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Abstract. The Unsteady Adaptive Stochastic Finite Elements (UASFE) approach is a
robust and efficient uncertainty quantification method for resolving the effect of ran-
dom parameters in unsteady simulations. In this paper, it is shown that the underly-
ing Adaptive Stochastic Finite Elements (ASFE) method for steady problems based on
Newton-Cotes quadrature in simplex elements is extrema diminishing (ED). It is also
shown that the method is total variation diminishing (TVD) for one random parameter
and for multiple random parameters for first degree Newton-Cotes quadrature. It is
proven that the interpolation of oscillatory samples at constant phase in the UASFE
method for unsteady problems results in a bounded error as function of the phase for
periodic responses and under certain conditions also in a bounded error in time. The
two methods are applied to a steady transonic airfoil flow and a transonic airfoil flutter
problem.
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Key words: Total variation diminishing, extrema diminishing, error bounds, stochastic finite ele-
ments, uncertainty quantification, transonic flow, transonic flutter.

1 Introduction

Deterministic numerical solutions of engineering flow and fluid-structure interaction
problems contain no information about the influence of parameter variations on the out-
puts of interest. Physical uncertainties are, however, present in practically all engineer-
ing applications due to, for example, varying atmospheric conditions, and production
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tolerances affecting material properties and the geometry. These inherent physical vari-
ations enter the computational problem through physical input parameters, and initial
and boundary conditions. Especially, discontinuous solutions of shock waves in super-
sonic flow and bifurcation phenomena of aeroelastic systems are highly sensitive to this
input variability. Dynamic fluid-structure interaction systems also amplify input varia-
tions with time.

Physical variability is here described in a probabilistic framework by random pa-
rameters with known probability density. The distribution functions and the statistical
moments of outputs of interest are determined in order to obtain more reliable compu-
tational predictions, which can be utilized in robust design optimization and reducing
design safety factors. In contrast, in structural reliability analysis input randomness is
propagated to compute the probability of failure [4]. Failure probabilities are often small
such that in that case the tails of the distribution are of interest.

The resulting mathematical formulation of the uncertainty quantification problem for
output of interest u(x,t,ω) is

L(x,t,ω;u(x,t,ω))=S(x,t,ω), (1.1)

with appropriate initial and boundary conditions. Operator L and source term S are de-
fined on domain D×T×Ω, where x∈D and t∈T are the spatial and temporal dimensions
with D⊂R

d, d={1,2,3}, and T⊂R. The argument ω emphasizes that u(x,t,ω) is a ran-
dom event with the set of outcomes Ω of the probability space (Ω, F , P) with F ⊂2Ω the
σ-algebra of events and P a probability measure. The probability space originates from
na uncorrelated second order random parameters

a(ω)={a1(ω),··· ,ana(ω)}∈A,

with probability density fa(a) in Eq. (1.1) and its initial and boundary conditions, with
parameter space A⊂R

na .
For a single realization ω=ωk, u(x,t,ωk) reduces to the deterministic function uk(x,t)

in terms of the spatial coordinates x and time t. The numerical approximation of uk(x,t)
can be obtained using standard spatial discretization methods and time marching schemes.
A weighted approximation of the response surface u∗(x,t,a) based on ns deterministic so-
lutions {uk(x,t)}ns

k=1 is considered a solution of uncertainty quantification problem (1.1).
Integration and sorting of u∗(x,t,a) results in the statistical moments µui

(x,t)

µui
(x,t)=

∫

A
u∗(x,t,a)i fa(a)da, (1.2)

and its probability distribution.
The classical approach of solving (1.1) by computing many deterministic solutions

for randomly sampled parameter values in a Monte Carlo simulation [9] leads to im-
practically high computational costs for flow and fluid-structure simulations, which are
already computationally intensive in the deterministic case. Non-intrusive Polynomial
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Chaos methods [1, 8, 12, 20, 24, 30] aim at reducing the number of deterministic solves
by using a global polynomial interpolation of the samples in parameter space. An effec-
tive sampling in suitable Gauss quadrature points is employed in Stochastic Collocation
approaches [2, 17, 22, 31]. Current challenges in uncertainty quantification for computa-
tional fluid dynamics and fluid-structure interaction simulations include problems with
discontinuities and unsteadiness [32].

Global polynomial approximations of discontinuities in probability space can result
in oscillatory predictions and unphysical realizations. A more robust approximation is
achieved by piecewise polynomial approximations of the response in adaptive finite el-
ements discretizations of probability space [6, 15, 16, 23]. These Adaptive Stochastic Fi-
nite Elements (ASFE) methods employ local Polynomial Chaos or Stochastic Collocation
approximations in hypercube elements. An alternative Adaptive Stochastic Finite Ele-
ments formulation based on Newton-Cotes quadrature in simplex elements was recently
also proposed [28]. Since the main motivation for performing uncertainty analysis is to
obtain reliable computational predictions, it is important to assure the robustness of un-
certainty quantification methods. In the deterministic finite volume community the total
variation diminishing (TVD) and extrema diminishing (ED) properties [10, 13] of finite
volume methods ascertain that no unphysical solutions are predicted due to overshoots
and undershoots near discontinuities. It is, therefore, useful to extend these concepts to
uncertainty quantification methods in probability space.

In unsteady problems, uncertainty quantification methods usually require a fast in-
creasing number of samples with time to maintain a constant accuracy. This effect is
especially profound in problems with oscillatory solutions in which the frequency of the
response is affected by the random parameters [19]. The random frequency results in
increasing phase differences in the response, which consequently lead to an increasingly
oscillatory response surface and more required samples. A Fourier Chaos basis can be
a suitable alternative for approximating oscillatory responses [18]. Frequency domain
methods have also been considered for solving linear stochastic operator equations [21].

Two Unsteady Adaptive Stochastic Finite Elements (UASFE) methods for oscillatory
problems were proposed based on Newton-Cotes quadrature in simplex elements. The
first approach is based on applying the uncertainty quantification interpolation to a time-
independent parameterization of oscillatory samples instead of to the unsteady samples
themselves [25, 26]. This results in a time-independent uncertainty quantification inter-
polation accuracy for the time-independent functionals. In the second method the oscil-
latory samples are scaled with their phase [27]. The uncertainty quantification interpo-
lation of the samples is then performed at constant phase, which eliminates the effect of
the increasing phase differences on the increase of the number of required samples. The
latter method is not subject to a parameterization error, which improves the convergence
behavior of the method, and it can resolve time-dependent functionals such as transient
behavior. The formulation was also extended to multi-frequency responses of continuous
structures by using a wavelet decomposition preprocessing step [29].

In this paper, it is shown that the Adaptive Stochastic Finite Elements method with
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Newton-Cotes quadrature in simplex elements is an extrema diminishing uncertainty
quantification method in Section 2. It is also shown that the method is total variation di-
minishing for one random parameter and for multiple random parameters for first degree
Newton-Cotes quadrature. It is proven in Section 3 that the Unsteady Adaptive Stochas-
tic Finite Elements method with interpolation at constant phase results in a bounded
error as function of the phase for periodic responses and under certain conditions also in
a bounded error in time. The two methods are applied to a steady transonic airfoil flow
and a transonic airfoil flutter problem in Section 4. The conclusions are summarized in
Section 5.

2 Adaptive Stochastic Finite Elements

The Adaptive Stochastic Finite Elements method based on Newton-Cotes quadrature in
simplex elements is presented in Section 2.1. It is shown under which conditions the
approach is total variation diminishing in probability space in Section 2.2. In Section 2.3
it is proven that the method is extrema diminishing in probability space.

2.1 Newton-Cotes quadrature in simplex elements

Adaptive Stochastic Finite Elements with Newton-Cotes quadrature and simplex ele-
ments evaluate integral (1.2) by dividing parameter space A in ne non-overlapping sim-
plex elements Aj

µui
(x,t)=

ne

∑
j=1

∫

Aj

u∗(x,t,a)i fa(a)da. (2.1)

A piecewise polynomial approximation w∗(x,t,a) of the response u∗(x,t,a) is constructed
based on ns deterministic solutions vj,k(x,t) = u∗(x,t,aj,k) for the values of the random
parameters aj,k that correspond to the ñs Newton-Cotes quadrature points of degree d in
the element Aj

µui
(x,t)≈µwi

(x,t)=
ne

∑
j=1

ñs

∑
k=1

cj,kvj,k(x,t)i, (2.2)

where cj,k is the weighted integral of the Lagrange interpolation polynomial Lj,k(a) through
Newton-Cotes quadrature point k in element Aj

cj,k =
∫

Aj

Lj,k(a) fa(a)da, (2.3)

for j=1,··· ,ne and k=1,··· ,ñs.
Here, first and second degree Newton-Cotes quadrature is considered, d=1 and d=2.

The second degree Newton-Cotes formulation is combined with adaptive mesh refine-
ment in probability space. The initial discretization of parameter space A for the sec-
ond degree adaptive scheme consists of the minimum of neini =na! simplex elements and
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(a) Element (b) Initial grid (c) Adapted grid

Figure 1: Discretization of two-dimensional parameter space A using 2-simplex elements and second-degree
Newton-Cotes quadrature points given by the dots.

nsini = 3na samples, see Fig. 1. The example of Fig. 1 for two random input parameters
can geometrically be extended to higher dimensional probability spaces. The elements
Aj are adaptively refined using a refinement measure ρj based on the largest absolute
eigenvalue of the Hessian Hj, as measure of the curvature of the response surface ap-
proximation in the elements, weighted by the probability f j contained by the elements

f j =
∫

Aj

fa(a)da, (2.4)

with ∑
ne
j=1 f j =1. The stochastic grid refinement is terminated when δne < δ̄, where conver-

gence measure δne is defined as

δne =max

(

|µu⌊ne/2⌋
(x,t)−µune

(x,t)|∞

|µune
(x,t)|∞

,
|σu⌊ne/2⌋

(x,t)−σune
(x,t)|∞

|σune
(x,t)|∞

)

, (2.5)

with µu(x,t) and σu(x,t) the mean and standard deviation of u(x,t,ω), or when a thresh-
old for the maximum number of samples n̄s is reached. Convergence measure δne can be
extended to include higher statistical moments of the output.

Due to the location of the Newton-Cotes quadrature points the deterministic sam-
ples are reused in successive refinements and the samples are used in approximating the
response in multiple elements. In elements where the quadratic second degree interpola-
tion results in an extremum other than in a quadrature point, the element is subdivided
into ñe = 2na subelements with a linear first degree Newton-Cotes approximation of the
response without performing additional deterministic solves.

As is common in multi-element methods, the probability of the random parameters
a(ω) is assumed to be zero outside a finite domain. Probability distributions on infinite
domains are truncated at a small enough threshold value for the probability, such that
the truncation error is small compared to other numerical errors that occur in practical
applications.
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2.2 Total variation diminishing

It is shown that Adaptive Stochastic Finite Elements based on Newton-Cotes quadra-
ture in simplex elements is total variation diminishing for one random parameter in Sec-
tion 2.2.1. In Section 2.2.2 it is argued that the method is also total variation diminishing
in higher dimensional probability spaces up to first degree Newton-Cotes quadrature.

2.2.1 One-dimensional probability space

Consider uncertainty quantification problem (1.1) with one random input parameter
a(ω), na = 1, on a bounded connected domain a ∈ A, with one-dimensional parameter
space A = [min(a),max(a)]. Let response surface u∗(x,t,a) be a continuously differen-
tiable function. The arguments x and t, and the index ∗ are omitted in the following for
simplicity of the notation. Let sampling method g result in a discrete set of ns samples
v={v1,··· ,vns}= g(u(a)) of response surface u(a), with

vk = gk(u(a))=u(ak), ak = a(ωk), k=1,··· ,ns,

and
a1≤ a2 ≤···≤ ans , (2.6)

with a1 =min(a) and ans =max(a). Let interpolation method h of the samples v result in
a piecewise continuously differentiable interpolation function w(a)= h(v) with w(ak)=
vk, which is continuously differentiable on subdomains Aj of A and continuous on the
subdomain boundaries ∂Aj with j = 1,··· ,ne. Let uncertainty quantification method l
evaluate (1.2) by approximating response surface u(a) with interpolation

w(a)= l(u(a))=h(g(u(a)))

of the samples v. Then the concepts total variation, total variation diminishing, and total
variation conserving are defined in probability space as follows in correspondence to
their definitions for finite volume methods in physical space in [10].

Definition 2.1. (Total variation) The total variation TV of response surface u(a) in the
space A of random parameter a(ω) is

TV(u)=
∫

A

∣

∣

∣

∣

∂u

∂a

∣

∣

∣

∣

da. (2.7)

The total variation of the continuous and piecewise continuously differentiable approxi-
mation w(a) is

TV(w)=
ne

∑
j=1

TV(wj)=
ne

∑
j=1

∫

Aj

∣

∣

∣

∣

∂wj

∂a

∣

∣

∣

∣

da. (2.8)

The total variation of the discrete set of samples v is

TV(v)=
ns−1

∑
k=1

|vk+1−vk|. (2.9)
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Definition 2.2. (Total variation diminishing) A set of samples v is total variation dimin-
ishing (TVD) with respect to response surface u(a) if

TV(v)≤TV(u). (2.10)

Sampling method g is TVD if the resulting set of samples v is TVD for all u(a). Approxi-
mation w(a) of response surface u(a) is TVD if

TV(w)≤TV(u). (2.11)

Uncertainty quantification method l is TVD if the resulting approximation w(a) is TVD
for all u(a).

Definition 2.3. (Total variation conserving) Interpolation w(a) of samples v is total vari-
ation conserving (TVC) if

TV(w)=TV(v). (2.12)

Interpolation method h is TVC if the resulting interpolation w(a) is TVC for all v.

Based on these definitions it is proven below that Stochastic Finite Elements with
Newton-Cotes quadrature in simplex elements is a TVD uncertainty quantification method
for random parameter a(ω).

Lemma 2.1. Sampling method g is TVD for random parameter a(ω).

Proof. For the total variation of the samples v= g(u(a)) holds according to Definition 2.1

TV(v)=
ns−1

∑
k=1

|vk+1−vk|=
ns−1

∑
k=1

|u(ak+1)−u(ak)|

≤
ns−1

∑
k=1

∫ ak+1

ak

∣

∣

∣

∣

∂u

∂a

∣

∣

∣

∣

da=
∫

A

∣

∣

∣

∣

∂u

∂a

∣

∣

∣

∣

da=TV(u). (2.13)

Since (2.13) holds for all u(a), sampling method g is TVD according to Definition 2.2.

Consider Stochastic Finite Elements uncertainty quantification method l1 with first
degree Newton-Cotes quadrature in simplex elements. Sampling method g1 then results
in ns samples v1 in the vertices of the ne simplex elements. Interpolation method h1

results in a linear interpolation w1
j (a) of the samples v1

j in the elements Aj. For one ran-

dom parameter a(ω) sampling method g1 results in ns =ne+1 samples v1. Interpolation
method h1 then results in the piecewise linear interpolation w1(a)

w1(a)=w1
j (a)=

v1
j (aj+1−a)+v1

j+1(a−aj)

aj+1−aj
, for a∈Aj =[aj,aj+1], j=1,··· ,ne. (2.14)

Theorem 2.1. Uncertainty quantification method l1 based on first degree Newton-Cotes quadra-
ture in simplex elements is TVD for random parameter a(ω).
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Proof. The total variation of w1(a) is according to Definition 2.1 and (2.14)

TV(w1)=
ne

∑
j=1

∫

Aj

∣

∣

∣

∣

∣

∂w1
j

∂a

∣

∣

∣

∣

∣

da=
ne

∑
j=1

∣

∣

∣

∣

∣

v1
j+1−v1

j

aj+1−aj

∣

∣

∣

∣

∣

(aj+1−aj)

=
ns−1

∑
k=1

∣

∣

∣
v1

k+1−v1
k

∣

∣

∣
=TV(v1). (2.15)

Since (2.15) holds for all v1, interpolation method h1 is TVC according to Definition 2.3.
Lemma 2.1 gives

TV(w1)=TV(v1)≤TV(u). (2.16)

Since (2.16) holds for all u(a), uncertainty quantification method l1 is TVD according to
Definition 2.2.

Consider Stochastic Finite Elements uncertainty quantification method l2 with second
degree Newton-Cotes quadrature in simplex elements. Sampling method g2 then results
in ns samples v2 in the middle of the edges and in the vertices of the ne simplex elements.
Interpolation method h2 results in a quadratic interpolation w2

j (a) of the samples v2
j in the

elements Aj. For one random parameter a(ω) sampling method g2 results in ns =2ne+1
samples. Interpolation method h2 then results in quadratic approximation w2

j (a) in the

element Aj through the samples v2
k for k = {2j−1,2j,2j+1}, j = 1,··· ,ne. If the quadratic

approximation w2
j (a) in an element Aj has an extremum other than in a quadrature point

ak, i.e.,

min
Aj

(w2
j (a))<min(v2

2j−1,v2
2j,v

2
2j+1) ∨ max

Aj

(w2
j (a))>max(v2

2j−1,v2
2j,v

2
2j+1), (2.17)

then element Aj is subdivided into ñe =2 subelements with a linear first degree Newton-
Cotes approximation based on the samples vk with k={2j−1,2j,2j+1}

w2
j (a)=



















v2
2j−1(a2j−a)+v2

2j(a−a2j−1)

a2j−a2j−1
, a∈ [a2j−1 ,a2j],

v2
2j(a2j+1−a)+v2

2j+1(a−a2j)

a2j+1−a2j
, a∈ [a2j ,a2j+1].

(2.18)

Theorem 2.2. Uncertainty quantification method l2 based on second degree Newton-Cotes quadra-
ture in simplex elements is TVD for random parameter a(ω).

Proof. Two cases have to be considered to prove Theorem 2.2. In case (i) the quadratic
approximation w2

j (a) in element Aj has an extremum other than in a quadrature point ak

(2.17)

min
Aj

(w2
j (a))<min(v2

2j−1,v2
2j,v

2
2j+1) ∨ max

Aj

(w2
j (a))>max(v2

2j−1,v2
2j,v

2
2j+1).



414 J. A. S. Witteveen and H. Bijl / Commun. Comput. Phys., 6 (2009), pp. 406-432

The approximation w2
j (a) in element Aj is then given by the piecewise linear function

(2.18). The total variation of w2
j (a) in element Aj is then according to Definition 2.1

TV(w2
j (a))=

∫

Aj

∣

∣

∣

∣

∂w2
j

∂a

∣

∣

∣

∣

da=
∣

∣

∣
v2

2j−v2
2j−1

∣

∣

∣
+
∣

∣

∣
v2

2j+1−v2
2j

∣

∣

∣

=TV(v2
2j−1,v2

2j,v
2
2j+1). (2.19)

In case (ii) the quadratic approximation w2
j (a) has its extrema in element Aj in quadrature

points

min
Aj

(w2
j (a))=min(v2

2j−1,v2
2j,v

2
2j+1) ∧ max

Aj

(w2
j (a))=max(v2

2j−1,v2
2j,v

2
2j+1). (2.20)

The total variation of w2
j (a) in element Aj is then

TV(w2
j (a))=

∫

Aj

∣

∣

∣

∣

∂w2
j

∂a

∣

∣

∣

∣

da=
∣

∣

∣
v2

2j−v2
2j−1

∣

∣

∣
+
∣

∣

∣
v2

2j+1−v2
2j

∣

∣

∣

=TV(v2
2j−1,v2

2j,v
2
2j+1), (2.21)

which is equal to the result of case (i). For the interpolation w2(a) of the samples v2 over
all ne elements then holds

TV(w2)=
ne

∑
j=1

TV(w2
j )=

ne

∑
j=1

TV(v2
2j−1,v2

2j,v
2
2j+1)=TV(v2). (2.22)

Since (2.22) holds for all v2, interpolation method h2 is TVC according to Definition 2.3.
Lemma 2.1 gives

TV(w2)=TV(v2)≤TV(u). (2.23)

Since (2.23) holds for all u(a), uncertainty quantification method l2 is TVD according to
Definition 2.2.

Similarly, it can be proven that zero degree Newton-Cotes quadrature in simplex ele-
ments is also a TVD uncertainty quantification method for random parameter a(ω).

2.2.2 Multi-dimensional probability space

Consider an uncertainty quantification problem with an arbitrary number of na random
input parameters a(ω) = {a1(ω),··· ,ana(ω)} on a bounded connected domain a∈ A. In
this section it is argued that Stochastic Finite Elements with Newton-Cotes quadrature in
simplex elements is also a TVD uncertainty quantification method in the resulting multi-
dimensional probability space for first degree Newton-Cotes.
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Also for an arbitrary number of random parameters a(ω) holds that a sampling
method g is TVD, since the resulting set of samples v cannot result in larger total variation
than response surface u(a).

Uncertainty quantification method l1 based on first degree Newton-Cotes quadrature
in simplex elements is also TVD in multi-dimensional probability spaces. The linear in-
terpolation w1

j (a) of the samples v1
j in the vertices of simplex element Aj conserves the

total variation of the samples vj in element Aj. Since the piecewise linear interpolation

w1(a) of the samples v1 is continuous over the element boundaries ∂Aj, interpolation

w1(a) is TVC with respect to the TVD samples v.
Uncertainty quantification method l2 based on second degree Newton-Cotes quadra-

ture in simplex elements results for multi-dimensional probability spaces in an approxi-
mation w2(a), which is not everywhere continuous on the element boundaries ∂Aj. Un-
certainty quantification method l2 is, therefore, not TVD for multi-dimensional probabil-
ity spaces.

Zero degree Newton-Cotes quadrature in simplex elements also results in an approx-
imation which is discontinuous at the element boundaries ∂Aj.

2.3 Extrema diminishing

Another important property for uncertainty quantification methods is the extrema di-
minishing concept. This property eliminates the possibility of predicting non-zero prob-
abilities for unphysical outcomes due to overshoots and undershoots near discontinu-
ities. Consider again an uncertainty quantification problem with an arbitrary number of
na random input parameters a(ω) = {a1(ω),··· ,ana(ω)} ∈ A. The concepts extrema di-
minishing and extrema conserving are defined for probability space below in accordance
with their definitions in the context of finite volume methods for physical space [13].

Definition 2.4. (Extrema diminishing) A set of samples v is extrema diminishing (ED)
with respect to response surface u(a) if

min(v)≥min
A

(u(a)) ∧ max(v)≤max
A

(u(a)). (2.24)

Sampling method g is ED if the resulting set of samples v is ED for all u(a). Approxima-
tion w(a) of response surface u(a) is ED if

min
A

(w(a))≥min
A

(u(a)) ∧ max
A

(w(a))≤max
A

(u(a)). (2.25)

Uncertainty quantification method l is ED if the resulting approximation w(a) is ED for
all u(a).

Definition 2.5. (Extrema conserving) Interpolation w(a) of samples v is extrema con-
serving (EC) if

min
A

(w(a))=min(v) ∧ max
A

(w(a))=max(v). (2.26)

Interpolation method h is EC if the resulting interpolation w(a) is EC for all v.
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It is proven below that the Stochastic Finite Elements method with Newton-Cotes
quadrature in simplex elements satisfies the definition of an ED uncertainty quantifica-
tion method.

Lemma 2.2. Sampling method g is ED.

Proof. For the minimum of the samples v holds

min(v)=min
k

(vk)=min
k

(u(ak))≥min
A

(u(a)), (2.27)

and equivalently for the maximum

max(v)≤max
A

(u(a)). (2.28)

Since (2.27) and (2.28) hold for all u(a), sampling method g is ED according to Defini-
tion 2.4.

Theorem 2.3. Uncertainty quantification method l1 based on first degree Newton-Cotes quadra-
ture in simplex elements is ED.

Proof. For the minimum of the linear interpolation w1
j (a) of the samples v1

j in the vertices

of simplex element Aj holds

min
Aj

(w1
j (a))=min(v1

j ). (2.29)

For the minimum of the piecewise linear interpolation w1(a) of the samples v1 then holds

min
A

(w1(a))=min
j

(

min
Aj

(w1
j (a))

)

=min
j

(min(v1
j ))=min(v1), (2.30)

and equivalently for the maximum

max
A

(w1(a))=max(v1). (2.31)

Since (2.30) and (2.31) hold for all v1, interpolation method h1 is EC according to Defini-
tion 2.5. Lemma 2.2 gives

min
A

(w1(a))=min(v1)≥min
A

(u(a)), max
A

(w1(a))=max(v1)≤max
A

(u(a)). (2.32)

Since (2.32) holds for all u(a), uncertainty quantification method l1 is ED according to
Definition 2.4.

Theorem 2.4. Uncertainty quantification method l2 based on second degree Newton-Cotes quadra-
ture in simplex elements is ED.
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Proof. The two cases (i) and (ii) again have to be considered to prove Theorem 2.4. In
case (i) the quadratic approximation w2

j (a) in element Aj has an extremum other than in

a quadrature point ak (2.17)

min
Aj

(w2
j (a))<min(v2

j ) ∨ max
Aj

(w2
j (a))>max(v2

j ). (2.33)

The approximation w2
j (a) in element Aj is then given by a piecewise linear interpolation

of the samples v2
j , for which holds according to (2.30) and (2.31)

min
Aj

(w2
j (a))=min(v2

j ), max
Aj

(w2
j (a))=max(v2

j ). (2.34)

In case (ii) the quadratic approximation w2(a) in element Aj has its extrema in quadrature
points

min
Aj

(w2
j (a))=min(v2

j ) ∧ max
Aj

(w2
j (a))=max(v2

j ), (2.35)

which is equivalent to the result of case (i). For the minimum and maximum of interpo-
lation w2(a) of samples v2 on A then holds

min
A

(w2(a))=min(v2), max
A

(w2(a))=max(v2). (2.36)

Since (2.36) holds for all v2, interpolation h2 is EC according to Definition 2.5. Lemma 2.2
gives

min
A

(w2(a))=min(v2)≥min
A

(u(a)), max
A

(w2(a))=max(v2)≤max
A

(u(a)). (2.37)

Since (2.37) holds for all u(a), uncertainty quantification method l2 is ED according to
Definition 2.4.

Similarly, it can be shown that zero degree Newton-Cotes quadrature in simplex ele-
ments is also ED.

3 Unsteady Adaptive Stochastic Finite Elements

The Unsteady Adaptive Stochastic Finite Elements method based on interpolation of os-
cillatory samples at constant phase φ is introduced in Section 3.1. In Section 3.2 it is
proven that the method results in a bounded error as function of the phase for periodic
responses. It is also shown under which conditions the error is bounded in time.
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3.1 Interpolation at constant phase

Assume that solving Eq. (1.1) for realizations of the random parameters ak results in oscil-
latory samples vk(t)=u(ak), of which the phase vφk

(t)=φ(t,ak) is a well-defined function
of time t. In order to interpolate the samples v(t)= {v1(t),··· ,vna(t)} at constant phase,
first, their phase as function of time vφ(t)= {vφ1

(t),··· ,vφna
(t)} is extracted from the de-

terministic solves v(t). Second, the time series for the phase vφ(t) are used to transform
the samples v(t) to functions of their phase v̂(vφ(t)) = {v̂1(vφ1

(t)),··· ,v̂na(vφna
(t))} in-

stead of time, see Fig. 2. Third, the transformed samples v̂(vφ(t)) are interpolated to the
function ŵ(wφ(t,a),a). This step involves both the interpolation of the sampled phases
vφ(t) to the function wφ(t,a)= h(vφ(t)) and the interpolation of the samples v̂(ϕ) to the
function ŵ(ϕ,a)=h(v̂(ϕ)) at constant phase φ= ϕ. Repeating the latter interpolation for
all phases ϕ results in the function ŵ(ϕ,a). Finally, transforming ŵ(ϕ,a) back to w(t,a)
using wφ(t,a) yields an approximation the unknown response surface u(t,a) of the sys-
tem response as function of time t and the random parameters a(ω). The actual sampling
and interpolation is performed using the Adaptive Stochastic Finite Elements uncertainty
quantification method l based on Newton-Cotes quadrature in simplex elements.

kv

time t

(a) samples vk(t)

kv^

φphase

(b) samples v̂k(φ)

Figure 2: Oscillatory samples as function of time and phase.

The phases vφ(t) are extracted from the samples based on the local extrema of the
time series v(t). A trial and error procedure identifies a cycle of oscillation based on two
or more successive local maxima. The selected cycle is accepted if the maximal error of its
extrapolation in time with respect to the actual sample is smaller than a threshold value
ε̄k for at least one additional cycle length. The functions for the phases vφ(t) in the whole
time domain T are constructed by identifying all successive cycles of v(t) and extrapo-
lation to t =0 and t = tmax before and after the first and last complete cycle, respectively.
The phase is normalized to zero at the start of the first cycle and a user defined parame-
ter determines whether the sample is assumed to attain a local extremum at t =0. If the
phase vφ(t) cannot be extracted from one of the samples vk(t) for k=1,··· ,ns, uncertainty
quantification method l is directly applied to the time-dependent samples v(t).
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3.2 Bounded error

It is shown below that the uncertainty quantification interpolation of periodic samples at
constant phase results in a bounded error. Let u(t,a) be a periodic response as function
of time t for t∈R

u(t+zT(a),a)=u(t,a), for all z∈Z and a∈A, (3.1)

with T(a)=1/ f (a)>0 the period length and f (a) the frequency affected by the random
input a(ω). The phase φ(t,a) of the response u(t,a) is given by

φ(t,a)=φ0(a)+
t

T(a)
, (3.2)

with φ0(a) = φ(0,a). Consider uncertainty quantification method l which results in an
approximation w(t,a) of u(t,a) based on applying interpolation method h at constant
phase to ns samples v(t)={v1(t),··· ,vns} for parameter values ak for k=1,··· ,ns resulted
from sampling method g.

Theorem 3.1. The error ε̂(ϕ,a) = ŵ(ϕ,a)−û(ϕ,a) in approximation ŵ(ϕ,a) with respect to
periodic response surface û(ϕ,a) as resulted from uncertainty quantification method l applied at
constant phase ϕ is bounded for all ϕ∈R and a∈A by δ for which holds

ε̂(ϕ,a)<δ, for all ϕ∈ [0,1] and a∈A. (3.3)

Proof. Sampling method g results in samples

vk(t)= gk(u(t,a))=u(t,ak), (3.4)

for k = 1,··· ,ns. The samples vk(t) are periodic signals with period length vTk
= T(ak),

since using (3.1)

vk(t+zvTk
)=u(t+zT(ak),ak)

=u(t,ak)=vk(t) for all z∈Z, (3.5)

for k=1,··· ,ns. The phase vφk
(t)=φ(t,ak) of the samples vk(t) is then in correspondence

with (3.2) given by
vφk

(t)=vφ0k
+t/vTk

, for k=1,··· ,ns, (3.6)

with vφ0k
=vφk

(0). Scaling the samples vk(t) with their phase vφk
(t) results in

vk(t)= v̂k(vφk
(t))= v̂k

(

vφ0k
+t/vTk

)

, (3.7)

for k=1,··· ,ns. Periodicity of vk(t) gives

v̂k(vφk
(t)+z)= v̂k

(

vφ0k
+t/vTk

+z
)

= v̂k

(

vφ0k
+

t+zvTk

vTk

)

=vk(t+zvTk
)=vk(t)= v̂k(vφk

(t)), for all z∈Z, (3.8)
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for k =1,··· ,ns. Uncertainty quantification method l results in approximation ŵ(ϕ,a) by
applying interpolation method h of the samples v(t) at a constant phase ϕ

ŵ(ϕ,a)=h(v̂(ϕ))=h(v̂1(ϕ),··· ,v̂ns(ϕ)). (3.9)

The error ε̂(ϕ,a) as function of phase ϕ in approximation ŵ(ϕ,a) with respect to û(ϕ,a)
is defined as

ε̂(ϕ,a)= ŵ(ϕ,a)−û(ϕ,a), (3.10)

with
u(t,a)= û(φ(t,a),a), (3.11)

and

û(φ+z,a)= û

(

φ0(a)+
t+zT(a)

T(a)
,a

)

=u(t+zT(a),a)

=u(t,a)= û(φ,a), for all z∈Z and a∈A. (3.12)

For error ε̂(ϕ,a) then holds using (3.8), (3.9), and (3.12)

ε̂(ϕ+z,a)= ŵ(ϕ+z,a)−û(ϕ+z,a)

=h(v̂1(ϕ+z),··· ,v̂ns(ϕ+z))−û(ϕ+z,a)

=h(v̂1(ϕ),··· ,v̂ns(ϕ))−û(ϕ,a)

= ŵ(ϕ,a)−û(ϕ,a)= ε̂(ϕ,a), for all z∈Z and ϕ∈R and a∈A. (3.13)

Error ε̂(ϕ,a) is, therefore, a periodic function of ϕ. Define δ for which holds (3.3)

ε̂(ϕ,a)<δ for all ϕ∈ [0,1] and a∈A,

then holds

ε̂(ϕ+z,a)= ε̂(ϕ,a)<δ for all z∈Z and ϕ∈ [0,1] and a∈A, (3.14)

and
ε̂(ϕ,a)<δ for all ϕ∈R and a∈A. (3.15)

Error ε̂(ϕ,a) in approximation ŵ(ϕ,a) is, therefore, bounded by δ for all ϕ∈R and a ∈
A.

Notice that the proof of Theorem 3.1 is independent of uncertainty quantification
method l, sampling method g, and interpolation method h.

The bounded error ε̂(ϕ,a) as function of phase ϕ also results in a bounded error ε(t,a)
in time for the Unsteady Adaptive Stochastic Finite Elements method l1 based on first de-
gree Newton-Cotes quadrature, if initial phase φ0(a) and frequency f (a) depend linearly
on a. Let initial phase φ0(a), therefore, depend linearly on the random parameters a

φ0(a)= cφ0 ,0+cφ0,1 ·a, (3.16)
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where · denotes the vector inner product, with cφ0,0 constant and cφ0 ,1 a vector containing
na constants. And let frequency f (a) also depend linearly on a(ω)

f (a)= cf,0+cf,1 ·a, (3.17)

with cf,0 constant and cf,1 an na-dimensional constant vector. Consider uncertainty quan-
tification method l1 based on piecewise linear interpolation method h1 of samples in the
first degree Newton-Cotes quadrature points in the vertices of simplex elements of sam-
pling method g1.

Theorem 3.2. The error ε(t,a)=w(t,a)−u(t,a) in approximation w(t,a) with respect to periodic
response surface u(t,a) as resulted from uncertainty quantification method l1 applied at constant
phase ϕ is bounded for all t∈R and a∈A by δ for which holds (3.3)

ε̂(ϕ,a)<δ, for all ϕ∈ [0,1] and a∈A,

if initial phase φ0(a) and frequency f (a) depend linearly on a.

Proof. The phase φ(t,a) of the periodic response u(t,a) is given by (3.2)

φ(t,a)=φ0(a)+
t

T(a)
=φ0(a)+ f (a)t.

The linear dependence of φ0(a) and f (a) on a given by (3.16) and (3.17) results in

φ(t,a)= cφ0 ,0+cf,0t+(cφ0 ,1+cf,1t)·a. (3.18)

The ns sampled phases v1
φ(t) = {vφ1

(t),··· ,vφns
(t)} resulting from sampling method g1

are, therefore,
v1

φk
(t)= cφ0 ,0+cf,0t+(cφ0 ,1+cf,1t)·ak , (3.19)

for k =1,··· ,ns. The resulting w1
φ(t,a) of piecewise linear interpolation h1 of the samples

v1
φ(t) then exactly reconstructs the function φ(t,a)

w1
φ(t,a)=h1(v1

φ(t))= cφ0 ,0+cf,0t+(cφ0 ,1+cf,1t)·a=φ(t,a). (3.20)

Therefore, error ε̂(φ(t,a),a) in the approximation ŵ1(w1
φ(t,a),a) of response û(φ(t,a),a)

becomes

ε̂(φ(t,a),a)= ŵ1(w1
φ(t,a),a)−û(φ(t,a),a)

= ŵ1(φ(t,a),a)−û(φ(t,a),a)

=w1(t,a)−u(t,a)

= ε(t,a)<δ for all φ∈R and a∈A, (3.21)

according to Theorem 3.1. Using (3.2) gives

ε(t,a)<δ for all t∈R and a∈A. (3.22)

This completes the proof of the theorem.
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Unsteady Adaptive Stochastic Finite Elements method l2 based on a piecewise
quadratic interpolation method h2 of samples in the second degree Newton-Cotes
quadrature points in simplex elements of sampling method g2 consequently gives ε(t,a)<
δ for all t∈R and a∈A up to quadratic dependence of φ0(a) and f (a) on a.

For periodic responses the interpolation of the samples at constant phase eliminates
the effect of the increasing phase differences in time, which usually causes the fast in-
crease of the number of required samples. The error is even bounded in time for periodic
problems with an up to quadratic dependence of initial phase φ0(a) and frequency f (a)
on random parameters a. For non-periodic responses the interpolation at constant phase
also eliminates the effect of the increasing phase differences on the increase of the num-
ber of required samples. The error is for non-periodic responses not bounded in time due
to, for example, increasing amplitudes with time. In practice, interpolation of oscillatory
samples in time results, however, in an approximately constant accuracy in time with a
constant number of samples for periodic and non-periodic responses of which the phase
is well-defined.

4 Numerical results

The developed uncertainty quantification methods are applied to transonic airfoil flows.
Adaptive Stochastic Finite Elements with Newton-Cotes quadrature in simplex elements
is applied to a steady transonic airfoil flow in Section 4.1. A transonic airfoil flutter prob-
lem is analyzed in Section 4.2 using Unsteady Adaptive Stochastic Finite Elements with
interpolation at constant phase.

4.1 Steady transonic airfoil flow

The steady transonic flow over a NACA0012 airfoil is considered with randomness in
the angle of attack α(ω). The randomness around the mean angle of attack µα = 2o is
given by a symmetrical beta distribution with β1 = β2 = 2 in domain α ∈ [1o,3o], which
corresponds to an input coefficient of variation of cvα = 22.4%. Standard atmospheric
free stream pressure p∞ = 101300Pa and temperature T∞ = 293K results for free stream
velocity V∞ =276.27m/s in a Mach number of M∞ =0.8. The flow is modeled here by the
compressible Euler equations [5] mainly to demonstrate the properties of the uncertainty
quantification method. The two-dimensional flow domain is discretized by an unstruc-
tured hexahedral mesh of 12·103 cells, which was selected based on a grid convergence
study. The Euler equations are discretized using a second order central finite volume dis-
cretization stabilized with artificial dissipation [11]. The steady state solution is obtained
by time integration with a CFL number of 1.5.

The deterministic flow for the mean angle of attack µα =2o is transonic with a shock
wave at 70.2% of the upper surface, as can be identified in the pressure field and the
pressure distribution over the airfoil surface in Fig. 3. This shock wave in physical space
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(a) Pressure field
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Figure 3: Deterministic pressure for mean angle of attack µα =2o for the steady transonic airfoil flow.
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Figure 4: Response surfaces of lift, drag, pitching moment, and shock location for the steady transonic airfoil
flow with random angle of attack α(ω).
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Figure 5: Cumulative probability distributions of lift, drag, pitching moment, and shock location for the steady
transonic airfoil flow with random angle of attack α(ω).

results in a discontinuity in probability space. On the lower surface there is also a small
supersonic region present.

Adaptive Stochastic Finite Elements with first and second degree Newton-Cotes (NC)
quadrature in simplex elements are employed to resolve the response surfaces and prob-
ability distributions of the functionals lift, drag, pitching moment, and shock location in
Figs. 4 and 5. The first and second degree Newton-Cotes approximations of the response
surfaces based on ns=17 samples are in close agreement in Fig. 4. Both discretizations re-
sult in an interpolation that preserves the extrema of the samples. The response surface
of the shock location is less smooth than that of the other functionals, because the shock
location attains discrete values of the locations of the volume faces on the airfoil surface.
Since the multi-element approximations are piecewise continuously differentiable, it is
more appropriate to study the variation in the functionals in terms of the resulting cu-
mulative probability distributions in Fig. 5 than in terms of their probability densities.
The convergence for the mean and standard deviation of the lift, drag, pitching moment,
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Table 1: Mean and standard deviation of lift L(ω) for the steady transonic airfoil flow with random angle of
attack α(ω).

1st degree NC 2nd degree NC
ns ne mean µL st.dev. σL ne mean µL st.dev. σL

2 1 2.244·104 4.676·103 - - -
3 2 2.290·104 4.679·103 1 2.303·104 4.679·103

5 4 2.299·104 4.703·103 2 2.302·104 4.710·103

9 8 2.301·104 4.711·103 4 2.302·104 4.714·103

17 16 2.302·104 4.712·103 8 2.302·104 4.712·103

Table 2: Mean and standard deviation of drag D(ω) for the steady transonic airfoil flow with random angle of
attack α(ω).

1st degree NC 2nd degree NC
ns ne mean µD st.dev. σD ne mean µD st.dev. σD

2 1 2.108·103 5.132·102 - - -
3 2 2.010·103 5.146·102 1 1.982·103 5.143·102

5 4 1.988·103 5.231·102 2 1.981·103 5.256·102

9 8 1.982·103 5.254·102 4 1.981·103 5.261·102

17 16 1.981·103 5.258·102 8 1.981·103 5.259·102

Table 3: Mean and standard deviation of pitching moment M(ω) for the steady transonic airfoil flow with

random angle of attack α(ω).

1st degree NC 2nd degree NC
ns ne mean µM st.dev. σM ne mean µM st.dev. σM

2 1 −3.479·103 9.003·102 - - -
3 2 −3.406·103 9.008·102 1 −3.386·103 9.007·102

5 4 −3.390·103 9.219·102 2 −3.385·103 9.279·102

9 8 −3.385·103 9.275·102 4 −3.383·103 9.292·102

17 16 −3.384·103 9.282·102 8 −3.384·103 9.285·102

Table 4: Mean and standard deviation of shock location sshock(ω) for the steady transonic airfoil flow with
random angle of attack α(ω).

1st degree NC 2nd degree NC
ns ne mean µs st.dev. σs ne mean µs st.dev. σs

2 1 6.908·10−1 3.108·10−2 - - -
3 2 6.976·10−1 3.120·10−2 1 6.995·10−1 3.117·10−2

5 4 6.985·10−1 3.118·10−2 2 6.988·10−1 3.118·10−2

9 8 6.994·10−1 3.166·10−2 4 6.997·10−1 3.181·10−2

17 16 6.992·10−1 3.184·10−2 8 6.991·10−1 3.190·10−2

and shock location given in Tables 1 to 4 shows a higher accuracy for second degree
Newton-Cotes quadrature compared to first degree quadrature especially for the mean.
The standard deviation ranges from 4.6% of the mean for the shock location to 27.4% for
the pitching moment.
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The effect of the random α(ω) on the surface pressure distribution in terms of the
mean and the 99% uncertainty interval is given in Fig. 6 for the more accurate second
degree Newton-Cotes quadrature. The discretization based on ns=17 samples and ne=8
elements in Fig. 6a shows that the shock wave on the upper surface is smeared out in
the mean sense compared to the deterministic case of Fig. 3b. The uncertainty interval
in the shock region indicates that α(ω) has more effect on the shock wave location than
on the shock wave strength. This Euler computation also indicates a significantly larger
uncertainty interval upstream of the shock than downstream of the shock. The 99% un-
certainty interval falls within the range of the sampled minimum and maximum given
by the dotted line in Fig. 6a, which demonstrates the extrema diminishing property of
the method. The result for the pressure distribution on the lower surface of Fig. 6b pre-
dicts a shock wave only for a fraction of the realizations. Discretizations with ns={3,5,9}
show in Fig. 6c convergence of a staircase approximation of the mean and the uncer-
tainty interval to a smooth behavior. Uniform stochastic grid refinement is used here in
the examples.
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Figure 6: Mean surface pressure and 99% uncertainty
interval of second degree Newton-Cotes quadrature
for the steady transonic airfoil flow with random angle
of attack α(ω).

Fig. 7 shows an approximation of the mean and standard deviation of the pressure
field relative to the airfoil. In the mean pressure field the smearing of the shock wave



J. A. S. Witteveen and H. Bijl / Commun. Comput. Phys., 6 (2009), pp. 406-432 427

(a) Mean (b) Standard deviation

Figure 7: Mean and standard deviation of the pressure field for second degree Newton-Cotes quadrature with
ns =17 for the steady transonic airfoil flow with random angle of attack α(ω).

can again be identified. The standard deviation field shows that standard deviation is
produced in the shock region with a maximum coefficient of variation of cvp = 37.1%
at 68.9% of the upper surface. This corresponds to a maximum amplification of input
randomness α(ω) by 65.6%.

4.2 Transonic airfoil flutter

The combined effect of independent randomness in the ratio of natural frequencies ω̄(ω)
and the free stream velocity U∞(ω) on the post-flutter behavior of an elastically mounted
airfoil is analyzed. The structural model of the pitch-plunge airfoil with cubic nonlinear
spring stiffness is given by [7, 14]:

ξ′′+xαα′′+

(

ω̄

U∗

)2

(ξ+βξ ξ3)=−
1

πµ
Cl(τ), (4.1)

xα

r2
α

ξ′′+α′′+
1

U∗2
(α+βαα3)=

2

πµr2
α

Cm(τ), (4.2)

where βξ=0m−2 and βα=300rad−2 are the cubic spring parameters, ξ(τ)=h/b is the non-
dimensional plunge displacement of the elastic axis, see Fig. 8, α(τ) is the pitch angle,
and (′) denotes differentiation with respect to non-dimensional time τ =Ut/b, with half-
chord length b=c/2=0.5m. The radius of gyration around the elastic axis is rαb=0.25m,
bifurcation parameter U∗ is defined as U∗ = U/(bωα), and the airfoil-air mass ratio is
µ=m/πρ∞b2 =100, with m the airfoil mass. The elastic axis is located at a distance ahb=
−0.25m from the mid-chord position and the mass center is located at a distance xαb =
0.125m from the elastic axis. The ratio of natural frequencies is defined as ω(ω)=ωξ/ωα,
with ωξ and ωα the natural frequencies of the airfoil in pitch and plunge, respectively. The
randomness in ω̄(ω) is described by a uniform distribution around mean value µω̄ =0.25
with a coefficient of variation of 10%. The free stream velocity U∞(ω) is subject to a
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Figure 8: The elastically mounted pitch-plunge airfoil model.

symmetric unimodal beta distribution with β1 = β2 = 2 with a coefficient of variation of
1% around mean µU∞

=276.27m/s, which corresponds to M∞ =0.8.

The non-dimensional aerodynamic lift and moment coefficients, Cl(τ) and Cm(τ), are
determined by solving the Euler equations as for the steady transonic airfoil flow. An Ar-
bitrary Lagrangian-Eulerian formulation is employed to couple the fluid mesh with the
movement of the structure. The fluid mesh is deformed using radial basis function inter-
polation of the boundary displacements [3]. Time integration is performed using the sec-
ond order BDF-2 method until t=3 with time step ∆t=0.002, which was established after
a time step refinement study. Initially the airfoil is at rest at a deflection of α(0)=0.1deg
and ξ(0)=0 from its equilibrium position. In order to study the post-bifurcation behav-
ior, the bifurcation parameter U∗ is fixed at 130% of the deterministic linear bifurcation
point for the mean values of the random parameters. The stochastic behavior of the angle
of attack α(t,ω) is resolved as indicator for the post-flutter airfoil behavior.

The Unsteady Adaptive Stochastic Finite Elements response surface approximation
of the angle of attack α(t,ω) as function of the random parameters ω̄(ω) and U∞(ω) at
t = {0.5;1.5;2.5} given in Fig. 9 shows an increasingly oscillatory response surface with
time. The 10% variation in ω̄(ω) has a larger effect on the frequency of the response than
U∞(ω) with 1% variation. Both parameters have a small effect on the amplitude of the
oscillation of α(t,ω) of approximately 3o. At t=0.5 the airfoil exhibits transient behavior
from its initial perturbation of α(0)=0.1o, which is indicated by the smaller amplitude of
the response surface variations of approximately 2o. These results are obtained using the
time-independent grid in probability space shown in Fig. 9d with ns =9 samples, ne =2
elements, and nesub

=4096 post-processing subelements.

The resulting UASFE approximation of the mean µα(t) and standard deviation σα(t)
of the angle of attack α(t,ω) in Fig. 10 shows two frequency signals due to the effect of
the two random parameters on the frequency of the response. The mean µα(t) exhibits
initially an increasing oscillation caused by the deterministic transient of the samples, af-
ter which it develops a decaying oscillation due to the effect of the random parameters
on the frequency of the response. The large effect of the random parameters on the dy-
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(a) t=0.5 (b) t=1.5

(c) t=2.5 (d) Stochastic grid

Figure 9: Response surface of angle of attack α(ω) as function of random natural frequency ratio ω̄(ω) and
free stream velocity U∞(ω) for transonic airfoil flutter.
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Figure 10: Mean and standard deviation of angle of attack α(ω) for transonic airfoil flutter with random natural
frequency ratio ω̄(ω) and free stream velocity U∞(ω).
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Table 5: Convergence measure δne for mean angle of attack α(t,ω) for transonic airfoil flutter with random

natural frequency ratio ω̄(ω) and free stream velocity U∞(ω).

ns ne t=0.5 t=1.0 t=1.5 t=2.0 t=2.5

13 4 0.640·10−3 3.712·10−3 4.426·10−3 7.207·10−3 4.331·10−3

25 8 0.268·10−3 2.455·10−3 3.138·10−3 4.422·10−3 2.684·10−3

Table 6: Convergence measure δne for the standard deviation of angle of attack α(t,ω) for transonic airfoil

flutter with random natural frequency ratio ω̄(ω) and free stream velocity U∞(ω).

ns ne t=0.5 t=1.0 t=1.5 t=2.0 t=2.5

13 4 2.943·10−3 3.275·10−3 7.500·10−3 5.378·10−3 3.896·10−3

25 8 0.973·10−3 4.388·10−3 0.859·10−3 2.194·10−3 3.344·10−3

namical system is illustrated by the fast initial increase of the standard deviation σα(t)
from its deterministic initial condition. Although the deterministic post-flutter behavior
is highly unsteady, the stochastic response reaches a steady asymptotic behavior with a
standard deviation of σα =1.6o, which is a factor 16 larger than the initial angle of attack
α(0)= 0.1o. The discretizations with ns = {9,13,25} samples and ne = {2,4,8} uniformly
refined elements, respectively, indicate that the results are uniformly converged in time.
The approximation with ns = 25 is converged up to δne = 6.2·10−3, where δne is defined
by (2.5). The local convergence for µα(t) and σα(t) at t={0.5;1.0;1.5;2.0;2.5} given in Ta-
bles 5 and 6 for ns={13,25} shows no clear increase of convergence measure δ with time.
This illustrates that the convergence and the accuracy of the UASFE approximation are
in practice constant in time.

5 Conclusions

A robust and efficient Unsteady Adaptive Stochastic Finite Elements (UASFE) method
is developed for uncertainty quantification in time-dependent simulations. The under-
lying Adaptive Stochastic Finite Elements (ASFE) discretization based on Newton-Cotes
quadrature in simplex elements is extrema diminishing (ED) in probability space. The
method is also total variation diminishing (TVD) in probability space for one random
parameter and for multiple random parameters for first degree Newton-Cotes quadra-
ture. These properties eliminate the possibility of predicting non-zero probabilities for
unphysical outcomes due to overshoots and undershoots at discontinuities. The inter-
polation of the oscillatory samples at constant phase in the UASFE method results in a
bounded error as function of the phase for periodic responses. The UASFE method also
results in a bounded error in time, if the initial phase and the frequency of the response
depends linearly or quadratically on the random parameters. In practice this results in a
constant uncertainty quantification accuracy in time with a constant number of samples.

The applications to a transonic airfoil flow and a transonic airfoil flutter problem show
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a significant effect of input randomness. In the steady transonic airfoil flow randomness
in the angle of attack results in production of standard deviation in the shock region with
a maximum coefficient of variation cvp = 37.1% at 68.9% of the upper surface, which
corresponds to an amplification of input randomness by 65.6%. The unsteady transonic
airfoil flutter problem shows a steady asymptotic stochastic behavior with a standard
deviation of 1.6o, which is a factor 16 larger than the deterministic initial condition.
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