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Abstract. Inspiral of binary black holes occurs over a time-scale of many orbits, far
longer than the dynamical time-scale of the individual black holes. Explicit evolutions
of a binary system therefore require excessively many time-steps to capture interesting
dynamics. We present a strategy to overcome the Courant-Friedrichs-Lewy condition
in such evolutions, one relying on modern implicit-explicit ODE solvers and multido-
main spectral methods for elliptic equations. Our analysis considers the model prob-
lem of a forced scalar field propagating on a generic curved background. Neverthe-
less, we encounter and address a number of issues pertinent to the binary black hole
problem in full general relativity. Specializing to the Schwarzschild geometry in Kerr-
Schild coordinates, we document the results of several numerical experiments testing
our strategy.
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1 Introduction

Numerical simulations of the inspiral and merger of binary black holes (BBH) investi-
gate Einstein’s equations in the nonlinear regime where analytical progress often proves
intractable. The primary goal of these simulations is the computation of gravitational
waveforms necessary to analyze output from gravitational wave detectors like the “Laser
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Interferometric Gravitational Wave Observatory” (LIGO). Breakthroughs in 2005 have
yielded two ways to simulate BBH evolutions: the generalized harmonic system (GHS) with
excision [1] and the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system with moving
punctures [2,3]. Over the last few years numerical relativity has seen rapid progress along
both fronts.

The evolution of a binary black hole proceeds through three phases. During the in-
spiral phase, the two separate black holes orbit about each other, with the orbit gradually
tightening due to emission of angular momentum and energy via gravitational radiation.
At small separation, the black holes encounter a dynamical instability, plunge rapidly to-
ward each other and merge. This merger phase results in a single, larger, highly distorted
black hole which subsequently relaxes to a stationary black hole during the ringdown
phase. Merger and ringdown happen quickly, together lasting about 200M, where the
black hole mass M sets both the spatial and temporal scales. Therefore, merger and ring-
down are comparatively easy to simulate at modest computational cost. In contrast, sim-
ulation of the inspiral phase is a daunting computational challenge. Because the orbital
period increases rapidly with separation of the black holes, simulation of even a modest
number of orbits requires much longer evolutions. For example, the last 10 orbits of an
equal mass non-spinning binary black hole last about 2000M, already an order of magni-
tude longer than merger and ringdown. Beyond necessarily longer time-spans, inspiral
simulations also require higher accuracy. Indeed, gravitational wave flux decreases with
separation, and it must be accurately resolved in order to compute the correct phasing of
the gravitational waves.

To date all binary black hole simulations have employed explicit time-stepping, gen-
erally the method of lines with an explicit ODE scheme like the classical fourth-order
Runge-Kutta method. Without question explicit time-stepping is appropriate for both
merger and ringdown. However, during the inspiral phase, the relevant physical time-
scale on which the binary separation changes is much longer than the dynamical time-
scale M of each black hole. Nevertheless, the Courant condition associated with an ex-
plicit time-stepper heuristically requires that time-steps are proportional to the smallest
grid spacing, and therefore explicit binary evolutions use time-steps that are typically of
the order M/100 to M/10. For instance, a recent 16 orbit simulation [4] required nearly
200,000 explicit time-steps. This issue becomes more pronounced when modeling black
holes with unequal masses M1 > M2. The orbital period is proportional to the total mass
M= M1+M2, whereas the Courant limit dictates that the time-step is proportional to the
smaller mass M2. The number of explicit time-steps needed to ensure numerical stability
then scales like M/M2. Due to these reasons, only a few binary black hole simulations
with mass-ratios above 4:1 have been performed [5,6], and these are quite short and com-
putationally expensive. Courant limitations are likewise more severe for simulations of
spinning black holes, which also require higher spatial resolution close to the black holes.

These arguments suggest that some form of implicit time-stepping would more ef-
ficiently treat the inspiral phase, and this paper begins the study of alternative ways to
carry out temporal integration of orbiting binaries in the early phase of their evolution.
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Our approach is based on modern implicit-explicit (IMEX) ODE solvers [7–9] and classi-
cal multidomain spectral methods‡, and in particular those [11] used for solving elliptic
problems (it turns out that our implicit equations correspond to elliptic PDE). The gen-
eralized harmonic formulation [12–14] rewrites Einstein’s equations as 10 scalar wave
equations for the components of the metric, which are coupled through nonlinear lower
order terms. Because the principal part is just the scalar wave operator on a curved back-
ground spacetime, we consider here the model problem of evolving a scalar field on a
single black-hole background. IMEX schemes like the ones pursued here are not the only
possible approach to circumvent the Courant-Friedrichs-Lewy condition. For instance,
Hennig and Ansorg [15] explore space time spectral methods to solve scalar wave equa-
tions.

The organization of the paper is as follows. The upcoming Section 2 gives a brief
overview of IMEX methods, using the specific example of Additive Runge-Kutta (ARK).
It also briefly collects the relevant first-order equations describing the propagation of
scalar waves on a generic curved spacetime, and discusses boundary conditions for such
equations. Section 3 contains our main analytical discussion, and it focuses on the novelty
of solving the implicit equations which arise in our time-stepping strategy. Much of this
theoretical analysis is general, but we eventually settle on the concrete example of a scalar
field propagating on the Schwarzschild geometry in Kerr-Schild coordinates. Section 4
describes the results of several numerical experiments carried out for the Schwarzschild
scenario. The conclusion in Section 5 summarizes our findings and discusses steps nec-
essary for application of IMEX methods to the ultimate target problem, binary black hole
inspiral. Finally, three appendices collect some technical calculations omitted in Section
3.

2 Preliminaries

2.1 Implicit-explicit additive Runge-Kutta

From the computational point of view, all IMEX methods require that we are able to nu-
merically solve an implicit equation. For concreteness, we here consider ARK3(2) and
ARK4(3), two IMEX additive Runge-Kutta schemes introduced in [7]. These schemes
share the same algorithmic structure (only their sets of Butcher tableaux differ). ARK3(2)
is a 4-stage third-order scheme with a second-order embedded scheme, while ARK4(3) is
a 6-stage fourth-order scheme with a third-order embedded scheme. Although we will
not report on it here, we have also considered various versions of semi-implicit spectral
deferred corrections (SISDC) [8, 9] as an alternative to ARK. The nature of the SISDC algo-
rithm is quite different, but its implementation also requires that we are able to solve (in
this case at each substep) an implicit equation of the same form.

‡The IMEX strategy is more general, and, for example, is also applicable to discontinuous Galerkin methods
[10].



1066 S. R. Lau, H. P. Pfeiffer and J. S. Hesthaven / Commun. Comput. Phys., 6 (2009), pp. 1063-1094

We will not discuss accuracy and stability properties of ARK. Our purpose here is
simply to describe the algorithm, highlight what is needed for implementation, and fo-
cus on the origin and structure of the implicit equation. When considering first-order
systems for scalar wave propagation below, we will adopt what is essentially a reversed
semidiscrete picture. That is to say, we consider time as discrete, but retain the spatial
continuum. When adopting that picture, we will write down a continuum implicit equa-
tion (a spatial differential equation) that corresponds to the implicit equation appearing
in the ARK algorithm. Although this should not prove cause for confusion, we have
nevertheless raised this issue now, since we adopt a similar notation whether or not the
spatial continuum is retained.

Mostly adopting the notation of [7], we begin with a generic initial value problem

du

dt
= f (t,u)=

2

∑
ν=1

f [ν](t,u), u(t0)=u0, (2.1)

with u a vector of unknowns. Adopting a 2-additive scheme, we have split the right-

hand side f into explicit (nonstiff) f E = f [1] and implicit (stiff) f I = f [2] sectors. The ARK
schemes specify a rule for advancing the vector un at a present time-step tn (perhaps t0) to
the vector un+1 at the next time-step tn+1 = tn+∆t, and this rule requires the construction
of s stage values u(i), i=1,2,··· ,s, corresponding to intermediate times t(i) = tn+ci∆t. The
first stage is given by u(1) = un, and the remaining stage values are determined sequen-
tially by

u(i) =un+∆t
i

∑
j=1

[

aE
ij f E(t(j),u(j))+aI

ij f I(t(j),u(j))
]

, 2≤ i≤ s. (2.2)

After all the stages have been computed, the updated solution is given by the stage ex-
pansion

un+1 =un+∆t
s

∑
i=1

bi

[

f E(t(i),u(i))+ f I(t(i),u(i))
]

. (2.3)

The parameter matrices AERK =(aE
ij) and AESDIRK =(aI

ij), along with the coefficients b =

(bi) and c = (ci), stem from Butcher tableaux collected in [7]. ERK stands for explicit
Runge-Kutta, and ESDIRK for explicit singly diagonally implicit Runge-Kutta. In the ESDIRK
acronym, the explicit refers to the trivial first stage, and diagonally implicit to the fact that
the sum in (2.2) stops at i rather than s.

For the explicit sector, aE
ij =0 for j≥ i. Therefore, in Eq. (2.2) the first term in the sum

depends solely on already known stages, u(1),··· ,u(i−1). In contrast, for the implicit sector,
aI

ij =0 for j>i, with aI
ii=γ 6=0 unless i=1 (the singly in ESDIRK indicates that the diagonal

elements aI
22 = aI

33 = ···= aI
ss all equal the same constant γ). The term aI

ii f I(t(i),u(i)) turns
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Eq. (2.2) into an implicit equation for u(i). Implementation of an ARK scheme therefore
requires that we are able to solve (at each stage after the first) an implicit equation of form

u−α f I(t,u)= B, (2.4)

where α=γ∆t and B depends on the previous stage values.

2.2 First-order equations for a scalar field on a curved background

Our goal is to solve the scalar wave equation

∇µ∇
µψ=S (2.5)

with a given source term S = S(t,xk). We consider Eq. (2.5) on a generic curved back-
ground with line-element given in the usual 3+1 decomposition,

ds2 =−N2dt2+gjk

(

dxj+V jdt
)(

dxk +Vkdt
)

. (2.6)

Here gjk is the induced metric on t = const hypersurfaces, N is the lapse function, and

Vk is the shift vector. These quantities are known functions of space xj and time t, where
lower-case Latin indices (j,k,···) denote spatial components running over 1,2,3.

Following Holst et al. [16], we rewrite Eq. (2.5) as the following first-order system:

∂tψ=Vk∂kψ−NΠ, (2.7a)

∂tΠ=Vk∂kΠ−Ngjk∂jΦk+NKΠ+NΦk Jk +NS, (2.7b)

∂tΦj =Vk∂kΦj−N∂jΠ+Φk∂jV
k−Π∂jN. (2.7c)

Apart from the possible inhomogeneous forcing term NS in (2.7b), these are Eqs. (14)-(16)
of [16]. Π is a new evolved variable representing the time derivative of ψ, and Eq. (2.7a)
is the definition of Π. The Φj ≡ ∂jψ represent the spatial derivatives of ψ. The quantities

Jk and K depend only on the background spacetime,

Jk =−N−1g−1/2∂j(Ng1/2gjk), (2.8)

K =−N−1g−1/2
[

∂tg
1/2−∂j(g1/2V j)

]

, (2.9)

where K is the trace of the extrinsic curvature tensor and g=det(gjk). These formulas for

Jk and K are respectively Eqs. (17) and (18) of [16].
Solutions of the first-order system Eqs. (2.7) are equivalent to those of Eq. (2.5) only if

the constraint
Ck ≡∂kψ−Φk (2.10)

vanishes. The constraint provides an important link between Eqs. (2.7a) and (2.7c), as the
latter equation is derived by taking the time derivative of the constraint:

∂tCk =0 ⇒ ∂tΦk =∂t∂kψ=∂k∂tψ. (2.11)
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Thus, the right-hand side of Eq. (2.7c) is the gradient of the right-hand side of Eq. (2.7a),
with ∂kψ replaced by Φk.

Boundary conditions relative to a boundary element with outward-pointing unit nor-
mal nk are described in terms of the characteristic fields

Z1 =ψ, Z2
j = Pk

j Φk, U1±=Π±nkΦk, (2.12)

where Pk
j = gk

j −nknj indicates projection tangential to the boundary element. Relative to

the time axis ∂/∂t, the coordinate speeds of these fields are respectively

−nkVk, −nkVk, −nkVk±N. (2.13)

A characteristic field requires a boundary condition whenever its characteristic speed is
negative. The scenario we consider later, that is wave propagation on a Schwarzschild
black hole, has two boundaries: First, an outer spherical boundary Bo where Z1, Z2

j and

U1− are incoming and require boundary conditions. Second, an inner spherical boundary
Bi which is inside the black hole horizon and surrounds the singularity at the center of
the black hole. On the inner boundary all characteristic fields are outgoing (i. e. moving
toward the center of the black hole), and boundary conditions must not be imposed on
it. This pure outflow boundary results in several interesting features of the present work
to be discussed below. If Bo and Bi are adapted to the background symmetry (i. e. round
spheres, which they need not be for our numerical work), then nk∂/∂xk ∝ ∂/∂r on Bo and
nk∂/∂xk ∝−∂/∂r on Bi.

The boundary condition on U1− is physical; this boundary condition and the choice
of initial data determines which solution of the second-order wave equation (2.5) is com-
puted. In this paper, we typically choose the initial data, the boundary values of U1−, and
the external forcing S such that the solution follows a prescribed exact solution. Boundary
conditions on the fields Z1 and Z2

j , if necessary, are chosen to ensure that the constraint

Ck vanishes on the boundary. Solutions to the first-order system (2.7) which violate the
constraint Ck = 0 are not admitted either by the scalar equation (2.5) or the reduced sys-
tem which arises from setting Φk = ∂kψ in (2.7). The boundary conditions on Z1 and Z2

j

rule out these spurious solutions to the extended system (2.7), provided that the initial
data also satisfies the constraint. Such constraint preserving boundary conditions have been
derived by Holst et al. [16] and refined by Lindblom et al. [14]. The implicit equations
that we encounter in our use of ARK methods require boundary conditions that parallel
those of the evolution problem. We will therefore consider U1− as given boundary data
for the implicit problems, as well as the boundary data Ck =0, whenever necessary.

3 Implicit equations

3.1 First-order equations

The ARK algorithm described in Section 2.1 is applicable only to systems of ODE, and
for the case at hand such an ODE system arises upon spatial approximation of Eqs. (2.7)
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via a pseudospectral collocation method (see, for example, [16] for details). However, as
mentioned earlier, we find it convenient to retain the spatial continuum in our discus-
sion, and so write down the continuum implicit equations (PDEs) which, upon spatial
approximation, yield the relevant algebraic implicit equations appearing in our IMEX al-
gorithms. Eqs. (2.7) have the form of Eq. (2.1) for the evolved variables u=(ψ,Π,Φk). We
will consider a number of possibilities for splitting the right-hand side of Eqs. (2.7) into
stiff (implicit) f I and nonstiff (explicit) f E sectors, but always treat the system’s principal
part (i.e. all spatial derivatives) implicitly.

Each of our possible choices for the IMEX splitting is specified by writing down the
field components of the implicit equation (2.4). Treating implicitly the first two terms
from each right-hand side in (2.7), and possibly the forcing term NS from (2.7b), we get
case (i):

ψ−α(Vm∂mψ−NΠ)= Bψ, (3.1a)

Π−α
(

Vm∂mΠ−Ngjm∂jΦm+ǫNS
)

= BΠ, (3.1b)

Φk−α(Vm∂mΦk−N∂kΠ)= BΦk
, (3.1c)

with ǫ=1 for implicit treatment of NS, and ǫ=0 otherwise. Therefore, as with the other
cases to follow, case (i) is actually two cases. A second, and similar, set of equations stems
from also treating implicitly all terms in the right-hand side of (2.7c). Namely, case (ii):

ψ−α
(

Vm∂mψ−NΠ
)

= Bψ, (3.2a)

Π−α
(

Vm∂mΠ−Ngjm∂jΦm +ǫNS
)

= BΠ, (3.2b)

Φk−α
(

Vm∂mΦk−N∂kΠ+Φm∂kVm−Π∂kN
)

= BΦk
. (3.2c)

Finally, treating all or nearly all terms implicitly, we arrive at case (iii):

ψ−α
(

Vm∂mψ−NΠ
)

= Bψ, (3.3a)

Π−α
(

Vm∂mΠ−Ngjm∂jΦm+NKΠ+NΦm Jm +ǫNS
)

= BΠ, (3.3b)

Φk−α
(

Vm∂mΦk−N∂kΠ+Φm∂kVm−Π∂kN
)

= BΦk
. (3.3c)

For each of our three cases, we note that the inhomogeneity B={Bψ,BΠ,BΦk
} corresponds

to the term in (2.4) built with ARK stage values, cf. Eq. (2.2). While we have considered
only three possible IMEX splittings (really six including the ǫ = 0,1 choice), other vari-
ations are of course possible. Ignoring the subcases afforded by the choice of ǫ, case (i)
corresponds to the minimal implicit sector for which our methods are applicable, case (iii)
to the fully implicit scenario, and case (ii) to a scenario in the middle. Note that for cases
(ii) and (iii) the gradient of the left-hand side of the ψ equation [Eqs. (3.2a) and (3.3a),
respectively] gives the corresponding Φk equation [Eqs. (3.2c) and (3.3c), respectively],
up to the replacement ∂kψ→Φk. This mirrors the structure of the first-order PDE, cf. the
remark after Eq. (2.11).
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While we do not solve these first-order systems numerically, we expect that the fol-
lowing theoretical considerations are relevant. We view each set [Eqs. (3.1), (3.2), or (3.3)]
of implicit equations as a spatial boundary value problem subject to Dirichlet boundary
conditions on the same characteristic fields (2.12) as those described in the last paragraph
of 2.2. In other words, the choice of boundary data for these implicit solves corresponds
to the same boundary data controlled in the evolution initial-boundary-value problem.
This physically reasonable viewpoint is analyzed further in an appendix. On the outer
boundary Bo where Vknk>0, we fix Z1, Z2

j , and U1− as boundary data. Typically, Vknk<0

on Bi, so no boundary conditions on Z1 and Z2
j are imposed. If −Vknk−N<0 on Bi, then

we would fix U1− as boundary data. This inequality would hold, for example, in our
Schwarzschild scenario, provided Bi were chosen as a surface outside the horizon. Now,
each set [Eqs. (3.1), (3.2), or (3.3)] involves the first-order derivatives of 5 fields, whence
we expect that 5 boundary conditions are needed to uniquely determine a solution. In-
deed, Π and Φk should be determined by (3.1b,c), (3.2b,c) or (3.3b,c) and specification
of the following 4 boundary conditions: Z2

j and U1− on Bo, and U1− on Bi (provided

−nkVk−N<0). Once Π is known, the remaining equation for ψ could then be integrated
subject to a remaining fifth boundary condition for Z1 on Bo. We analyze a simplified
system which justifies this counting argument in Appendix A.

For the Schwarzschild scenario when Bi lies inside the horizon, the situation is dif-
ferent. Let us view Bi as spherically symmetric, and let us extend the normal nk to Bi

smoothly into the volume such that nk is normal to r = const spheres, and normalized
such that gijn

inj = 1. Combination of the first-order implicit equations for Π and Φk

yields

U1−−α
[

(Vk+Nnk)∂kU1−+···
]

= BΠ−nkBΦk
, (3.4)

where we define U1− = Π−nkΦk even away from Bi. On the horizon Vk+Nnk = 0, and
thus Eq. (3.4) determines U1− algebraically. Integration of Eq. (3.4) inward from the hori-
zon to Bi then results in the value of U1− on Bi. Thus U1− on Bi is determined self-
consistently by the equations, and we are not free to pick it.

As with the evolution initial-boundary-value problem, in our implicit boundary value
problems we relate some boundary data to the constraint Ck. First, we identify the tan-
gential components Pk

j Ck|Bo
with the boundary data Z2

j |Bo
. In other words, on Bo we set

Z2
j = Pk

j (∂kψ−Ck), where Pk
j Ck is a fixed function (typically zero). Along with the bound-

ary data U1−, these tangential components then allow for recovery of Π and Φk. Second,
writing (3.1a), (3.2a), or (3.3a) as

ψ−αVkCk =α(VkΦk−NΠ)+Bψ, (3.5)

we may now view all terms on the right-hand side as a given source. Rather than fixing
Z1 = ψ as boundary data on Bo, we equivalently fix VkCk|Bo

, since ψ|Bo
can then be re-

covered from the last expression evaluated at Bo. We may then formally view our outer
boundary conditions on Bo as controlling U1− and Ck.
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For cases (ii) and (iii) the listed implicit equations determine an implicit equation for
the constraint. Indeed, notice that the pairs (3.2a), (3.2c) and (3.3a), (3.3c) are the same. If
we subtract, say, (3.3c) from the Cartesian derivative of (3.3a), then we arrive at

Ck−α
(

Vm∂mCk+Cm∂kVm
)

=∂kBψ−BΦk
, (3.6)

an equation we may alternatively express in terms of the Lie derivative as

Ck−α£VCk =∂kBψ−BΦk
. (3.7)

Contraction of (3.6) on αVk yields

αVkCk−α2V j∂j(VkCk)=αVk(∂kBψ−BΦk
). (3.8)

In principle, Eq. (3.7) might be integrated along the shift, say inward from the outer
boundary Bo where Dirichlet boundary conditions on Ck are set.

The ARK scheme should preserve the constraint; i.e. if Ck=0 initially, it should remain
zero. We investigate this point by combining (2.2) and (2.4) into a formula for the ith stage
source,

B(i) =un+∆t
i−1

∑
j=1

[

aE
ij f E(t(j),u(j))+aI

ij f I(t(j),u(j))
]

, 2≤ i≤ s, (3.9)

where we recall that u(1) = un. For both cases (ii) and (iii), the ψ and Φk components of
f E(t,u) vanish, whereas

f I(t,u)=





Vk∂kψ−NΠ

•
Vm∂mΦk−N∂kΠ+Φm∂kVm−Π∂kN



, (3.10)

with • indicating an expression irrelevant for the present discussion. Therefore, if the

previous stage values u(j), j = 1,··· ,i−1, obey the constraint (2.10), that is C
(1)
k = ··· =

C
(i−1)
k = 0, then the ith source B(i) will satisfy ∂kB

(i)
ψ = B

(i)
Φk

. As a result, (3.6) will be a

homogeneous equation for the constraint C
(i)
k at the ith stage, with the solution C

(i)
k =0 in

the interior because C
(i)
k = 0 has been enforced on the boundary. We will draw on these

observations below.

3.2 Second-order implicit equation

In principle, one could solve directly the first-order implicit equations given in Eqs. (3.1),
(3.2), or (3.3), and we have done so in spherical symmetry. However, for the more
demanding 3d cases leading toward our ultimate goal of handling binary black holes,
we would like to use the multidomain spectral EllipticSolver [11] which is part of



1072 S. R. Lau, H. P. Pfeiffer and J. S. Hesthaven / Commun. Comput. Phys., 6 (2009), pp. 1063-1094

the Spectral Einstein Code SpEC used for binary black hole evolutions [4, 17, 18]. The
EllipticSolver has been written to handle second-order elliptic equations. Moreover,
preconditioning strategies for second-order elliptic equations are well understood rela-
tive to those for first-order equations. For these reasons, we have chosen not to directly
solve first-order equations. Rather, we first solve a single second-order scalar equation
for ψ, one stemming from combination of the above equations and subject to appropriate
boundary conditions discussed below. This ψ equation is different for each of the three
cases, and it is only for cases (ii) and (iii) that we can show, at least formally, that our
solution process is consistent with solving the original first-order set of equations. Once
a solution ψ has been determined for each case, we obtain Π algebraically using (3.1a),
(3.2a), or (3.3a), all the same equation. Finally, we recover Φk from ψ via differentiation.
Therefore, at each stage in our IMEX algorithms we perform what amounts to a naive
constraint projection. This is necessary for case (i), but would seem not strictly necessary
for cases (ii) and (iii).

Both ARK3 and ARK4 have explicit first stages, for which no implicit solve needs to
be done. Nevertheless, in order to achieve stability in our IMEX evolutions, we must
perform the naive constraint projection on the first-stage fields, at least when such pro-
jection is carried out on the other stages. The discussion after Eq. (3.9) pertains to exact
arithmetic, whereas round off errors in the stage expansion (2.3) will result in a un+1

which violates the constraints. While this violation is negligible over a single time-step,
such violations appear to accumulate. Projection of the first-stage fields guarantees that

∂kB
(1)
ψ = B

(1)
Φk

throughout the evolution.
Let us first derive the scalar equation for ψ associated with case (i), Eqs. (3.1). Combi-

nation of (3.1a,b) eliminates the term proportional to Π,

ψ−αVm∂mψ+α2NVm∂mΠ−α2N2gjm∂jΦm = Bψ−αNBΠ−ǫα2N2S, (3.11)

whereas from (3.1c) we obtain

αVmΦm−α2V jVm∂jΦm+α2NVm∂mΠ=αVmBΦm . (3.12)

The difference of the last two equations is independent of Π,

ψ−αVm(∂mψ+Φm)−α2
(

N2gjm−V jVm
)

∂jΦm = Bψ−αNBΠ−αVmBΦm−ǫα2N2S. (3.13)

Next, we use the constraint (2.10) to replace Φk by ∂kψ−Ck, and find

ψ−2αV j∂jψ−α2
(

N2gjk−V jVk
)

∂j∂kψ

= Bψ−αNBΠ−αVkBΦk
−ǫα2N2S−αV jCj−α2(N2gjk−V jVk)∂jCk, (3.14)

which is our second-order ψ equation for case (i).
Derivation of the ψ equation for cases (ii) and (iii) is more complicated, but never-

theless follows the same steps taken for case (i). For example, Eqs. (3.2a,b) again lead to
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(3.11). Similar to before, we eliminate the term α2NVm∂mΠ with the contraction of αVk

on the Φk equation (3.2c). However, now this third equation is more complicated and
features an extra factor of Π. Therefore, we first use (3.2a) to rewrite (3.2c) as

Φk−akψ−α
(

Vm∂mΦk−N∂kΠ+Φm∂kVm−akVm∂mψ
)

= BΦk
−akBψ, (3.15)

where ak ≡ ∂k logN. Finally, we contract the last equation on αVk, subtract the result
from (3.11), and then use (2.10) to replace all Φk terms by ∂kψ−Ck. These steps yield the
following equation for case (ii):

(

1+αVkak

)

ψ−
[

2αVk+α2(ajV
jVk−V j∂jV

k)
]

∂kψ−α2
(

N2gjk−V jVk
)

∂j∂kψ

=(1+αVkak)Bψ−αNBΠ−αVkBΦk
−ǫα2N2S

−α2N2gjk∂jCk+α2V j∂j(VkCk)−αVkCk. (3.16)

Even more involved calculations using Eqs. (3.3) similarly yield

[

1+α
(

Vkak−NK
)]

ψ−
[

2αVk+α2
(

ajV
jVk−V j∂jV

k−N2 Jk−VkNK
)]

∂kψ

−α2
(

N2gjk−V jVk
)

∂j∂kψ

=
[

1+α
(

Vkak−NK
)]

Bψ−αNBΠ−αVkBΦk
−ǫα2N2S

+α2N2
(

JkCk−gjk∂jCk

)

+α2V j∂j(VkCk)−αVkCk, (3.17)

the second-order ψ equation for case (iii). Notice that neither (3.14), (3.16), nor (3.17)
features derivatives of B =(Bψ,BΠ,BΦk

). The absence of B derivatives indicates that we
have not differentiated any of our original first-order equations.

Let us now consider the corresponding boundary conditions for the second-order
equations (3.14), (3.16), (3.17). Combination of (3.1a), the same for all cases, with the
formula (2.12) for U1− yields

ψ−αVm∂mψ+αN
(

U1−+nkΦk

)

= Bψ. (3.18)

Using the constraint Ck =∂kψ−Φk, we therefore find

ψ+α
(

Nnm−Vm
)

∂mψ= Bψ−αNU1−+αNnkCk (3.19)

as our boundary condition. If Bi lies inside the horizon, we shall not impose (3.19) on Bi,
as the initial boundary value problem for Eqs. (2.7) does not require an inner boundary
condition. For a Schwarzschild spacetime in Kerr-Schild coordinates, Section 3.3 shows
that an outer boundary condition alone is indeed sufficient. In this setting, the inner
boundary condition for the second-order ψ equation is replaced by a regularity condition
across the horizon. Numerical tests in Section 4 indicate that this viewpoint holds in a
more general setting. While we have been careful to retain all constraint terms in deriving
Eqs. (3.14), (3.16), (3.17) and (3.19), in practice we have set Ck = 0 before solving these
equations numerically.
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At least for cases (ii) and (iii), the following argument formally proves that — in lieu
of directly solving the full set of first-order implicit equations (3.2) or (3.3) — we may
instead take the following steps: solve (3.7), solve either (3.16) or (3.17) (the single second-
order ψ equation), and then recover Π from Eq. (3.2a) or (3.3a) and Φk from Eq. (2.10). In
combining the first-order equations to produce the single second-order ψ equation, we
have not differentiated the original equations, rather second derivative terms have arisen
via substitution with the constraint ∂jΦk→∂j∂kψ−∂jCk. Therefore, the ψ equation is truly
a second-order equation only if we interpret the constraint terms appearing on the right-
hand side as part of the inhomogeneity. To achieve this interpretation, we assume that we
may integrate the system (3.7), inward from the outer boundary Bo, where we fix Ck|Bo

.
These boundary conditions are consistent, as we have earlier argued that Ck|Bo

is part of
the boundary data for the original first-order set of implicit equations.

3.3 Schwarzschild geometry

We now specialize the above equations to the Schwarzschild geometry written in Kerr-
Schild coordinates. The line-element is

ds2 =−N2dt2+L2
(

dr+Vrdt
)2

+r2
(

dθ2+sin2 θdφ2
)

, (3.20)

where the lapse, radial lapse, and shift are given in terms of the mass parameter M by

N =

√

r

r+2M
, L=

√

r+2M

r
, Vr =

2M

r+2M
. (3.21)

This is the same line-element as given in Eq. (59) of [16].
Consider the Cartesian coordinates xk stemming from the polar coordinates (r,θ,φ)

via the standard formulas: (x,y,z)=(rsinθcosφ,rsinθsinφ,rcosθ). We introduce a radial
vector νk =xk/r which is not normalized with respect to the spatial metric determined by
(3.20), (3.21). The vector nk = L−1νk is the outward-pointing unit normal to the spherical
foliation of a spacelike level-t hypersurface. With respect to the Cartesian coordinates xk,
we may express the spatial metric and inverse metric as follows:

gjk =(L2−1)(∂jr)(∂kr)+δjk, gjk =(L−2−1)νjνk +δjk. (3.22)

Here δjk = δjk = diag(1,1,1) is the flat metric, and ∂jr = δjkνk. To avoid ambiguity as to
which metric (gjk or δjk) has been used to lower the index, we will not write νk. With the
above formulas for the Cartesian components of the metric and Eqs. (2.8), (2.9), we find
that

Jk =
1

L2

(

L′

L
−

N′

N
+

2

r
(L2−1)

)

νk, K =
1

N

(

(Vr)′+
2

r
Vr+

L′

L
Vr

)

. (3.23)

To reach these equations, we have used the following identities (valid in the Cartesian
coordinate system): g1/2 = L, Vk = Vrνk, νj∂jν

k = 0 and ∂jν
k = r−1(δk

j −νjν
k). Eqs. (3.22)
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and (3.23) hold for any choice of N, L and Vr. Specializing to the values given in Eq. (3.21),
we obtain

gjk =δjk+
2M

r
(∂jr)(∂kr), Jk =

2M(r+4M)

r(r+2M)2
νk, NK =

2M(r+3M)

r(r+2M)2
. (3.24)

For the chosen Schwarzschild background and coordinates, we now show that our
solution procedure involving the second-order ψ equation (3.16) or (3.17) is equivalent to
solving the original set of first-order equations (3.2) or (3.3). In establishing this claim we
must show that (3.6) can be integrated inward from the outer boundary Bo at r=rmax, and
that a regular solution to the ψ equation is determined by the outer boundary condition
alone. We consider the integration of (3.6) in Appendix C, and turn to the latter issue
now. Whereas integration of (3.6) is only relevant for cases (ii) and (iii), the issue of a
regular solution to the ψ equation also pertains to (3.14), and so we include this equation
in our analysis. Each of the second-order scalar equations [Eq. (3.14), (3.16), or (3.17)]
takes the following form:

R(r)ψ+αS(r)νk∂kψ+α2
(

N2gjk−V jVk
)

∂j∂kψ=G. (3.25)

Here we view constraint terms appearing in G, if present, as predetermined via integra-
tion of (3.6). We continue by calculating

gjk∂j∂kψ= L−2∂2
r ψ+2r−1∂rψ+r−2∆S2 ψ, (3.26)

where ∆S2 is the Laplace operator associated with S2, the unit-radius round sphere. Next,
we set ψ=ψℓm(r)Yℓm(θ,φ) in (3.25), thereby obtaining the equation for a generic spherical-
harmonic mode,

(

R(r)−
α2N2ℓ(ℓ+1)

r2

)

ψℓm+

(

αS(r)+
2α2 N2

r

)

∂rψℓm+α2

(

N2

L2
−(Vr)2

)

∂2
r ψℓm =Gℓm.

(3.27)
This equation has the form

Q(r)w+αP(r)w′+α2(r−2M)w′′ =h(r), (3.28)

with

Q(r)=(r+2M)

(

R(r)−
α2N2ℓ(ℓ+1)

r2

)

, P(r)=(r+2M)

(

S(r)+
2αN2

r

)

. (3.29)

Note that the coefficient of the second-order term w′′ passes through zero at the black
hole horizon, r=2M. We study Eq. (3.28) in Appendix B, where we show that r=2M is a
regular singular point. Furthermore, in the appendix we compute the indicial exponents
associated with the singular point, and argue that, despite the second-order character of
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(3.28), an outer boundary condition alone determines a unique solution which is regular
up to and even across the horizon.

Thus the following picture emerges: If the radius rmin of Bi satisfies rmin > 2M, then
the scalar wave equation requires a boundary condition for U1− on both Bi and Bo; the
corresponding second-order implicit equation (3.25) is everywhere regular and requires
boundary conditions on both boundaries as well. For rmin < 2M, the inner boundary is
an outflow boundary for the scalar wave equation, and a boundary condition on U1− is
necessary only on Bo; in this case, a unique solution to Eq. (3.25) is determined by an
outer boundary condition alone, along with the assumption that the solution is regular
across the horizon.

4 Numerical tests

4.1 Comparison with explicit time-stepping

In this first subsection we demonstrate that our numerical IMEX algorithm can solve a
standard initial value problem. To do so, we consider the evolution of pulse initial data,
a problem for which an explicit algorithm would be better suited. Here we are evolving
the wave equation ∇µ∇µψ=0 without a source term, that is for S=0.

The following experiment has been carried out both with a one-dimensional radial
code (in MATLAB) and with a three-dimensional code (in SpEC). Whereas the 3d code uses
the variables {ψ,Π,Φx,Φy,Φz}, the 1d code uses {ψ,Π,Φ = ∂rψ}. On the radial domain
[1.9,11.9], initial data

1d: ψ=0, Π=exp
[

−(r−5)2
]

, Φ =0,

3d: ψ=0, Π=exp
[

−(r−5)2
]

Re
[

Y11(θ,φ)
]

, Φk =0, (4.1)

is evolved to time tfinal=15, with the background geometry taken as M=1 Schwarzschild
in Kerr-Schild coordinates. Initial and final radial mode profiles are depicted in Fig. 1.
The first step of the experiment is to generate a reference solution, using an explicit
Runge-Kutta (ERK) time-stepper, either (for 1d) the classical fourth-order scheme or (for
3d) the fifth-order Cash-Karp scheme [19]. In both cases we choose a fixed time-step
∆t≃0.00366, and so are not using the potential adaptivity of the Cash-Karp scheme. For
both the 1d and 3d experiments, we place no boundary condition at the inner radius
r =1.9, and a Sommerfeld boundary condition U1− =0 [cf. Eq. (2.12), either Π−Φ=0 in
1d or Π−nkΦk = 0 in 3d] at the outer boundary r = 11.9. We further enforce constraint-
preserving outer boundary conditions which are analogous to the boundary conditions
applied to the black hole evolutions in [14]. For the scalar characteristic field Z1 and the
3d code, we use

∂tZ
1 =−NΠ+VkΦk, (4.2)

cf. Eq. (40) in [16]. For the 1d code we similarly use ∂tZ
1 = −NΠ+VrΦ as the outer
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Figure 1: Field configurations at initial and final times.

boundary condition. For Z2
i , we employ the analogue of Eq. (65) in [14],

∂tZ
2
i = DtZ

2
i −nkVknm

(

∂mΦi−∂iΦm

)

. (4.3)

Here DtZ
2
i denotes the P

j
i projection of the right-hand side of Eq. (2.7c). We use one

spherical shell, with 61 radial collocation points. We fix the angular resolution for the 3d
evolution with ℓmax =5 as the top spherical-harmonic index. The explicit evolution uses
the same angular filtering as [16]. When the right-hand sides of Eqs. (2.7) are computed,
they are transformed to scalar spherical harmonics (for the ψ and Π components) or vec-
tor spherical harmonics (for the Φk component), and the top two modes are truncated.

We next carry out the same evolution via IMEX evolutions taking case (iii) (the ǫ value
is irrelevant because S=0), and check the results against the reference solution. During an
evolution, the requisite implicit solves have been carried out with the EllipticSolver

in SpEC, as described in [11]. For this simple class of problems, we have chosen finite-
difference preconditioning. Precisely, we have used an exact LU decomposition of a
finite-difference approximation AFD to the operator associated with the second-order
ψ equation. The EllipticSolver interfaces with petsc’s iterative solvers, and for the
iterative linear solves we have used GMRES, choosing all error tolerances close to ma-
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Figure 2: Error of implicit evolutions relative to the explicit reference solution. The dotted line is a least-squares
fit of the last five 1d data points, although shifted to make for a better figure.

chine precision. As mentioned, for these experiments rmin = 1.9M < 2M, so the inner
boundary lies inside of the horizon. Therefore, throughout our evolutions we solve the
second-order ψ equation with no boundary condition at the innermost collocation points.
Rather in the relevant matrix-vector multiply needed for the iterative solver, only the
PDE is enforced at these points. The elliptic equation for ψ is solved for Yℓm modes with
ℓ≤ℓmax−2 to avoid technical issues due to representation of Cartesian tensor components
with scalar spherical harmonics. This acts as an angular filter for ψ, obviating the need
for further angular filtering as described above for the explicit evolution.

For a number of temporal resolutions and for the ARK4 method, we show the results
in Fig. 2. The errors plotted in the first, second, and third quadrants correspond to the 1d
code, and these errors have been computed after interpolation onto a finer uniform grid.
The fourth quadrant plot collects results from both the 1d and 3d experiments. The black
circles correspond to the L∞ errors from the 1d code shown in the other plots (and are
taken over all fields). The red squares are L∞ errors from the 3d experiment (and, again,
are taken over all fields). Note that these errors have been computed in 3d. In both cases
we see clean fourth-order convergence.
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4.2 Model problem on a black hole

We now consider a problem for which temporal variations occur on time-scales much
longer than the Courant limit for an explicit time-stepper. This model mimics the binary
black hole configuration, providing a testing ground for our IMEX methods. Our model
problem on a single M =1 black hole is set up as follows. For the solution we adopt the
Ansatz

ψ0(t,x,y,z)=cos(ωt) f (r)Re
[

Y21(θ,φ)
]

, (4.4)

where f (r) is a radial profile. This profile is chosen as a polynomial of degree 2q,

f (r)=

(

4

r2−r1

)q
[

(r−r1)(r2−r)
]q

, r2 > r1, (4.5)

truncated so as to vanish whenever r lies outside the interval [r1,r2]. We typically choose
q = 5, r1 =−1, and r2 = 11.9. The computational domain covers radii r ∈ [rmin,rmax] =
[1.9,11.9]⊂ [r1 ,r2]. Note that rmin = 1.9 is somewhat inside the black hole horizon, r = 2
(recall that M=1), and we therefore never apply a boundary condition at rmin. Neverthe-
less, we have chosen the support of f such that f is non-zero at the inner edge rmin of the
computational domain. However, f does vanish at the outer boundary rmax, a necessary
requirement for avoiding boundary-driven temporal order reduction [20]. We substitute
the chosen ψ0 into Eq. (2.5) to compute the source S. We furthermore initialize the initial
conditions for ψ, Π and Φk with the Ansatz ψ0. The ω value determines the time-scale of
the temporal variations, and we present results for three values, ω=1,0.1,0.01. For ω=1,
temporal and spatial scales are comparable, whereas for ω=0.01, temporal variations are
vastly slower, so that explicit time-steppers will be limited by the Courant condition.

Our radial expansions use Chebyshev polynomials Tk(X) as basis functions, where
we map X∈ [−1,1] to r∈ [rmin ,rmax] via

r(X)= AeBX +C, (4.6)

with C =−2 and parameters A and B chosen such that r(−1) = rmin, r(+1) = rmax. The
mapping (4.6) serves two purposes: First, it increases resolution close to the black hole,
resulting in a somewhat faster convergence rate for the spectral representation of the
Schwarzschild background, Eq. (3.20). Second, through this mapping the expansion of
the radial profile f (r) in Chebyshev polynomials acquires non-zero power in all radial
modes. In contrast, the linear map r(X)=X would result in only the first 2q+1 Chebyshev
polynomials being excited.

With either ARK3 or ARK4 and one of the considered IMEX splittings, our experiment
is to evolve the initial data specifying this solution, assuming that the field equations
include the exact forcing function S(t,x,y,z). We evolve for about 10 oscillation periods,
to final time Tfinal =65.536/ω. We have chosen Nr =25 radial collocation points, and the
angular grid is determined by top azimuthal index ℓmax =5.

To examine the influence of the IMEX splitting on both long and short evolutions,
we perform numerical runs with ARK3 for each of the aforementioned cases (i), (ii), and
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Figure 3: Performance of ARK3 for case (i) IMEX splitting. The dotted line corresponds to exact third-order
convergence.
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Figure 4: Performance of ARK3 for case (ii) IMEX splitting.

(iii). The results are collected in Figs. 3, 4, and 5. Some of the errors in Figs. 3 and 4
correspond to blowup and fall outside of the plot range. Comparing these plots, we
notice that for ω =1 short-time runs the accuracy is insensitive to the choice of splitting.
However, for the small-ω, longer-time runs, the fully implicit case (iii) is advantageous
in the following sense. As ω is reduced by a factor of 10 (from 1 to 0.1, and then to 0.01),
this splitting allows for a corresponding increase of the time-step ∆t by the same factor
of 10 without loss of accuracy. Fig. 6 shows results for the same case (iii) experiment, but
with ARK4 rather than ARK3 used for time integration. The fully implicit scenario, that
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Figure 5: Performance of ARK3 for case (iii) IMEX splitting.
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Figure 6: Performance of ARK4 for case (iii) IMEX splitting. The dotted line corresponds to exact fourth-order
convergence.

is case (iii) and ǫ=1, corresponds to evolving solely with the L-stable ESDIRK component
of the ARK algorithm [7].

When this same oscillating multipole problem is evolved by the explicit fifth-order
Cash-Karp scheme [19] the Courant limit is about ∆tCFL ≃0.235 independent of ω. For all
splittings and for all ω, the IMEX code allows for time-steps one to two orders of mag-
nitude larger than the explicit code. For slow temporal variations, ω =0.01, the splitting
(iii) with ǫ=1 allows for a time-step ∆t=1000∆tCFL (i.e., about 3 time-steps per oscillation
period) while maintaining an accuracy of about 10−3.
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Figure 7: Three-dimensional off-center experiment with ARK4.

4.3 Off-center model problem on a black hole

We now consider the following off-center Ansatz: ψ0(t,x,y,z)= cos(ωt) f (|r−r0|), where
ω = 0.01 and relative to the black hole center r0 = (0.5,−0.2,0.3). The radial profile is
determined as above with r1 =−1 and r2 = 14. The numerical domain is comprised of
three nested spherical shells, each with center c0 = (−0.08,0.05,−0.06). Therefore, each
shell is neither a level-r surface nor a metric sphere with respect to the background Kerr-
Schild geometry. Relative to their common center, the shells are determined by the radial
bounds 1.8, 5.13, 8.47, and 11.8, with coordinate radial separations computed using the
background Cartesian coordinates described before Eq. (3.22). Each shell has Nr = 15
Chebyshev-Lobatto collocation points, with a top azimuthal index ℓmax = 9 fixing the
angular grid. The numerical code expands variables in spherical harmonics centered on
c0. Because c0 6= r0 all spherical harmonic modes are excited in this experiment.

For this type of exact solution (which involves exact control of a nonzero U1− as an in-
homogeneous boundary condition), we expect temporal order-reduction, a well-known
pitfall of exact time-dependent boundary conditions [20]. Therefore, our purpose here is
not to consider temporal convergence, rather to demonstrate robustness of our evolution
procedure in a setting which mixes several issues at once: an asymmetric solution, ab-
sence of an inner boundary condition, and multiple domains. While the inner boundary
lies within the horizon, the coordinate characteristic speeds vary spatially across it. Fig. 7
depicts long-time error histories for all fields using the fully implicit ARK4 time-stepper,
that is case (iii) with ǫ = 1. The plot clearly shows the fields’ response to the external
forcing, with the errors continuing to oscillate. At least for linear problems we consider
here, we believe that our implicit evolutions are robustly stable, even in the absence of an
inner boundary condition.
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4.4 Model problem with perturbed initial data

The numerical experiments described in Subsections 4.2 and 4.3 deal with scenarios in
which our IMEX integration is simply driven by an external forcing, and as a result no
secular errors accumulate. That we are therefore able to achieve reasonable accuracy
for large time-steps is perhaps not surprising. In this section, we provide one further
test which combines transient, rapidly changing behavior at early times with a slowly
varying solution at late times. This test mimics start-up effects encountered in binary
blackhole simulations, which typically exhibit rapid transient behavior at early times
when the black holes settle down from imperfect initial data into their quasi-stationary
configuration.

We still solve the scalar wave equation with the same source term as before,

∇µ∇
µψ=S, S≡∇µ∇

µψ0, (4.7)

with ψ0(t,xk) given in Eq. (4.4), and here with ω = 0.01. However, we now choose ini-
tial conditions for generating ψ(t,xk) which are inconsistent with those for generating
ψ0(t,xk). Specifically, we choose

ψ(0,xk)=ψ0(0,xk), (4.8a)

Π(0,xk)=Π0(0,xk)+G(xk), (4.8b)

Φ(0,xk)=Φ0(0,xk), (4.8c)

where G(rνk) = exp[−(r−5)2]Re[Y11(θ,φ)] is the angularly modulated Gaussian wave
packet used in Section 4.1, see Eq. (4.1). Because of the presence of G(xk), the solution to
this evolution problem is not simply ψ(t,xk)=ψ0(t,xk), but rather there will be an initial
deviation. For long evolutions, the effect of the Gaussian perturbation dies away (due to
our dissipative radiation boundary conditions), and ψ(t,xk)∼ψ0(t,xk) for large t. For this
experiment tfinal =6553.6.

We again work with a single, centered, spherical-shell domain and Nr =61, ℓmax =5.
Rather than the mapping (4.6), now we choose the identity r(X) = X. This is necessary
to fully resolve the Gaussian at early times, or else we would require even more radial
points. We will again generate a reference numerical solution using an explicit time-
stepper, in this case Dormand Prince 5 (DP5) [21], against which we will compare an
IMEX numerical solution obtained with ARK4, choosing case (iii) and ǫ = 1 so that the
evolution is fully implicit.

A key difference between this experiment, and the ones considered in previous sub-
sections, is that we now exploit adaptive time-stepping with dense output. Both DP5 and
ARK4 allow for error control and dense output. The adaptive time-stepping, based on a
proportional-integral controller described in [21], allows the IMEX method to use small
time-steps during the initial transients, and large time-steps once the transients have died
away. Dense output allows us to conveniently keep track of the error history between
the explicit-reference and implicit numerical solutions. Throughout the course of both
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Figure 8: Errors for the modified model experiment. Note the dotted curve giving the deviation of the explicit-
reference ψ from the Ansatz ψ0. The large deviation at early times is present since the Ansatz is not the exact
solution.
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Figure 9: Time-step sizes for explicit-reference and implicit evolutions.

the explicit-reference and implicit evolutions, we output the solution component ψ at all
times divisible by 15. For both the explicit-reference and implicit evolutions we choose
an initial step size ∆t=0.04, with the absolute error tolerance 10−5.

Fig. 8 depicts the history of the L∞ difference between the explicit-reference and im-



S. R. Lau, H. P. Pfeiffer and J. S. Hesthaven / Commun. Comput. Phys., 6 (2009), pp. 1063-1094 1085

plicit ψ, showing that the implicit ψ maintains uniform accuracy throughout the evolu-
tion. Also depicted in Fig. 8 is the deviation of the explicit-reference ψ relative to ψ0(t,xk).
Although ψ0(t,xk) is not the exact solution, the figure shows that it effectively is for times
later than t=500. Fig. 9 depicts the time-step sizes taken throughout the explicit-reference
and implicit evolutions. As seen in Fig. 9, the DP5 evolution essentially runs at a fixed
time-step ∆t≃ 0.05 near the Courant limit, and in fact this evolution took over 1.3×105

time-steps. By contrast, only 475 time-steps were taken during the implicit evolution. For
the implicit evolution, the time-step size starts off small and remains near 0.1 while the
Gaussian pulse propagates off the domain. However, at later times the step size dynam-
ically relaxes to a time-step of order ≃20.

5 Conclusion

As noted in the introduction, implicit or IMEX time-stepping is bound to offer a more effi-
cient means of carrying out BBH evolutions, especially evolutions involving black holes
with markedly unequal masses. In the context of scalar waves on a single black hole,
this paper has analyzed several issues pertinent to the eventual use of IMEX methods
in actual BBH evolutions based on the generalized harmonic system. These include the
role of constraints, the need for second-order implicit solves, and the nature of the IMEX
splitting.

Specifically, we have investigated the role of a pure outflow boundary within the
black hole horizon. Consistent with the physics, the initial boundary value problem as-
sociated with the hyperbolic system of PDEs does not require a boundary condition on
the inner boundary. Naively, one would expect that a second-order implicit equation, as
used in our work, would require both outer and inner boundary conditions, in disagree-
ment with both the underlying physics and hyperbolic PDE. However, the second-order
equation is singular at the horizon, and by requiring that the solution is regular across the
horizon, we have found that the outer boundary condition alone yields uniqueness.

We have examined the impact of different IMEX splittings on the evolution of a wave
equation, finding that the performance of our IMEX schemes depends sensitively on the
precise splitting choice [cf. Figs. 3 to 5]. Only the fully implicit choice [case (iii), ǫ=1] al-
lows for time-steps proportional to the temporal time-scale, i.e. ∆t∝1/ω, while retaining
accuracy independent of ω. We explain this result as follows. For small ω, the right-hand
sides of the evolution equations (2.7) are O(ω) by construction. However, individual
terms in the expressions are O(1), because ψ, Π and Φk are all O(1). Only the sum of
all terms is O(ω). Consequently, for cases (i) and (ii), and for case (iii) with ǫ = 0, both
the implicit and explicit sectors are large, while their sum is small. That is, f I and f E

are O(1), while f E+ f I =O(ω). Therefore, in the ARK scheme, both the implicit and the
explicit sectors involve large drivings, which seems to degrade performance. In the gen-
eral case, we conjecture that the IMEX splitting should ideally ensure that both f E and f I

remain small.
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These observations suggest that a fully implicit treatment of the GHS equations will
afford accurate evolutions with very large time-steps. However, a corresponding gain in
efficiency may well be offset by the complexity of solving complicated nonlinear implicit
equations. A more workable approach might be to linearize the GHS equations about
the solution at the current time-step, in order to treat terms with constant or linear time-
dependence implicitly, and to treat terms with quadratic (or higher) time-dependence
explicitly. In this case f E would be O(∆t2), and perhaps sufficiently small for rather
large ∆t.

Another possibility for the IMEX splitting is particularly promising. Namely, split-
ting by location (or subdomain), as described in [10] for fluid flow past a nozzle, a prob-
lem for which explicit numerical evolutions are hampered by boundary induced stiff-
ness. To understand the idea behind this possibility, consider the type of multidomain
BBH evolutions now being carried out by the Caltech-Cornell collaboration. Such evolu-
tions involve a computational domain which is split into about 60 subdomains (typically
spherical shells, cylindrical shells, and full cylinders with axes). Among these are several
concentric spherical coordinate shells which enclose each of the individual black holes.
For either black hole, the innermost of these shells contains a topologically spherical ap-
parent horizon. As these shells are closest to the black holes where field gradients and
nonlinearities are the strongest, they require high resolution. Whence these shells deter-
mine the Courant limit for current BBH evolutions based on the generalized harmonic
system with spectral methods.

In those shells nearest the black holes, the splitting we plan to investigate would put
the local representation of the GHS system into the implicit sector, while the equations
on all other subdomains would be retained in the explicit sector. The resulting evolution
scheme would still be subject to a (milder) Courant limit arising from the grid spacing in
those subdomains treated explicitly. However, this Courant limit would be independent
of the resolution close to the black holes, promising efficiency gains as the mass ratio in-
creases. Implicit equations would need to be solved only in a set of concentric spherical
shells, rather than in a complicated overlapping domain decomposition, simplifying pre-
conditioning and improving the efficiency of the elliptic solver. Another reason further
motivates our interest in an IMEX splitting by location. For BBH evolutions based on the
GHS system, implementation of outer boundary conditions (relevant only for the out-
ermost spherical shell enclosing the collection of all inner subdomains) involves second
derivatives of the physical fields [14]. The IMEX splitting we envision would treat the
outermost spherical shell explicitly, thereby leaving in place the current implementation
of outer boundary conditions.

Finally, we point out that for black hole binaries our IMEX time-stepping strategy will
only apply in co-rotating coordinates. Only in such coordinates does the binary configu-
ration appear approximately time-independent, as the black holes remain at the same
location in the computational grid. Moreover, the pattern of the emitted gravitational ra-
diation will be almost time-independent, varying only on the inspiral time-scale together
with the orbital frequency and the gravitational wavelength. This restriction is not oner-
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ous for our approach, as the SpEC code already uses co-rotating coordinates within the
dual-coordinate frame approach developed in [18]§.
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A Boundary conditions for first-order implicit equations

This appendix considers a first-order system similar to all three of our first-order implicit
systems [Eqs. (3.1), (3.2), and (3.3)], showing that the system requires 5 boundary con-
ditions. Any of our original systems [Eqs. (3.1), (3.2), or (3.3)] could be analyzed in a
similar fashion, although doing so would require a mode decomposition based on vector
spherical harmonics. Here we use simple Fourier series. Consider the system

ψ−α(Vx∂xψ−Π)= Bψ, (A.1a)

Π−α(Vx∂xΠ−∂kΦk)= BΠ, (A.1b)

Φk−α(Vx∂xΦk−∂kΠ)= BΦk
, (A.1c)

where the constant shift Vx obeys 0<Vx <1. Take the rectangular computational domain
to be periodic in the y and z directions, and lying between x = 0 and x = 1. Fourier
transformation in y and z yields the transformed system

ψ̂−α(Vx∂xψ̂−Π̂)= B̂ψ, (A.2a)

Π̂−α(Vx∂xΠ̂−∂xΦ̂1−ik2Φ̂2−ik3Φ̂3)= B̂Π, (A.2b)

Φ̂1−α(Vx∂xΦ̂1−∂xΠ̂)= B̂Φ1
, (A.2c)

Φ̂2−α(Vx∂xΦ̂2−ik2Π̂)= B̂Φ2
, (A.2d)

Φ̂3−α(Vx∂xΦ̂3−ik3Π̂)= B̂Φ3
, (A.2e)

§In this approach inertial-frame components of tensors are evolved, and these components vary on the orbital
time-scale. Accuracy considerations will then limit the achievable time-step to the order of the orbital time-
scale, rather than the longer inspiral time-scale. The orbital time-scale is still a tremendous improvement
over current time-step limitations.
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where k2 and k3 are the integers dual to y and z. All of the hatted variables should
also carry these integer indices, e.g., Π̂ = Π̂(k2,k3), but we suppress this dependence
throughout. We replace Eqs. (A.2b) and (A.2c) with the lightlike combinations

Û+−α
[

(Vx−1)∂xÛ+
x −ik2Φ̂2−ik3Φ̂3

]

= B̂Π+ B̂Φ1
, (A.3)

Û−−α
[

(Vx+1)∂xÛ−
x −ik2Φ̂2−ik3Φ̂3

]

= B̂Π− B̂Φ1
, (A.4)

thereby arriving at the following inhomogeneous linear system:

d
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(A.5)
With Q=

√

α2+α4|k|2[1−(Vx)2] and |k|2 = k2
2+k2

3, the eigenvalues of the coefficient ma-
trix A are

λ1 =λ2 =λ3 =(αVx)−1, λ4,5 =
−αVx±Q

α2[1−(Vx)2]
. (A.6)

The corresponding eigenvectors are

v1 =













1
0
0
0
0













, v2 =













0
−iαk2Vx

iαk2Vx

1
0













, v3 =













0
−iαk3Vx

iαk3Vx

0
1













, v4,5 =













−α2

(α∓Q)/(1−Vx)
(α±Q)/(1+Vx)

−iα2k2

−iα2k3













.

(A.7)
The (k2,k3)=(0,0) limits of Eqs. (A.6) and (A.7) are easily computed with the result Q∼α,
|k|→ 0+. The results agree with those obtained by first setting (k2,k3) = (0,0) in (A.5),
and then performing the eigen-decomposition. Notice that the |k|=0 eigenvalues, which
happen to be the diagonal entries of the coefficient matrix A in (A.5), are such that (αλq)−1

for q=1,··· ,5 are the characteristic speeds of the corresponding hyperbolic system.

The eigenvectors (A.7) are not mutually orthogonal; however,

det
[

v1,v2,v3,v4,v5

]

=−
4α

[

1−α2|k|2(Vx)2
]

Q
[

1−(Vx)2
] , (A.8)
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and the eigensolutions
yq(x)= eλqxvq, q=1,2,··· ,5 (A.9)

form a fundamental set of solutions. Defining

Ψ(x)=
[

y1(x),y2(x),y3(x),y4(x),y5(x)
]

(A.10)

and viewing the system (A.5) as

d

dx
y(x)=Ay(x)+g(x), (A.11)

we can now write down the general solution:

y(x)=Ψ(x)c+Ψ(x)
∫ x

x0

Ψ
−1(ξ)g(ξ)dξ, (A.12)

where x0 is any point on the interval (0,1). The five components cq of c correspond
to five boundary conditions. The following recipe for fixing these components agrees
with the convention for control of incoming fields in the corresponding evolution initial-
boundary-value problem. The exponentials eλqx for q = 1,2,3,4 all blow up as x → ∞,
whereas eλ5x decays in the same limit. We want to fix the eigensolutions yq(x) for q =

1,2,3,4 (associated with blowing-up exponentials) at x = 1, and the eigensolution y5(x)
(associated with the sole decaying exponential) at x=0. We assume that (k2,k3) is small,
so that the eigenvectors v1,v2, v3, and v4 are combinations of the fields ψ̂, Û−, Φ̂2, and
Φ̂3. Therefore, we fix these fields at x = 1. Also for small (k2,k3), v5 is approximately
proportional to the fields ψ̂ (already fixed at x=1) and Û+ which would be the Û− field
relative to the outward-pointing unit normal −d/dx at x = 0. Finally then, we fix Û+ at
x=0.

B Singular boundary value problem

In this appendix we consider the general solution to the second-order equation (3.28) for
the case of the Schwarzschild geometry with respect to Kerr-Schild coordinates. Provided
that the radial location r = rmin of inner boundary satisfies rmin ≤ 2M, we show that a
regular (that is, nonsingular) solution to the equation is uniquely determined by one free
constant. We conclude that a single outer boundary conditions suffices to determine a
regular solution to the equation.

Our analysis assumes that both Q(r) and P(r) in Eq. (3.28) are smooth on the radial
domain, which is easily checked for all cases. We further note that α−1P(2M)>1, where
P(2M)= 4MS(2M)+2α. Let us verify that this last inequality holds for the considered
cases. For (3.14) and case (i) we have

S(r)=2Vr , (B.1)
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and so α−1P(2M)=2+4Mα−1 >1 by (3.21). For (3.16) and case (ii), we find

S(r)=2Vr +α
[

(Vr)2N−1N′−Vr(Vr)′
]

. (B.2)

Calculations with (3.21) then show that S(2M)=1+ 3
8 α/(4M), whence α−1P(2M)= 19

8 +
4Mα−1 >1. Finally, we consider (3.17) and case (iii), with our earlier calculations giving

S(r)=2Vr +α
[

(Vr)2N−1N′−Vr(Vr)′−N2(Jk∂kr)−Vr NK
]

. (B.3)

With the formulas listed in (3.21) and (3.24), we find S(2M) = 1−α/(4M), implying as
claimed that α−1P(2M)=1+4Mα−1 >1. Our argument is completed with the following
lemma.

Lemma B.1. Consider the ODE

Q(r)w+αP(r)w′+α2(r−2M)w′′=h(r), (B.4)

here taken on the r-interval (2M,rmax). Assume that Q(r), P(r), and h(r) are smooth on an
open interval larger than (2M,rmax). Moreover, assume that α−1P(2M) > 1, also with α > 0.
Express the general solution as

w(r)= c1w1(r)+c2w2(r)+wP(r), (B.5)

where w1(r) and w2(r) are solutions to the homogeneous equation (that is, for h(r) = 0), and
wP(r) is a particular solution. Then we may arrange for w1(r) and wP(r) to be regular as r→
2M+, with w2(r) singular and obeying

w2(r)∼ (r−2M)1−1/(ακ), (B.6)

again as r→2M+. Here κ=1/P(2M), and 1−1/(ακ)<0 by assumption. The second solution
must therefore exhibit a blowing-up (likely also branch) singularity at r=2M.

Proof. We begin the proof of the lemma by examining the homogeneous equation. Taken
in standard form, that equation is

w′′+P(r)w′+Q(r)w=0, (B.7)

where

P(r)=
1

α

P(r)

r−2M
, Q(r)=

1

α2

Q(r)

r−2M
. (B.8)

Seeking solutions of Frobenius type, we then consider the indicial equation

λ(λ−1)+λ/(ακ)=0. (B.9)

Whence the indicial exponents are λ1 = 0,λ2 = 1−1/(ακ), and we may therefore choose
solutions to the homogeneous problem obeying

w1(r)∼1, w2(r)∼ (r−2M)1−1/(ακ), (B.10)
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as r→2M+. At r =2M, the first solution is analytic, while the second exhibits blow-up,
and likely branch behavior depending on the value of ακ.

To complete the proof, we follow the method of undetermined coefficients in order
to construct a particular solution with the desired regularity. For r > 2M, an integrating
factor for (B.4) is

(r−2M)−1+1/(ακ)exp

(

1

α

∫ r

2M

P(ξ)−P(2M)

ξ−2M
dξ

)

=(r−2M)−1+1/(ακ)µ(r), (B.11)

where µ(2M)=1. Using the integrating factor, we cast (B.4) into the following form:

[

α2(r−2M)1/(ακ)µ(r)w′
]

′+(r−2M)−1+1/(ακ)µ(r)Q(r)w

=(r−2M)−1+1/(ακ)µ(r)h(r). (B.12)

It then follows on general grounds that

W[w1,w2](r)=w1(r)w′
2(r)−w2(r)w′

1(r)

=
A

α2µ(r)
(r−2M)−1/(ακ), (B.13)

where the constant A=α2[1−1/(ακ)]. With this result for the Wronskian W[w1,w2](r) in
hand, we look for a solution

wP(r)=u(r)w1(r)+v(r)w2(r), (B.14)

subject to the variation-of-parameters Ansatz

u′(r)w1(r)+v′(r)w2(r)=0. (B.15)

The needed expressions for u(r) and v(r) are as follows:

u(r)=−
∫ r

b
A−1w2(ξ)(ξ−2M)−1+1/(ακ)µ(ξ)h(ξ)dξ, (B.16)

v(r)=
∫ r

2M
A−1w1(ξ)(ξ−2M)−1+1/(ακ)µ(ξ)h(ξ)dξ. (B.17)

More compactly, we may write

wP(r)=
∫ b

2M
G(r,ξ)µ(ξ)(ξ−2M)−1+1/(ακ)h(ξ)dξ, (B.18)

in terms of the Green’s function

G(r,ξ)=

{

A−1w1(r)w2(ξ) for 2M≤ r≤ ξ≤b,
A−1w1(ξ)w2(r) for 2M≤ ξ≤ r≤b.

(B.19)
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Finally, to verify that, as constructed, wP(r) remains regular as r→2M+, we establish
in the same limit that

u(r)≃K1, v(r)≃K2(r−2M)1/(ακ), (B.20)

for constants K1=u(2M) and K2 =ακh(2M). The first asymptotic statement follows from
the observation that the integrand in (B.16) is integrable at r = 2M. To get the result for
v(r), we use

v′(r)= A−1w1(r)(r−2M)−1+1/(ακ)µ(r)h(r)

= A−1w1(2M)µ(2M)h(2M)(r−2M)−1+1/(ακ)+O
(

(r−2M)1/(ακ)
)

, (B.21)

along with w1(2M)=1=µ(2M). Taken all together, we have shown that

wP(r)≃K1+K2(r−2M), (B.22)

as r→2M+. Whence the lemma has been proved.

C Implicit constraint equations

For the Schwarzschild example with line-element (3.20), this appendix further examines
Eq. (3.6). To obtain an orthonormal spatial triad, we complete the radial vector nk=L−1νk

defined just before Eq. (3.22) with the standard angular directions

eθ
k =(cosθcosφ,cosθsinφ,−sinθ), eφ

k =(−sinφ,cosφ,0). (C.1)

In terms of the triad, we have

Ck =nkL−1Cν+eθkCθ+eφkCφ, (C.2)

where Cν =νkCk, Cθ = eθ
kCk and Cφ = eφ

kCk. Contraction of (3.6) on νk yields the equation

Cν−α
(

VrCν

)′
= B′

ψ−νkBΦk
, (C.3)

with the prime denoting radial differentiation. Likewise, contraction of (3.6) on eθ
k yields

Cθ−α
(

VrC ′
θ+r−1CθVr

)

= eθ
k
(

∂kBψ−BΦk

)

, (C.4)

where in reaching this equation we have used Vk = Vrνk and eθ
j∂jν

k = r−1eθ
k. Similar

manipulations establish that

Cφ−α
(

VrC ′
φ+r−1CφVr

)

= eφ
k
(

∂kBψ−BΦk

)

. (C.5)

Since Vr>0 over the whole spherical shell, we may radially integrate (C.3,C.4,C.5) inward
from the outer boundary Bo, provided Cν|Bo

, Cθ|Bo
, and Cφ|Bo

are specified. We can then
recover the Cartesian components Ck with (C.2). In principle, these components could be
incorporated into the G source in Eq. (3.25).
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