions. Using the cubic to cubic transformation as an example, it is
demonstrated that the maximum composition within a critical nucleus can be either
higher or lower than that of equilibrium precipitate while the morphology of an equi-
librium precipitate may exhibit lower symmetry than the critical nucleus resulted from
elastic interactions.
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1 Introduction

Precipitation is a common, natural process which takes place in a supersaturated solid
or liquid solution, e.g., during isothermal annealing of a quenched homogeneous al-
loy within a two-phase field of a phase diagram. It is the basic process that underlies
the development of many advanced materials such as high-temperature superalloys and
ultralight aluminum and magnesium alloys. The precipitate microstructure (the num-
ber density, volume fraction, and morphology) is the dominant factor that determines
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the mechanical properties of a solid. One of the main challenges in predicting precipi-
tate microstructures in solids has been the determination of precipitate particle morphol-
ogy because of the presence of both interfacial energy anisotropy and anisotropic elastic
interactions. As the majority of precipitation reactions in solids take place through a
nucleation-and-growth mechanism followed by particle coarsening, there are two ther-
modynamically well-defined morphologies: the morphology of a critical nucleus and the
equilibrium morphology of a precipitate particle.

In classical nucleation models, a critical nucleus is usually assumed to be spherical
and critical radius is determined by a competition between a bulk free energy decrease
which is proportional to volume and an interfacial energy increase which is proportional
to interfacial area. In a diffuse-interface description, a critical nucleus is defined as the
composition or order parameter fluctuation having the minimum free energy increase
among all fluctuations which lead to nucleation, i.e., the saddle point configuration along
the minimum energy path (MEP) between the metastable initial phase represented by a
local minimum in the free energy landscape and the equilibrium phase represented by
the global minimum. Therefore, nucleation of new precipitate particles requires over-
coming a thermodynamic barrier. The magnitude of the nucleation barrier, and thus the
nucleation rate, or the resulted precipitate particle density, is strongly dependent on the
morphology of critical nuclei. On the other hand, following nucleation and growth, the
morphology and volume fraction of precipitate particles during coarsening are generally
close to equilibrium. The particle morphology and volume fraction during coarsening
together with the particle density predicted from nucleation provide all the information
that is needed for predicting the strength of a solid in mechanistic models.

There have been extensive studies, particularly numerical simulations, of equilib-
rium shapes of a precipitate particle in solids using both sharp- and diffuse-interface
approaches [5, 7, 8, 11–13]. Attempts have also been made to predict the morphology
of a critical nucleus in solids by taking into account both interfacial energy anisotropy
and anisotropic elastic interactions [9, 10, 14–16]. For example, we showed that one can
predict the morphology of a critical nucleus in a system going through a phase transi-
tion [14–16] using a combination of the diffuse-interface (phase-field) description and the
minimax algorithm based on the mountain pass theorem. The main objective of this let-
ter is to report a first attempt to predict the morphology of a critical nucleus as well as
the equilibrium morphology of a precipitate simultaneously within the same physical
model and mathematical formulation. A concentration field that conserves the average
concentration is considered as an illustration. We extend the string method [3, 4] to sys-
tems with constraints through a novel augmented Lagrange multiplier formulation. This
leads to an effective constrained string method which may be useful in the study of many
constrained barrier crossing problems in physics, chemistry and biology. In this work,
we demonstrate that a combination of diffuse-interface description and the constrained
string method can simultaneously predict the morphologies of a critical nucleus and an
equilibrium precipitate which can be dramatically different.
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2 Diffuse interface model

Following the diffuse-interface theory of Cahn-Hilliard [1], we consider a conserved field
c which describes the concentration distribution in a binary solid. The change of the total
free energy, Ft, arising from the compositional fluctuation in an initially homogeneous
state with c0 is given by

Ft(c)=
∫

Ω

(

1

2
|A∇c|2+δ f (c)

)

dx+βEe(c). (2.1)

We use the domain Ω=(−1,1)d with d being the space dimension. A periodic boundary
condition is used for c with the period sufficiently large in comparison with the size of the
nucleus and the equilibrium particle so the effect of boundary conditions is negligible.
The gradient energy coefficient A is a constant diagonal tensor for isotropic interfacial
energy, while for anisotropic interfacial energy, it can be made to be either direction-
ally dependent or dependent on the derivatives of c. In [14], the effect of anisotropic
interfacial energy on the critical nuclei morphology has been examined in the case of a
non-conserved field. In this work, we choose to focus on the case of isotropic interfa-
cial energy with A being a constant multiple of the identity tensor. The local free energy
density change δ f (c), arising from a compositional fluctuation around the homogeneous
state with composition c0, is given by

δ f (c)=
1

4κ
[(c2−1)2−(c2

0−1)2−4(c−c0)(c3
0−c0)],

where κ is a coefficient of energy density. The plots of δ f =δ f (c) are given in Fig. 1 for
different c0 at κ =0.03, with cs=−

√
3/3 being the spinodal composition.

Figure 1: Free energy change for c0=−1, −0.9 and cs.

Assuming that the elastic modulus is anisotropic but homogeneous, the microscopic
elasticity theory of Khachaturyan [6] can be conveniently employed to efficiently calcu-
late the elastic strain energy for simply connected coherent inclusions in a solid. For the
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case of cubic precipitates in a cubic matrix, the elastic energy contribution can be written
as

Ee(c)=
1

2(2π)d

∫

Ω̂

dkB(n)|ĉ(k)− ĉ0(k)|2. (2.2)

ĉ(k) is the Fourier transform of c(x). The integration in (2.2) is over the reciprocal space
Ω̂ of the reciprocal lattice vector k, n=k/|k|=(n1, n2, n3) is the normalized unit vector and
B(n) is given by [6]

B(n)=3(c11+2c12)ǫ2
0−

(c11+2c12)
2ǫ2

0(1+2ζs(n)+3ζ2n2
1n2

2n2
3)

c11+ζ(c11+c12)s(n)+ζ2(c11+2c12+c44)n2
1n2

2n2
3

, (2.3)

where ζ=(c11−c12−2c44)/c44 is the elastic anisotropic factor with c11, c12, c44 being elastic
constants in the Voigt’s notation, ǫ0 is the lattice mismatch between the new nucleating
cubic phase and the parent cubic phase, and s(n)=n2

1n2
2+n2

1n2
3+n2

2n2
3. We set, in particular

that, n=0 if k=0.
Rather than varying the magnitude of lattice mismatch and elastic constants, a fac-

tor β is introduced in (2.1) to study the effect of relative elastic energy contribution to
chemical driving force on the critical nucleus morphology and equilibrium particle mor-
phology.

For a conserved field with profile c=c(x), the computation of saddle points and the
minimum energy path for the energy functional (2.1) subject to the constraint

∫

Ω

(c(x)−c0)dx=0. (2.4)

is carried out via the constrained string method which is a natural extension of the simpli-
fied string method originally developed by E, Ren and Vanden-Eijnden [3,4]. We outline
the algorithmic procedures here. Some related mathematical theory can be found in [2]
while detailed numerical analysis will be given elsewhere.

The string methods proceed by evolving a string, i.e., a smooth curve with intrin-
sic parametrization, to the MEP between two metastable/stable regions in configuration
space. Specifically, let ϕ(α,t) denote the instantaneous position (representing the com-
position profile in our case) of the string with α being a suitable parametrization. For
an energy E=E(ϕ), the evolution of the string is based on first taking a gradient decent
direction via the dynamic equation

ϕt =− δE

δϕ
(ϕ),

then followed by a projection step that maps ϕ back to a configuration satisfying the
specified parametrization [4]. Here, δE

δϕ represents the variational derivative of the en-

ergy E with respect to ϕ. In practice, a commonly used parametrization for a string
discretized by a finite number of line segments is to enforce an equal segment length con-
dition through an interpolation procedure [4]. Sufficient number of segments are needed
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to ensure both the convergence and the accuracy of the algorithm. Based on such an
idea, we developed a constrained string method to find the MEP on general constrained
manifolds. It follows essentially the string method with additional treatment of the con-
straints.

The constrained string method allows several equivalent formulations such as the
penalty or Lagrange multiplier methods. Yet, some formulations are more natural and
robust than others and require less parameter tuning. One particularly effective approach
is based on the augmented Lagrange multiplier method. Its application to the energy
(2.1), subject to the simple constraint (2.4), amounts to consider a modified total energy
involving two parameters λ and M:

Eλ(ϕ)= Ft(ϕ)+λ

∫

Ω

(ϕ−c0)dx+M(
∫

Ω

(ϕ−c0)dx)2.

For a fixed positive penalty constant M, we solve for the constrained string, via the fol-
lowing iterations: first, given λj, we apply the string method [4] to the modified energy
Eλj

=Eλj
(ϕ) to solve for ϕj; then, with ϕj known, we update λj by λj+1 via:

λj+1 =λj+2M
∫

Ω

(ϕj−c0)dx.

We iterate between these two steps until convergence. At the end of iteration, the con-
strained MEP is found with the equation (2.4) satisfied along the string, and the limit of λj

gives the corresponding Lagrange multiplier. Adopting this formulation, the implemen-
tation of the constrained string method is straightforward and it assures the satisfaction
of the constraint without requiring M to be exceedingly large, thus reducing the stiffness
of the dynamic system. The constrained string method including the augmented La-
grange multiplier formulation can be derived for very general energies and constrained
manifolds and thus have many potential applications. For the case of the energy func-
tional Ft, each point of the string corresponds to a composition profile along the MEP.
The critical nucleus is determined by the composition profile c=c(x) which is recovered
from the saddle point corresponding to the point on the converged MEP with the highest
energy.

3 Numerical simulations

The model and algorithm described above allows us to determine both the critical nu-
cleus and equilibrium precipitate. As an illustration, we focus on the two-dimensional
example of a cubic to cubic transformation. We fix one end of the string to be the initial
state representing a uniform composition with c(x) = c0 in Ω, while allowing the other
end to move but generally within the energy well of the ground state or equilibrium solu-
tion. We use 31 points (30 line segments) to discretize the string and the Fourier spectral
method with a 256×256 grid for computing each composition profile, i.e., point on the
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Figure 2: Critical nucleus, equilibrium and MEP for c0=−0.9.

Figure 3: Critical nucleus, equilibrium and MEP for c0=−0.88.

string. An adaptive rescaling of the computational domain along the string can be used to
further improve the resolution. Numerical tests were conducted to ensure that sufficient
resolution can be achieved. We fix the parameters A1=A2=1.56×10−4, c11=250, c12=150,
c44=200 and ǫ0=0.02. Since both critical nucleus and equilibrium solution are relatively
small in comparison to the spatial domain Ω, their plots are magnified by a factor of 2 in
order to get a better view.

In Fig. 2, for κ=0.7 and β=0.5, we plot the critical nucleus (left) and equilibrium so-
lution (center) and the MEP (right) in the presence of the long-range elastic interactions
corresponding to an average composition c0=−0.9. One of the interesting observations is
that the maximum composition within the critical nucleus is about 5% higher than that
of the equilibrium precipitate. For this c0, however, both the critical nucleus and equilib-
rium precipitate have the same cubic symmetry due to the elastic energy interactions.

Another example is shown in Fig. 3 when c0 is changed to −0.88. As c0 is close to the
spinodal point, the interface of critical nucleus becomes more diffusive. The composition
value at the center of a critical nucleus decreases and is about 5% smaller than the com-
position of the equilibrium precipitate. Moreover, the size of the equilibrium precipitate
is larger for c0=−0.88 than for c0=−0.9 as a result of higher supersaturation.

In both Figs. 2 and 3, the MEP plots reveal how the energy values change from the
initial state to the final equilibrium state along points on the string (corresponding to total
31 different composition profiles). The value of critical energy needed to nucleate a new
particle for c0=−0.88 is 0.1282 which is significantly lower than the value of 0.1792 for
c0=−0.9.
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Figure 4: Calculated MEPs for β=0.5, 1 and 1.5 with inserts showing the critical nuclei and equilibria.

Figure 5: Critical nucleation energy with changing c0 for β=0.125 and 0 (left) and MEPs (right) for c0=−0.93,
β=0.125 and c0=−0.945, β=0.

To examine the effect of elastic energy contributions, we fix the chemical driving force
with c0=−0.85 and κ=1, and increase β to compute the MEPs. In Fig. 4 (left), we plot the
MEPs (with the compositional profiles for the critical nucleus and equilibrium precipitate
as inserts) for different values of β. At a relatively small elastic energy contribution,
both the critical nucleus and the equilibrium precipitate display a cubic symmetry. With
higher elastic strain energy contribution, while the critical nucleus maintains the cubic
symmetry, the equilibrium precipitate is plate-like with only two-fold symmetry (Fig. 4,
center). As we further increase the elastic energy contribution, for example, β=1.5, both
the critical nucleus and the equilibrium precipitate exhibit plate-shaped particles (Fig. 4,
right). We also observe the increases in both the critical nucleus size (see the inserts) and
the nucleation energy barrier (from 0.1222 to 0.1708 and 0.2449) with increasing elastic
energy contributions.

The influence of elastic energy contributions on the morphologies of both critical nu-
clei and equilibrium precipitates can be understood from the competition between in-
terfacial energy and elastic strain energy. The total interfacial energy is proportional to
interfacial area between a particle and the matrix while the total elastic strain energy is
proportional to the volume of the particle. Since the size of a critical nucleus is signifi-
cantly smaller than that of an equilibrium precipitate, it is expected that the elastic energy
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will have a lesser influence on the critical nucleus (assuming the interfacial coherency be-
tween the particle and matrix is always maintained during the entire evolution process).
Minimization of elastic strain energy leads to plate-shaped particles while minimization
of interfacial energy (assuming isotropic) leads to spherical shapes. Therefore, as the
elastic strain energy contribution increases, the shape of the equilibrium precipitate bi-
furcates first from being cubic to plate-shaped before the critical nucleus does.

To further understand the elastic energy contributions,in Fig. 5 (left), the critical free
energy of formation as a function of average composition c0 is plotted for the case with-
out the elasticity contribution β=0 (red squares), and for critical nuclei with β=0.125 (blue
circles). We take κ =1 in both cases. As expected, with the increase of the average com-
position, the size of critical nuclei (with cubic symmetry) is reduced and the critical nu-
cleation energy decreases. This dependence is similar to that predicted from the classical
nucleation theory for spherical particles. We also notice that, for the given parameters
and elastic energy, the smallest c0 which allows nucleation to happen is −0.93, where the
energy of equilibrium solution is very close to the initial-state energy (Fig. 5, top right).
If c0 is smaller than −0.93, the energy of an equilibrium precipitate becomes higher than
the initial homogeneous state, indicating that the initial uniform state could be globally
stable so that the elastic energy contribution can prevent the nucleation process from oc-
curring, i.e. coherency strain energy contribution shifts the equilibrium phase boundary.
Without elasticity, nucleation can still take place with an even smaller c0=−0.945 (Fig. 5,
bottom right).

4 Summary

In summary, we report a new approach for computing the morphologies of both critical
nuclei and equilibrium precipitates without a priori shape assumptions. Our calculations
reveal that the morphology of a critical nucleus can be dramatically different from the
equilibrium one due to the elastic energy contributions. We plan to extend the approach
to treat systems with defects such as dislocations and interfaces, i.e., processes of het-
erogeneous nucleation. Moreover, while the focus of this letter is on the precipitate nu-
cleation and the equilibrium state, the mathematical and computational framework can
be potentially applied to other constrained barrier crossing problems in physics, chem-
istry and biology, including examples like the saddle point search for activated states in
solid state diffusion using density function theory, and the determination of domain mor-
phology of a critical nucleus and a switched state in ferroelectric solids under an applied
electric field.
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