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Abstract. An indirect-forcing immersed boundary method for solving the incompress-
ible Navier-Stokes equations involving the interfaces and irregular domains is devel-
oped. The rigid boundaries and interfaces are represented by a number of Lagrangian
control points. Stationary rigid boundaries are embedded in the Cartesian grid and
singular forces at the rigid boundaries are applied to impose the prescribed velocity
conditions. The singular forces at the interfaces and the rigid boundaries are then dis-
tributed to the nearby Cartesian grid points using the immersed boundary method. In
the present work, the singular forces at the rigid boundaries are computed implicitly
by solving a small system of equations at each time step to ensure that the prescribed
velocity condition at the rigid boundary is satisfied exactly. For deformable interfaces,
the forces that the interface exerts on the fluid are computed from the configuration
of the elastic interface and are applied to the fluid. The Navier-Stokes equations are
discretized using finite difference method on a staggered uniform Cartesian grid by a
second order accurate projection method. The ability of the method to simulate vis-
cous flows with interfaces on irregular domains is demonstrated by applying to the
rotational flow problem, the relaxation of an elastic membrane and flow in a constric-
tion with an immersed elastic membrane.
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1 Introduction

Flow problems involving the deformable interface and complex geometries still pose a
difficult challenge in computational fluid dynamics. One of the challenges in these prob-
lems is that the fluid motion, the motion of the deformable interface and the interaction
with the immersed rigid boundaries must be computed simultaneously. This is necessary
in order to account for the complex interaction between the fluid, the interfaces and the
immersed boundaries. Fig. 1 shows an illustration of such problems involving the rigid
boundary and fixed/deformable interface embedded in a uniform Cartesian grid.
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Figure 1: Two typical domains with the rigid boundary and fixed/deformable interface immersed in a uniform
Cartesian grid.

Conventional methods for solving the Navier-Stokes equations with rigid immersed
boundaries include the body-fitted or structured grid approach. In this approach, the
Navier-Stokes equations are discretized on a curvilinear grid that conforms to the im-
mersed boundary and hence the boundary conditions can be imposed easily. The dis-
advantage of this method is that robust grid generation is required to account for the
complexity of the immersed boundaries. An alternative and popular approach for solv-
ing complex viscous flows involving the interfaces on a complex geometry is the Carte-
sian grid method which solves the governing equations on a Cartesian grid and has the
advantages of retaining the simplicity of the Navier-Stokes equations on the Cartesian
coordinates and enabling the use of fast solvers.

One of the most successful Cartesian grid methods is Peskin’s immersed boundary
method [25]. This method was originally developed to study the fluid dynamics of blood
flow in the human heart [24]. The method was developed further and has been applied to
many biological problems involving flexible boundaries [7,34]. The immersed boundary
method has also been applied to handle problems with immersed boundaries [11, 20]. In
order to deal with rigid immersed boundaries, Lai and Peskin [11] proposed to evaluate
the force density using an expression of the form,

f(s,t)=Kr(Xe(s)−X(s,t)), (1.1)

where Kr is a constant, Kr≫1, X and Xe are the arc-parametrization of the computed and
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the required positions of the boundaries, respectively. The forcing term in Eq. (1.1) is a
particular case of the feedback forcing formulation proposed by Goldstein et al. [9] with
β=0. In [9], the force is expressed as

f(s,t)=α
∫ t

0
U(s,t

′
)dt

′
+βU(s,t), (1.2)

where U is the velocity of the boundary, and α and β are chosen to be negative and large
enough so that U will stay close to zero. In order to avoid using very small timestep,
Mohd-Yusof [22] and Fadlun et al. [6] proposed a direct forcing formulation. This forcing
is direct in the sense that the exact velocity is imposed directly on the rigid boundary
through an interpolation procedure. Lima E Silva et al. [20] proposed a different approach
to compute the forcing term f based on the evaluation of the various terms in the Navier-
Stokes equations at the rigid boundary. Another similar approach that combines the
original immersed boundary method with the direct and explicit forcing was introduced
by Uhlmann [33] for the simulation of particulate flows. The forcing term at the boundary
is evaluated based on the desired velocity at the boundary which is simply given by the
rigid-body motion and a preliminary velocity obtained explicitly without the application
of a forcing term. In the immersed boundary method, once the forcing term is obtained
at the boundary, the immersed boundary method uses a discrete delta function to spread
the force density to the nearby Cartesian grid points.

A second Cartesian grid method is the immersed interface method (IIM). The IIM
was originally proposed by LeVeque and Li [16] for solving elliptic equations, and later
extended to Stokes flow with elastic boundaries or surface tension [15]. We refer the
interested readers to the newly published book by Li and Ito [17]. The method was de-
veloped further for the Navier-Stokes equations in [13, 14, 18] for problems with flexible
boundaries. Recently, the immersed interface method [35] has been employed to solve
for viscous flows with static rigid immersed boundaries [4, 13, 19, 27]. In [4, 19], the no-
slip boundary conditions are imposed directly by determining the correct jump condi-
tions for streamfunction and vorticity. In [27], a Cartesian grid method for modelling
multiple moving objects in incompressible viscous flow is considered. Le et al. [13] has
presented an immerse interface method for viscous flows involving rigid and flexible
boundaries. In [13], the immersed boundaries are presented by a set of Lagrangian con-
trols points. The strength of singular forces is determined to impose the no-slip condition
at the boundary by solving a small system of equations at each time step. Another Carte-
sian grid approach has been presented by Ye et al. [35] and Udaykumar et al. [32] using
a finite volume technique. They reshaped the immersed boundary cells and used a poly-
nomial interpolating function to approximate the fluxes and gradients on the faces of the
boundary cells while preserving second-order accuracy. In contrast to IIM, the disadvan-
tage of the immersed boundary method is that it is only first-order accurate for problems
with non-smooth but continuous solutions since the immersed boundary method smears
out sharp interface to a thickness of order of the mesh width, but the advantage is sim-
ple and much easier implementation on a Cartesian grid, especially if to think about the
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further extension of proposed method in this paper to the three dimensional problems.
Considering these advantages, in this paper, we will use this approach. To our knowl-
edge, the immersed boundary is developed to handle mostly the fluid problem involving
only interfaces, it has also been used to simulated the flow with only rigid boundaries.
However, there is comparatively less work on the application of the immersed boundary
method to the incompressible viscous flow problems involving both the interfaces and
rigid boundaries.

In this work, we shall present an immersed boundary method with indirect forcing
for solving the incompressible Navier-Stokes equations in the presence of both the in-
terfaces and irregular boundaries simultaneously, which is based on the approach of Le
et al. [12, 13] in terms of the evaluation of the forcing term. The method combines the
immersed boundary method with a front tracking representation of the interface and
rigid boundary on a uniform Cartesian grid. In the proposed method, the singular force
at the rigid boundary is determined to enforce the prescribed velocity condition at the
rigid boundary of the irregular domain. At each time step, the singular force at the rigid
boundary is computed implicitly by solving a small, dense linear system of equations us-
ing SVD iterative method. Once the force at the rigid boundary is computed, the Navier-
Stokes equations are discretized on a staggered Cartesian grid by a second order accurate
projection method for the pressure and velocity. Fast solvers from the FISHPACK soft-
ware library [1] are used to solve the resulting discrete systems of equations.

This paper is organized as follows. In Section 2, we present the governing equa-
tions including the immersed boundary formulation. In Section 3, we briefly describe
the immersed boundary method and the projection method. We present the determina-
tion of the forcing term at the rigid boundary. The numerical algorithm and numerical
implementation are presented in Section 4. In Section 5, some numerical examples are
presented. Finally some concluding remarks will be made in Section 6.

2 Governing equations

This paper considers the viscous incompressible flows involving the interfaces for two
dimensional problems on irregular domain. In a two dimensional bounded domain D
containing a immersed interface Γib with the irregular domain ∂D, the incompressible
Navier-Stokes equations formulated in primitive variables is considered and written as

ρ(ut+(u·∇)u)+∇p=µ∆u+Fib(x,t)+g(x,t), x∈D, (2.1)

∇·u=0, x∈D, (2.2)

with initial and boundary conditions

u(x,0)=u0, u|∂D =up , (2.3)

where u=(u,v)T is the fluid velocity, p is the fluid pressure, ρ is the fluid density, µ is the
viscosity of the fluid, x=(x,y) is the Cartesian coordinate variable, g(x,t)=(g1,g2)T is an
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external force, and the effect of the interface immersed in the fluid results in a singular
force Fib which has the form

Fib(x,t)=
∫

Γib

fib(s,t)δ(x−Xib(s,t))ds. (2.4)

Here Xib(s,t) is the arc-length parametrization of the interface Γib, s is the arc-length func-
tion (in some reference configuration), fib =( f ib

1 , f ib
2 )T is the corresponding force density,

and δ(·) is the Dirac delta function defined in the distribution sense. The motion of the
interface satisfies

∂Xib(s,t)

∂t
=u(Xib(s,t),t)=

∫

Ω
u(x,t)δ(x−Xib(s,t))dx. (2.5)

In this model, for deformable interface problem, we consider an immersed moving
interface problems which involves an elastic membrane, where the force strength fib ex-
erted by elastic membrane on the fluid of the form is given by

fib(s,t)=
∂

∂s

(

T(s,t)τ(s,t)
)

, (2.6)

with the tension T(s,t) given by

T(s,t)=T0

(∣

∣

∣

∂Xib(s,t)

∂s

∣

∣

∣
−1

)

. (2.7)

Here, the tension coefficient T0 is the stiffness constant which describes the elastic prop-
erty of the membrane. The vector tangential to Γ is given by τ(s,t), where

τ(s,t)=
∂Xib

∂s

/
∣

∣

∣

∂Xib

∂s

∣

∣

∣
.

Thus, the force density can be computed directly from the location Xib of the membrane
Γib.

The irregular domain D can be extended to a larger rectangular domain Ω by an em-
bedding technique, see Fig. 1. In order to impose the prescribed velocity condition at
the irregular boundary, i.e., u|∂D = up, the boundary ∂D can be treated as an immersed
boundary Γrb that exerts force to the fluid [11, 30]. These singular forces at the immersed
boundary Γrb can be introduced as the augmented variables so that the irregular bound-
ary condition is satisfied, i.e., u|Γrb

=up. Therefore, finding the solutions of Eqs. (2.1)-(2.3)
is equivalent to solving the following equations:

ρ(ut+(u·∇)u)+∇p=µ∆u+F(x,t)+g(x,t), x∈Ω, (2.8)

∇·u=0, x∈Ω, (2.9)

u|Γrb
=up , (2.10)
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with the boundary condition u|∂Ω =ub. Here Eq. (2.10) is the corresponding augmented
equation and the total singular force F has the form of

F(x,t)=Fib +
∫

Γrb

frb(s,t)δ(x−Xrb(s,t))ds. (2.11)

Here Xrb(s,t) is the arc-length parametrization of the rigid boundary Γrb, and frb =
( f rb

1 , f rb
2 )T is the corresponding force density.

Throughout this paper, we assume that the fluid density and fluid viscosity µ are
constants over the whole domain. We refer the readers to Fig. 1 for an illustration of the
problem.

3 Numerical algorithm

Our numerical algorithm is based on the pressure-increment projection algorithm [3] for
the discretization of the Navier-Stokes equations using the immersed boundary method.
The spatial discretization is carried out on a standard marker-and-cell (MAC) staggered
grid similar to that found in Kim and Moin [10]. We use a uniform MAC gird with mesh
width h=∆x=∆y in the computation. With the MAC mesh, the pressure field is defined
at the cell center (i, j), where i ∈ {1,2,··· ,Nx} and j ∈ {1,2,··· ,Ny}. The velocity fields u
and v are defined at the vertical edges and horizontal edges of a cell, respectively. We use
the notation

ui,j =u(xi,yj+
1

2
h), i=1,··· ,Nx+1, j=1,··· ,Ny , (3.1)

vi,j =u(xi+
1

2
h,yj), i=1,··· ,Nx, j=1,··· ,Ny+1, (3.2)

pi,j = p(xi+
1

2
h,yj +

1

2
h), i=1,··· ,Nx, j=1,··· ,Ny , (3.3)

where xi = ih, xj = jh. The pressure and velocity components u and v are arranged as seen
in Fig. 2.

3.1 Description of immersed boundary method

In our numerical scheme, we use two sets of control points Xib
k =(Xib

k ,Yib
k ), k=1,··· , Nib and

Xrb
k =(Xrb

k ,Yrb
k ), k=1,··· , Nrb to represent the immersed interface and the rigid boundary,

respectively. The force densities are computed at these control points and are spread to
the Cartesian grid points by a discrete representation of the delta function,

F(x(i, j),t)=
Nib

∑
k=1

fib
k (t)Dh(x(i, j)−Xib

k (t))∆s+
Nrb

∑
k=1

frb
k (t)Dh(x(i, j)−Xrb

k (t))∆s, (3.4)
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Figure 2: A diagram of the interface cutting through a staggered grid with a uniform mesh width h, where the
velocity component u is at the left-right face of the cell and v is at the top-bottom face, and the pressure p is
at the cell center.

where fQk (t) is the force density at the control point XQ
k , Q= ib, rb, x(i, j) and F(x(i, j))

are the coordinate of grid point (i, j) and the force at that point, respectively. Dh(x) is a
two-dimensional discrete delta function,

Dh(x)=
1

h2
φ
( x

h

)

φ
(y

h

)

, (3.5)

where φ a continuous function which was derived in [23, 25] as

φ(r)=















1
8

(

3−2|r|+
√

1+4|r|−4|r|2
)

, |r|≤1,

1
8

(

5−2|r|−
√

−7+12|r|−4r2
)

, 1≤|r|≤2,

0, otherwise.

(3.6)

Once the force densities are computed at the control points and spread to the grid, the
Navier-Stokes equations with the forcing terms are then solved for the pressure and ve-
locity field at Cartesian grid points using projection method [4]. The velocity field is then
interpolated to find the velocity at the control points as

U(XQ
k ,t)=∑

i,j

u(x(i, j),t)Dh(x(i, j)−XQ
k (t))h2, Q= ib,rb. (3.7)

3.2 Projection method

Given the velocity un, and the pressure pn−1/2, we compute the velocity un+1 and pres-
sure pn+1/2 at the next time step as follows:
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Step 1: Compute an intermediate velocity field u∗ by solving

u∗−un

∆t
+(u ·∇u)n+ 1

2 =−1

ρ
∇pn+ 1

2 +
µ

2ρ
(∆hu∗+∆hun)+

1

ρ
Fn+ 1

2 +
1

ρ
gn+ 1

2 ,

u∗|∂Ω =un+1
b , (3.8)

where the advection term is extrapolated using the formula,

(u ·∇u)n+ 1
2 =

3

2
(u ·∇hu)n− 1

2
(u ·∇hu)n−1 , (3.9)

and the pressure gradient is approximated simply as

∇pn+ 1
2 =GMACpn− 1

2 . (3.10)

Above step can be rewritten in the following Helmholtz equations form:

λ0u∗+∆hu∗=RHS, (3.11)

where RHS is the right hand terms and λ0 =− 2ρ
µ∆t . In general, This intermediate velocity field does

not satisfy the divergence-free condition (2.9).

Step 2: Compute a pressure update φn+1 by solving the Poisson equation

∆hφn+1 =
ρ

∆t
DMACu∗ , (3.12)

with boundary condition
n ·∇φn+1|∂Ω =0.

Step 3: Once φn+1 is obtained by solving Eq. (3.12), both the pressure and velocity field (pn+ 1
2 ,un+1)

are updated as

un+1 =u∗− ∆t

ρ
GMACφn+1 , (3.13)

pn+ 1
2 = pn− 1

2 +φn+1− µ

2ρ
DMACu∗ . (3.14)

In the above expressions, ∇h and ∆h are the standard central difference operators,
GMAC and DMAC are the MAC gradient and divergence operators, respectively. These
operators are defined as

∇hui,j =

(

ui+1,j−ui−1,j

2h
,
ui,j+1−ui,j−1

2h

)

,

∆hu∗
i,j =

1

h2

(

u∗
i+1,j+u∗

i−1,j+u∗
i,j+1+u∗

i,j−1−4u∗
ij

)

,

GMAC
ij =

( pi+1,j−pi,j

h
,
pi,j+1−pi,j

h

)

,

(DMACu)i,j =
ui+1,j−ui,j

h
+

vi,j+1−vi,j

h
.

(3.15)
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In our projection method, we need to solve, at each time step, two Helmholtz equa-
tions for u∗ in (3.8) or (3.11) and one Poisson-like equation for φn+1 in (3.12). In the
present work, we take advantage of the fast solvers from FISHPACK [1] to solve these
equations.

3.3 Determination of indirect forcing frb

Assuming that the force frb at the control points of the rigid boundary is known, the force
at the Cartesian grid points F can be computed as in Eq. (3.4), which can be written in the
matrix-vector form as

F=Dibfib +Drbfrb . (3.16)

Here, Dib and Drb are the distribution operators in the sense that singular forces at the
control points of the interface and rigid boundary are distributed to the nearby Cartesian
grid points. Once the force at the Cartesian grid points are computed, the velocity field
un+1 at all the grid points is then computed via the projection method as discussed in
Section 3.2. The velocity field un+1 is used to evaluate the velocity at the control points
as shown in Eq. (3.7).

In summary, the equations that need to be solved in order to calculate un+1 and Urb
k

at the rigid boundary, can be written symbolically as,

Eq. (3.11) −→ Hu∗=C+Bibfib+Brbfrb , (3.17)

Eq. (3.12) −→ Lφn+1 =Du∗ , (3.18)

Eq. (3.13) −→ un+1 =u∗−Gφn+1 , (3.19)

Eq. (3.16) −→ Urb
k =Mun+1 , (3.20)

where

C=− 2ρ

µ∆t
un−∆hun+

ρ

µ

(

3(u·∇hu)n−(u·∇hu)n−1
)

+
2

µ

(

GMAC pn− 1
2 −gn+ 1

2

)

,

which can be computed based on the solutions at the previous time step. The operators

H, Bib, Brb, L, D and G correspond to ∆h− 2ρ
µ∆t , − 2

µDib, − 2
µDrb, ∆h,

ρ
∆t DMAC and ∆t

ρ GMAC,

respectively. M is the interpolation operator in the sense of Eq. (3.7). Eliminating u∗, φn+1

and un+1 from Eqs. (3.17)-(3.20), we can compute the velocity Urb
k at the control points of

the rigid boundary as follows,

Urb
k =M

(

I−GL−1D
)

H−1C+M
(

I−GL−1D
)

H−1Bibfib

+M
(

I−GL−1D
)

H−1Brbfrb , (3.21)

where I is an identity matrix. For simplicity, we can write Eq. (3.21) as,

Urb
k =Urb,0

k +Afrb , (3.22)
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where Urb,0
k corresponds to the velocity at the control points of the rigid boundary ob-

tained by solving Eq. (3.11) with frb = 0, and solving Eqs. (3.12), (3.13) and the interpo-
lation (3.20), given un and pn−1/2. A is a 2Nrb×2Nrb matrix, where Nrb is the number of

control points of the rigid boundary. The vector Afrb is the velocity at the control points
of the rigid boundary obtained by solving Eq. (3.11) with C = 0 and fib = 0, and solv-
ing Eqs. (3.12), (3.13) and the interpolation (3.20). From Eq. (3.22), with the prescribed
velocity Urb

p at the rigid boundary, the singular force frb at the rigid boundary can be
determined by solving

Afrb =Urb
p −Urb,0

k , (3.23)

Eq. (3.23) can be solved using the generalized minimum residual (GMRES) method
[28]. Each GMRES iteration involves one vector-matrix product Afrb with a known frb.
In the present work, the rigid boundary is fixed. Because the matrix A depends on the
location of the boundary and the time step ∆t, we will have the same matrix A at every
time step if we use the same ∆t throughout. Therefore, the matrix A needs to be formed
and factorized only once. In order to compute the coefficients of A, we solve Eqs. (3.17)-
(3.20) for 2Nrb times, i.e. once for each column. Each time, the force frb is set to zero except
for the entry corresponding to the column we want to calculate, which is set to one. Once

the matrix A has been calculated, only the terms on the right hand side, Urb
p −Urb,0

k , needs
to be computed at each time step. The resulting small system of Eq. (3.23) is then solved
at each time step for frb via back substitution. Finally, we solve Eqs. (3.8)-(3.14) to obtain
un+1 and pn+1/2. In actual computation, we use the singular value decomposition (SVD)
method to solve the system of Eq. (3.23).

4 Numerical implementation

In this section, we describe a basic implementation of our algorithm for involving the de-
formable interface and rigid boundary. We factorize the coefficient matrix using singular
value decomposition as,

A=UΣVT, (4.1)

where U = [u1,··· ,u2Nrb
] and V = [v1,··· ,v2Nrb

] are the orthogonal matrices, and Σ = diag
(σ1,··· ,σ2Nrb

) is a diagonal matrix whose elements are the singular values of the original
matrix such that

σ1≥σ2≥···≥σ2Nrb
≥0.

We store U, V and Σ for solving the force frb at every time step. At each time step, given

the location of control points at the interface Xib,n
k , the velocity field un and pressure field

pn−1/2, our algorithm for finding Xib,n+1
k , un+1, pn−1/2 and the singular force frb to enforce

the prescribed velocity Urb
p at the immersed boundary can be summarized as follows:
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Algorithm 4.1: The implementation with the deformable interface and rigid boundary

Step 1: Compute the singular force fib at the deformable interface using expression (2.6) via using
cubic splines.

Step 2: Compute the right hand side of (3.23) by calculating Urb
p −Urb,0

k .

• Set frb =0, and solve (3.11)-(3.13) for the velocity at all the grid points.

• Interpolate the velocity at the control points of the rigid boundary Urb,0
k by solving Eq. (3.20).

• Compute the right hand side vector b=Urb
p −Urb,0

k .

Step 3: Compute the singular force frb by solving (3.23) using the SVD method. The singular force
frb can be written in terms of the SVD as

w=
Nrb

∑
i=1

uT
i b

σi
vi . (4.2)

Step 4: Spreading the singular force fib and frb to the nearby Cartesian grid points. Solve Eqs. (3.11),
(3.12), (3.13) and (3.14) to obtain un+1 and pn+1/2 using the projection method.

Step 5: Interpolate the new velocity on the grids onto the control points of the interface via using

Eq. (3.7), Uib,n+1
k , and move the control points of the interface to the new positions, Xib,n+1

k , via using

Xib,n+1
k =Xib,n

k +∆tUib,n+1
k . (4.3)

5 Numerical examples

In this section, several numerical examples are carried out to demonstrate the capabilities
of our proposed algorithm in this work. Throughout this section, we take ρ ≡ 1 in all
simulations.

Example 5.1. Flow past a circular cylinder

In this benchmark example with no interface involved, an unsteady flow past a sta-
tionary circular cylinder of diameter d = 0.1 immersed in a rectangular domain Ω =
[−1,2]×[−0.75,0.75] is first simulated to test the validation of the present algorithm on
irregular domain. The center of the cylinder is located at (0,0). The free stream velocity
is set to unity, U∞ = 1. Simulations are carried out at Reynolds number (Re = U∞d/µ)
of 20, 40, 100 and 200 on a 512×256 computational mesh. The free stream velocity at
the domain inlet is specified and a homogeneous Neumann boundary condition for the
velocity at the domain outlet is applied. The homogeneous Neumann boundary con-
dition and homogeneous Dirichlet boundary condition are set for the x-component and
y-component of the velocity, respectively, at the top and bottom boundaries. The homo-
geneous Neumann boundary condition is specified for the pressure increment. The free
stream velocity is used as the initial velocity and the initial pressure is set to zero. Once
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Figure 3: For Example 5.1 on flow past a stationary cylinder. Streamlines for Re=40.
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Figure 4: For Example 5.1 on flow past a stationary cylinder. Vorticity contours for (a) Re=40; (b) Re=100;
and (c) Re=200.
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Table 1: Length of the recirculation zone (L/d) and drag coefficient (CD) for Re=20 and Re=40.

Re=20 Re=40
L/d CD L/d CD

Tritton [29] – 2.22 – 1.48
Coutanceau and Bouard [5] 0.73 – 1.89 –
Fornberg et al. [8] 0.91 2.00 2.24 1.50
Calhoun [4] 0.91 2.19 2.18 1.62
Russell and Wang [27] 0.94 2.13 2.29 1.60
Ye et al. [35] 0.92 2.03 2.27 1.52
Le et al. [13] 0.93 2.05 2.22 1.56
Present 0.97 2.08 2.31 1.59

Table 2: Summary of results for Re=100 and Re=200.

Re=100 Re=200
CL CD St CL CD St

Braza et al. [2] ±0.250 1.36±0.015 – ±0.75 1.40±0.050 –
Liu et al. [21] ±0.339 1.35±0.012 0.164 ±0.69 1.31±0.049 0.192
Calhoun [4] ±0.298 1.33±0.014 0.175 ±0.67 1.17±0.058 0.202
Russell et al. [27] ±0.300 1.38±0.007 0.169 ±0.50 1.29±0.022 0.195
Le et al. [13] ±0.323 1.37±0.009 0.160 ±0.43 1.34±0.030 0.187
Present ±0.343 1.39±0.009 0.161 ±0.65 1.37±0.040 0.194

the velocity field and pressure field have been computed, the drag and lift coefficients
and the Strouhal number can be computed from the force as found in [11, 20]. The time
step is taken as ∆x/4. The plot of streamline for Re = 40 at steady state are shown in
Fig. 3. For low Reynolds number, as expected, the flow gradually attains a steady state
and the wake forms behind the cylinder symmetrically. The corresponding plot of the
vorticity contours for Re=40 is also shown in Fig. 4(a). These results are found in a very
good agreement with the results of [13]. At the steady state, the drag coefficients and the
length of the recirculation zone are computed and are compared with other numerical re-
sults [4,8,13,20,27,35] as well as experimental results [5,29] in Table 1. It is clear that our
drag coefficients are in reasonably good agreement with them. At Re=100 and Re=200,
the flow is unsteady, and Figs. 4(b) and 4(c) show the vorticity contours at Re =100 and
Re = 200, respectively. The instability and vortex shedding can be seen from these fig-
ures. In Table 2, the drag coefficients, lift coefficients and Strouhal numbers at Re = 100
and Re=200 are compared with other numerical results. Good agreement is again found
from this table. In particular, the plots of time evolution of the drag and lift coefficients
at Re=100 and Re=200 are presented in Fig. 5.

Next, the flow past an in-line oscillating cylinder is simulated to explore the capabil-
ity of the present method in handling the case when the rigid boundary is moving. The
simulation is performed in uniform flow at Reynolds number of 100 with the same nu-
merical setup as the previous flow past a stationary cylinder except the present cylinder
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Figure 5: For Example 5.1 on flow past a stationary cylinder. Drag and lift coefficients versus time for Re=100
(left) and Re=200 (right).
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Figure 6: For Example 5.1 on flow past an in-line oscillating cylinder. Instantaneous vorticity contours for
Re=100: (a) t= T

2 , (b) t= T, (c) t= 3T
2 , (d) t=2T, where T is the oscillation period of the cylinder.

is now oscillating parallel to the free stream at a frequency fc =2 fq, where fq is the vortex
shedding frequency of the fixed cylinder flow. The horizontal and vertical velocities of
the oscillating cylinder are prescribed by up = 0.14dcos(2π fct) and vp = 0, respectively.
As expected, the in-line oscillation of the cylinder causes the phase-locking of the vortex
shedding with the cylinder motion. The present average drag and lift coefficients are
CL =0.98 and CD =1.69, respectively, which agree well with the results obtained in [30].
The plots of instantaneous vorticity contours over two oscillating periods of the cylinder
are also shown in Fig. 6. These results can be comparable with those in [30].

Example 5.2. Rotational flow

In this example, we consider the rotational flow problem involving a fixed interface
and irregular domain. Fig. 7 shows two typical irregular domains and the geometry of
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Figure 7: The domain of the simulation and the geometry of rotational flow.

simulation in the computation. In the first case, we first consider the external irregular
domain as in Fig. 7 (left). In this case, the irregular domain Ωp is a circle with radius

r = 1; the involved fixed interface is also a circle but with radius r = 1
2 , which is located

at the center of the circular domain. We set 96 control points on both the rigid boundary
and the inner interface in the simulation. The initial velocity and pressure are taken to
be zero on the domain. We set µ = 0.02 and consider the solution at t = 10. Along the
inner interface, the normal and tangential stress are f1 and f2 = 10µ, respectively. In the
computation, we use a 64×64 grid on a computation domain of [−1.5,1.5]×[−1.5,1.5] and
take the time step ∆t=∆x/16. On the boundary of Ωp, we first set the no-slip boundary
conditions, i.e., ω = 0. The flow converges to a steady state in the end, as shown in
Fig. 8, which corresponds to a rigid body motion inside the interface. Figs. 8(a) and 8(b)
show the x-component of the velocity u and velocity field at t = 10, respectively. Next
we prescribe the boundary of irregular domain to rotate with angular velocity ω =−1.
The x-component of the velocity u and velocity field at t = 10 are shown in Figs. 9(a)
and 9(b), respectively. The motion of the steady is a clockwise rotation along the outer
boundary and an anti-wise rotation along the inner interface. This point can be also seen
from Fig. 10 more clearly, where we show the velocity distribution along the boundary
and the interface.

In the second case, we consider the internal irregular domain as in Fig. 7 (right). In
this case, the internal boundary of the irregular domain Ωp is a circle with radius r=0.3;
the involved fixed interface is a circle with radius r = 0.7, which is located at the center
of the square domain [−1,1]×[−1,1]. We use 96 control points and 48 control points to
represent the rigid boundary and the inner interface, respectively. The initial velocity and
pressure are taken to be zero on the domain. We set µ = 0.02 and consider the solution
at t =10. Along the outer interface, the normal and tangential stress are f1 and f2 =10µ,
respectively. In this computation, we use a 64×64 grid and take the time step ∆t=∆x/16.
On both the outer and inner boundary of Ωp, we first set the no-slip boundary conditions.
Finally, the flow converges to a steady state, as shown in Fig. 11, which corresponds to
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Figure 8: For Example 5.2 on rotational flow. (a) The x-component of the velocity field u and (b) the velocity
field u with ω =0 and µ=0.02 at t=10.
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Figure 9: Same as Fig. 8 except with ω =−1 and µ=0.02 at t=10.
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Figure 10: For Example 5.2 on rotational flow.
The velocity distribution along the interface and the
boundary with ω =−1 and µ=0.02 at t=10.
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Figure 11: For Example 5.2 on circular Couette flow. (a) The x-component of velocity field u and (b) the
velocity field u with ω =0 and µ=0.02 at t=10.
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Figure 12: Same as Fig. 11 except with ω =−2 and µ=0.02 at t=10.

a rigid body motion inside the interface. Figs. 11(a) and 11(b) show the x-component of
the velocity u and velocity field at t=10, respectively. Next we prescribe the boundary of
irregular domain to rotate with angular velocity ω=−2. The x-component of the velocity
u and velocity field at t=10 are shown in Figs. 12(a) and 12(b), respectively. The motion
of the steady is a clockwise rotation along the inner boundary and an anti-wise rotation
along the outer interface.

Example 5.3. Elastic membrane

In the third example, we consider a deformable interface problem which involves an
elastic membrane on the irregular circular domain. On the regular domain, this problem
is used by Tu and Peskin [31] to test their immersed boundary method, by LeVeque and
Li [15] to test their immersed interface method for Stokes flows, and by Lee and LeVeque
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[14] to test their immersed interface method for Navier-Stokes equations. In our problem,
the boundary of the irregular domain is a circular with radius r =1.2. The initial state of
membrane (the solid line in Fig. 13, labeled “Initial”) is an ellipse with the semi-major
and semi-minor axes a=0.75, b=0.5, respectively, and the ellipse is located at the center
of the circular domain. The unstretched state of membrane (the dashed line in Fig. 13,
labeled “Resting”) is a circle with radius r0 = 0.5. The tension coefficient T0 is set to 10
in this example unless it is stated otherwise, compared to the tension coefficient taken in
the literatures [14], the problem of this example in this work is more stiffer.

Due to the restoring force, the ellipse will converge to a circle (the dash-dot line in

Fig. 13, labeled “Equilibrium”) with radius re =
√

ab ≈ 0.61237, which is larger than the
unstretched interface but has the same area as the initial ellipse because of the incom-
pressibility of the enclosed fluid. So the interface is still stretched at the equilibrium
state. We start our simulation by setting the initial velocity and pressure fields to zero,
and the prescribed velocity at the rigid boundary of the irregular domain is set to zero,
i.e, u|∂Ωp

= 0. In this example, we perform the simulations with a 64×64 grid on a com-
putational domain of [−1.5,1.5]×[−1.5,1.5], 96 control points and 128 control points to
represent the interface and the boundary of the irregular domain for all the cases unless
otherwise stated. In our computations, we take the boundary condition as u|∂Ω =0, and
take the time step ∆t=∆x/16.

In Figs. 14(a) and 14(b), we show the x-component of the velocity u and velocity field
at t = 0.5, respectively. The pressure distributions at t = 0.5 and t = 1.2 are presented in
Figs. 15(a) and 15(b), respectively. The evolution of the semi-major and semi-minor axes
with time is shown in Fig. 16. The interface oscillates as it settles down to the equilibrium
state. These results can be comparable to those in [13, 14]. When µ = 0.02, we use a
128×128 grid and the same 160 control points to represent the interface and the boundary
of the irregular domain. The x-component of the velocity u and pressure field at t=1 are
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Figure 14: For Example 5.3 elastic membrane. (a) The x-component of the velocity field u and (b) velocity
field u at t=0.5 with µ=0.1 and T0 =10.
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Figure 15: For Example 5.3 on elastic membrane. The pressure distribution at t=0.5 (a) and t=1.2 (b), with
µ=0.1 and T0 =10.
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Figure 16: For Example 5.3 on elastic membrane. The evolution of rx and ry with µ = 0.1 and T0 = 10. The
interface oscillates as it converges to the equilibrium state.
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Figure 17: For Example 5.3 elastic membrane. (a) The x-component of the velocity field u and (b) pressure
distribution at t=1 with µ=0.02 and T0 =10.
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Figure 18: For Example 5.3 on elastic membrane. The evolution of rx and ry with µ =0.02 and T0 =10. The
interface oscillates as it converges to the equilibrium state.
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Figure 19: For Example 5.3 on elastic membrane. The evolution of rx and ry with µ = 1 and T0 = 10. The
interface relaxes gradually to the equilibrium state without oscillations.
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presented in Figs. 17(a) and 17(b), respectively. In Fig. 18, we also show the evolution
of the semi-major and semi-minor axes with time. Since the fluid viscosity is lower, the
elastic membrane takes a longer time to oscillate before settling down to the equilibrium
state. Fig. 19 shows the evolution of the semi-major and semi-minor axes of the ellipse
with time when µ = 1. In this case, the interface relaxes gradually to the equilibrium
state without oscillations. It is noted that area lose often appears in the simulation of the
immersed boundary method. An improved volume conservation scheme are constructed
for the immersed boundary method in [26]. Here, however, the area loss is not significant
(for example, the area loss is about 0.09% with maximum absolute error of 1.0874×10−3

in area when µ=0.1), thus no modification is applied to improve volume conservation in
our computation.
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Figure 20: An elastic membrane in a constricted channel.

Example 5.4. Elastic membrane squeeze through a constriction

In the final example, as an application to simulate the similar biological processes like
the motion of deformable cell in the micro-channel geometry, we consider the motion of
a membrane in an irregular channel with a constriction. Fig. 20 illustrates the geometry
of the constricted channel and the initial position of a membrane in the constriction used
in the simulation. The geometric parameters W, H represent the width and height of
constricted part, respectively, and L represents the distance between the left boundary of
irregular domain and the entrance into constriction. (x0,y0) represents the initial position
of the placed elastic membrane, and r represents the radius of elastic membrane. In the
computation, the radii of inlet of channel and the height of the constriction is 0.25 and
0.15, respectively, thus the standard 5:1 contraction geometry is considered to investigate
the motion of a single membrane through the constriction. In this example, we use a com-
putational domain of [0,1.8]×[−0.3,0.3] and a 384×128 grid. The fluid viscosity µ=0.02
and the stiff constant T0= 1 have been used. We specify a parabolic velocity profile with
Umax = 1 for the velocity at the inflow boundary. A homogeneous Neumann bound-
ary condition for velocity is applied at the right boundary. The velocity is set to zero at
the top and bottom boundaries. The no-slip boundary condition at the immersed rigid
boundaries is enforced by imposing appropriate singular forces at the rigid boundaries.
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Figure 21: The positions and shapes of the elastic membrane and velocity fields at different times.



Z.-J. Tan, K. M. Lim, B. C. Khoo and D. S. Wang / Commun. Comput. Phys., 6 (2009), pp. 997-1021 1019

In the simulation, (x0,y0) = (0.2,0.0) is taken, and the radius of initial elastic mem-
brane is 0.125. The elastic membrane is pre-stretched from the undeformed state with a
diameter of 0.2. We use 180 control points to represent the elastic membrane, and use
548 control points to present the rigid boundaries of the constricted channel. We take the
time step ∆t = ∆x/16. Fig. 21 shows the positions and shapes of the elastic membrane
squeezing through the constriction and the corresponding velocity fields at a series of
times. From these figures, we can see the deformed elastic membrane how to squeeze
through the constriction clearly.

6 Concluding remarks

In this paper, we have presented an indirect-forcing immersed boundary method for
solving the incompressible Navier-Stokes equations involving the interfaces and irregu-
lar domains. The method combines the immersed boundary method with a front tracking
representation of the interface and rigid boundary on a uniform Cartesian grid. The main
advantage of the method is that the prescribed velocity condition at the rigid boundary
is exactly satisfied. It is a rather straightforward manner to extend the current algorithm
to solve the problems involving the multi-connected irregular domains and multiple in-
terfaces. Current method can be also extended straightforwardly to general two phase
flow with different density and viscosity on irregular domain. Our method is capable of
solving 3D incompressible biological flow problems involving the deformable interfaces
and irregular domains like the motion of deformable cell in a complex 3D micro-channel
geometry. A 3D version of the method will be reported in the near future.
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