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Abstract. The full torus electromagnetic gyrokinetic particle simulations using the hy-
brid model with kinetic electrons in the presence of magnetic shear is presented. The
fluid-kinetic electron hybrid model employed in this paper improves numerical prop-
erties by removing the tearing mode, meanwhile, preserves both linear and nonlinear
wave-particle resonances of electrons with Alfven wave and ion acoustic wave.

PACS: 52.20.Gz, 52.35.Ra, 52.65.Cc

Key words: Gyrokinetic particle simulation, plasma turbulence, electromagnetic gyrokinetic the-
ory.

1 Introduction

Anomalous particle and heat transport in magnetized fusion plasma in the electrostatic
limits have been studied extensively by three dimensional gyrokinetic turbulence simu-
lations [1, 2]. The ion heat transport driven by ion temperature gradient mode (ITG) [3]
and regulation by the zonal flows is well understood [2, 4]. The electron heat transport
can be related to trapped electron modes (TEM) [5–7], effective perpendicular transport
induced by stochastic magnetic field lines [8, 9], or possibly by electron temperature gra-
dient mode (ETG) [10–12]. On the other hand, in the presence of magnetic perturbations,
there exist new branches of modes, for example, toroidicity induced Alfven eigenmodes
(TAEs) [13, 14], Alfvenic ion temperature gradient (AITG) modes [15, 16], and kinetic
ballooning modes (KBM) [17], that can play important roles in plasma instabilities and
transport.

To predict the particle and heat transport level reliably for the next generation burn-
ing plasma experiments, for example for the International Thermonuclear Experimental
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Reactor (ITER), it is important to include the electromagnetic effects self-consistently into
the gyrokinetic simulation. However, in electromagnetic gyrokinetic particle-in-cell (PIC)
simulations [18, 19], freely streaming electrons above the local Alfven speed greatly en-
hance particle noise inherent to the electromagnetic gyrokinetic PIC method [20, 21]. A
fluid-kinetic hybrid electron model [22–25] has been proposed to circumvent these diffi-
culties. The hybrid model solves for the adiabatic response in the lowest order as mass-
less electron fluid equations and solves the resonant interaction in the higher order kinetic
equations, based on an expansion of the electron response using a small parameter of the
square-root of the electron-ion mass ratio

δm =(me/mi)
1/2

(me and mi are the electron and the ion mass respectively), while preserving the linear
and the nonlinear wave-particle interactions (note, however, that we did not conduct
nonlinear simulation in this paper).

The motivation for the development of the hybrid model is to remove the well known
numerical difficulty [20, 21] of resolving the electron response to the tearing parity near
mode rational surfaces in the presence of magnetic shear. The hybrid model is free from
this difficulty by removing the tearing mode physics in our simulations, while the full ki-
netic model [20, 21] can suffer from the difficulty since the tearing mode is retained. The
hybrid model makes approximations at the electron gyroradius scales and removes the
k‖ = 0 component of the inductive parallel electric field (here, k‖ is the wave vector par-
allel to the equilibrium magnetic field), that is the collisionless tearing mode. However,
the hybrid model treats rigorously all other k‖ = 0 modes, including electrostatic fields,
magnetic field perturbations, zonal flows and zonal fields, and all the ideal and resistive
MHD modes. The hybrid model is optimal for simulation of drift and Alfvenic turbu-
lence on the ion gyroradius scales. The hybrid model does not treat the tearing physics
in exchange for better numerical properties when simulating drift-Alfvenic turbulence.

Based on the mathematical derivation by [23, 25] presented a toroidal version of the
fluid-kinetic hybrid electron model for treating electron dynamics in electromagnetic gy-
rokinetic particle simulations. However, the major focus of the numerical calculations
in [25] was the examination of the shear Alfven wave dynamics in global tokamak plas-
mas with only the fluid hierarchy of the hybrid model (which constructed a closed set of
physics discussion employing the lowest order fluid electrons). On the other hand, global
toroidal gyrokinetic particle simulations with kinetic electrons using the electrostatic ver-
sion of the hybrid model were reported [7,26]. In this paper, the full torus electromagnetic
gyrokinetic particle simulations using the hybrid model with kinetic electrons in the pres-
ence of magnetic shear are presented. The fluid-kinetic electron hybrid model employed
in this paper improves numerical properties by removing the tearing mode. The hybrid
model preserves both linear and nonlinear wave-particle resonances of electrons with
Alfven wave and ion acoustic wave (note that we do not perform nonlinear simulations
in this paper).
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The paper is organized as follows. The formulation of the hybrid model is presented
in Section 2. Section 3 discussed electromagnetic simulations with kinetic electrons. We
summarize in Section 4.

2 The asymptotic expansion of the electron drift kinetic

equation

In this section, we present the asymptotic expansion of the electron drift kinetic equation
in the hybrid model [22]. We point out where the tearing parity modes are eliminated.
For the completeness of the work, mathematical notations in [25] are repeated (as a con-
sequence, several equations are unavoidably the same).

Before proceeding, we note that the parallel electric field in the hybrid model is rep-
resented by

E‖≡−∇‖Φe f f =−∇‖Φ−c−1∂t A‖=−∇‖Φ+∇‖Φind (2.1)

which contains both the electrostatic part and the induction part, and we introduce the
induction potential Φind and the effective potential Φe f f , with Φ being the electrostatic
potential, and A‖ is the parallel component of the vector potential. Note that we have

imposed c−1∂t A‖ =−∇‖Φind (c is the speed of light). As we see later this is where the
tearing mode physics is eliminated.

In describing the equilibrium magnetic field in the toroidal geometry, we take the
Clebsch form

B0 =∇ψ0×∇α0,

where ψ0 is the poloidal flux label and α0 = q(ψ0)θ−ζ is the magnetic field line label
with θ and ζ being the poloidal angle and the toroidal angle, respectively. Here, q(ψ0)
is the equilibrium safety factor. The magnetic field in the presence of the perturbation
δψ(ψ0,θ,ζ,t) and δα(ψ0,θ,ζ,t) is given by (t denotes the time variable)

B=B0+δB=∇(ψ0+δψ)×∇(α0+δα).

The magnetic perturbation is also given by δB=∇A‖×b0. Here, we denote b=B/B0 and
b0 =B0/B0. The vector potential A‖, δψ, and δα are related through the relations

∂A‖/∂α0 =−b·∇δψ, (2.2)

∂A‖/∂ψ0 =b·∇δα. (2.3)

Taking (µ,v‖) as independent variables which is implemented in the GTC code [2],
the drift kinetic equation [27, 28] is given by

d fe

dt
=

∂ fe

∂t
+

(

v‖b+vE+vg+vc

)

·∇ fe−b∗ ·∇
(

µB−eΦe f f

) 1

me

∂ fe

∂v‖
=0. (2.4)
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The magnetic moment is defined by µ=mev
2
⊥/2B, where the parallel and perpendicular

particle velocities are given by v‖ and v⊥, respectively. The E×B drift velocity is given
by

vE = cB0×∇Φ/B2
0 ,

the electron gradient-B drift is given by

vg =
(

meΩceB2
0

)−1
(µB0)B0×∇B0,

the electron curvature drift is given by

vc =(v2
‖/Ωce)b×(b·∇)b

(e is the unit charge, Ωce =−eB0/mec is the electron cyclotron frequency), b∗=b+vc/v‖,
and b∗

0 = b0+vc/v‖. We then separate the electron distribution function into the equi-
librium part and the fluctuation part as fe = f0e+δ fe. The equilibrium part f0e is defined
by

[

∂

∂t
+

(

v‖b0+vg+vc

)

·∇−b∗
0 ·∇(µB)

1

me

∂

∂v‖

]

f0e =0. (2.5)

Note that f0e is dependent not only on the flux surface label ψ0 but also on the poloidal
angle θ. The δ fe equation is given by

dδ fe

dt
=−v‖

δB

B
·∇ f0e−vE ·∇ f0e +

δB

B
·∇

(

µB−eΦe f f

) 1

me

∂ f0e

∂v‖
−b∗

0 ·∇
(

−eΦe f f

) 1

me

∂ f0e

∂v‖

=
c

B2
B·∇ f0e×

(

∇Φ−v‖∇
A‖

c

)

−
δB

B
·∇

(

µB−eΦe f f

) v‖ f0e

eTe
+b∗

0 ·∇
(

eΦe f f

) v‖ f0e

eTe
,

(2.6)

where the velocity space nonlinearity is usually neglected. Here, the electron temperature
is given by Te =mev

2
the (vthe is the electron thermal velocity).

In Eq. (2.6), the lowest order terms (in terms of the square-root of the mass ratio δm)
are

v‖b·∇δ f
(0)
e =

c

B2
B·∇ f0e×

(

−v‖
∇A‖

c

)

+b·∇
(

eΦe f f

) v‖ f0e

eTe

=−v‖
∂ f0e

∂ψ0

∂A‖

∂α0
+v‖

∂ f0e

∂α0

∂A‖

∂ψ0
+b·∇

(

eΦe f f

) v‖ f0e

eTe

=v‖b·∇
∂ f0e

∂ψ0
δψ+v‖b·∇

∂ f0e

∂α0
δα+v‖b·∇

(

eΦe f f

) f0e

eTe
. (2.7)

Employing Eqs. (2.2) and (2.3) [∂A‖/∂α0 =−b·∇δψ and ∂A‖/∂ψ0 = b·∇δα], we obtain
the lowest order solution

δ f
(0)
e =

e f0e

Te
Φe f f +

∂ f0e

∂ψ0
δψ+

∂ f0e

∂α0
δα. (2.8)
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The first term in Eq. (2.8) represents the Boltzmann response to the parallel electric field.
The second and the third term represent the electron thermal equilibration along the

perturbed magnetic field. We then separate δ fe =δ f
(0)
e +δhe. By substituting Eq. (2.8) into

Eq. (2.6) and taking the moment of the electron drift kinetic equation (2.6), the continuity
equation for the fluid electron is given by

∂δne

∂t
=−(B0+δB)·∇

n0δu‖e

B0
−vE ·∇(n0+δne)

−
B0×∇B0

meΩceB2
0

·[∇δp⊥e−n0e∇Φ]−
b×(b·∇)b

meΩce
·
[

∇δp‖e−n0e∇Φ
]

, (2.9)

where the pressure terms, p⊥e and p‖e are given by

δp⊥e =
∫

µBδ fed
3v=n0eΦe f f +δψ

∂p0⊥e

∂ψ0
+δα

∂p0⊥e

∂α0
+

∫

µBδhed3v, (2.10)

δp‖e =
∫

mev
2
‖δ fed3v=n0eΦe f f +δψ

∂p0‖e

∂ψ0
+δα

∂p0‖e

∂α0
+

∫

mev
2
‖δhed3v. (2.11)

Here,
∫

d3v is the integral over velocity space.
From Eq. (2.8), the lowest order equation for the effective potential is given by

eΦ
(0)
e f f

Te
=

δne

n0
−

δψ

n0

∂n0

∂ψ0
−

δα

n0

∂n0

∂α0
, (2.12)

To determine δψ and δα in the Clebsch form [24], the following magnetic field equation
is solved [instead of solving Eqs. (2.2) and (2.3)],

∂δψ

∂t
=−vΦind

·∇δψ+c
∂Φind

∂α0
, (2.13)

∂δα

∂t
=−vΦind

·∇δα+c
∂Φind

∂ψ0
, (2.14)

where vΦind
= cB0×∇

(

Φind/B2
0

)

.
One unique feature of the hybrid model [22–25] is to obtain A‖ by the inverse of the

Faraday’s law
∂A‖

∂t
= c∇‖

(

Φe f f −Φ
)

. (2.15)

The inversion is devised in the hybrid model taking advantage of the lowest order so-
lution Eq. (2.8). As we see in Eq. (2.15), since we enforce the time derivative term to
be in a potential form, the k‖ = 0 component of the parallel inductive electric field E‖ is
eliminated. The elimination of the tearing parity mode is solely due to this relation. For
Eq. (2.15) to be solvable, Φe f f needs to be a known quantity a priori. Then the notion
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of adiabatic electrons in Eqs. (2.8) and (2.19) plays a role. The elimination of the tear-
ing parity mode is a direct consequence of the asymptotic expansion by δm and remains
the same even with the inclusion of non-adiabatic kinetic electrons as long as the spe-
cific mode ”E‖(k‖ = 0)” is absent in Eq. (2.18). We demonstrate this feature in Section 3
[As a comparison, the split weight scheme [29–31] contains full drift kinetic physics of
Eq. (2.6)].

Discussed above are the dynamical equations which are evolved in time. To com-
plete the hybrid model, we solve the following field equations. The gyrokinetic Poisson
equation is given by

−
τ

λ2
d

(

Φ−Φ̃
)

=−4πe(δn̄i−δne), (2.16)

where Φ̃ is the double gyro averaged electrostatic potential [19]. Here τ = Te/Ti (Ti is
the ion temperature) and λd is the Debye length. In Eq. (2.16), δn̄i =(1/n0)

∫

δ fid
3v. The

Ampere’s law is inverted to obtain the parallel electron current

n0eδue‖=
c

4π
∇2

⊥A‖+n0e ¯δui‖1 (2.17)

which will then enter Eq. (2.9). Here, ¯δui‖=(1/n0)
∫

v‖δ fid
3v.

Substituting δ fe = δ f
(0)
e +δhe into Eq. (2.6) and keeping higher order terms we obtain

the electron kinetic equation for the non-adiabatic response δhe

dδhe

dt
=c

∂ f0e

∂ψ0

∂Φ

∂α0
−c

∂ f0e

∂α0

∂Φ

∂ψ0
−

e f0e

Te

∂Φ
(0)
e f f

∂t
−

∂ f0e

∂ψ0

∂δψ

∂t
−

∂ f0e

∂α0

∂δα

∂t

−
(

vE+vg+vc

)

·∇

(

∂ f0e

∂ψ0
δψ+

∂ f0e

∂α0
δα

)

−vg ·∇

(

e f0e

Te
Φ

(0)
e f f

)

+vE ·∇

(

e f0e

Te
Φind

)

. (2.18)

We then employ the relation

eΦ
(1)
e f f

Te
=−

δn
(1)
e

n0
(2.19)

to obtain Φe f f =Φ
(0)
e f f +Φ

(1)
e f f , which then enters Eq. (2.15). Here,

δne
(1) =

1

n0

∫

δhed3v.

The higher order kinetic effect enters the system through Φ
(1)
e f f , Eqs. (2.10) and (2.11) (and

not through the gyrokinetic Poisson equation).
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The δ f gyrokinetic equation is solved for the kinetic ions (here, we separate the ion
distribution function fi = f0i+δ fi)

dδ fi

dt
=

c

B2
B·∇ f0e×

(

∇Φ−v‖∇
A‖

c

)

−
δB

B
·∇

(

µB−eΦe f f

) v‖ f0i

eTi
+b∗

0 ·∇
(

eΦe f f

) v‖ f0i

eTi
, (2.20)

where the magnetic moment is defined by µ = miv
2
⊥/2B. All the perturbed quantities in

Eq. (2.20) are gyro-phase averaged values.

3 Electromagnetic simulations with kinetic electrons

In this section we present electromagnetic gyrokinetic simulation with kinetic electrons
using the hybrid model employing the GTC code [2]. As a reference, kinetic electrons
have been included in linear [7] and nonlinear [26] toroidal simulations with magnetic
shear using an electrostatic version of the hybrid model, which employs the same expan-
sion by the square-root of the electron-ion mass ratio. These simulations [7,26] show that
there is no numerical difficulty of electron response near mode rational surfaces; the tear-
ing parity mode is not destabilized which is a natural consequence of the hybrid model
formulation which theoretically removed the tearing parity modes.

The gyrokinetic toroidal code GTC is based on the gyrokinetic particle in cell (PIC)
approach which allows efficient sampling of the velocity space [18, 19]. The GTC code
takes an initial value approach which dynamically evolves gyrokinetic equations and the
field equations (either electrostatic or electromagnetic). The field equations are solved
in the real space which allows implementations of realistic boundary conditions. We
also employ the global field aligned mesh [32] which rotates in the toroidal direction to-
gether with the resonant mode at each rational surface and thus the mesh structure is
not axisymmetric. When we employ the global field aligned mesh, we no longer have
an advantage of having a logically rectangular mesh since each radial surface rotates at a
different pitch due to the finite magnetic shear. The consequent logically non-rectangular
mesh in GTC also keeps the numbers of particle per cell to be constant which is favor-
able for the statistical estimation of the charges and the currents. The original GTC
code [2] with adiabatic electrons is extended to include kinetic electrons by the hybrid
approach [7, 26] and the effort to include split-weight approach is reported [33] in the
electrostatic limit [29]. Furthermore, the extension to shaped plasmas (in the adiabatic
electron limit) is reported in [34, 35]. The electromagnetic capability in a circular cross
section is demonstrated in [25].

The parameters used below are toroidal magnetic field 1.91T, equilibrium ion and
electron temperature Ti = Te =2500eV. The plasma size is given by the major radius R=
46.6 cm and the minor radius a =16.7 cm. The density gradient and the ion temperature
gradient are given by κn = −R(dlog(n)/dr) = 2.22, κti = −R(dlog(Ti)/dr) = 6.92, and
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(a) (b)

Figure 1: Simulation results with kinetic electrons. (a) Φ and (b) A‖ contours. Here, βe =0.5%.

κte=−R(dlog(Te)/dr)=6.92. Here, r is the radial coordinate which relates to the flux label
ψ0 =

∫

B0(r/q)dr. The magnetic shear at the midplane is 0.776 with a safety factor of 1.4
as in the Cyclone base case [1]. Shown in Fig. 1 are the simulation results in the presence
of kinetic electrons with the electron plasma beta value of βe =0.5%. In Fig. 1, the linear
eigenfunction of the finite-β modified ITG is shown. Note that the radial profile of Φ has
even parity across the mode rational surfaces, while A‖ has odd parity as in Fig. 8 of [25].
The parity of Φ is that of the ion temperature gradient mode (ITG) and the A‖ parity
simply follows the opposite of Φ. The radial eigenmode structure of Φ is known to take
the form of Weber function [9, 36] [superpositions of Gaussian function (the even parity)
localized at each mode rational surface] and the streamer, or finger-like, feature is seen as
in Fig. 1(a). On the contrary, we observe discontinuous (wavy) features in Fig. 1(b), since
the radial eigenmode structure changes its sign across each mode rational surface (the
odd parity). In Fig. 1, tearing parity mode is not excited which is the nature of the hybrid
model formulation as we discussed in the previous section. The tearing parity mode is
always present (at the white noise level) but does not grow.

The linear growth rate and the real frequency of the finite beta modified ITG mode is
shown in Fig. 2 (as a function of βe). The Fourier modes included in this simulation are
all the poloidal m modes and a single toroidal mode n = 9 (the rest of the n modes are
filtered out).

We observe the onset of kinetic ballooning mode at βe ≥0.7%. The absolute values of
the real frequency (which are the negative values) increases at βe≥0.7% and then decrease
with a further increment in βe. Finite beta stabilization at βe ≤ 0.7% is not as prominent
as reported by [37, 38].
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Figure 2: The βe dependence of finite beta modified ITG (a) linear growth rates and (b) real frequency for
n =9. Here, Ti = Te =2500eV, R =46.6 cm, κn =2.22, κti =6.92, and κte =6.92. The values are normalized by
ion cyclotron frequency Ωci.
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Figure 3: The βe dependence of (a) linear growth rates and (b) real frequencies for n = 7 modes. Here,
Ti = Te = 250eV, R = 23.3 cm, κn = 2.0, κti = 2.0, and κte = 7.0. The values are normalized by ion cyclotron
frequency Ωci.

The linear growth rate and the frequency with a smaller ion temperature gradient
parameter is shown in Fig. 3 (versus the βe value). The parameters used below in Figs. 3
and 4 employs relatively small number of mesh points. Here, we take 24 radial mesh
points, 88 poloidal mesh points on the midplane, and 16 toroidal mesh points in the
global field aligned non-rectangular mesh (as a comparison, in Figs. 1 and 2, 48, 176, and
32 are taken for the radial, the midplane poloidal, and toroidal mesh points, respectively).
The plasma size is given by the major radius R=23.3 cm and the minor radius a=8.3 cm,
with a toroidal magnetic field 1.91T and equilibrium ion and electron temperature of
Ti = Te = 250eV. The density gradient, the ion temperature gradient, and the electron
temperature gradient are given by κn = 2.0, κti = 2.0, and κte = 7.0. The filtered toroidal
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Figure 4: The ηi dependence of finite beta modified modes (corresponds to ITG at ηi ≥ 3.0). Plotted are (a)
linear growth rates and (b) real frequencies for the n = 7 modes. The values are normalized by ion cyclotron
frequency Ωci.

mode number is n=7. We see a monotonic increase in the linear growth rate and the real
frequency is almost constant over the range of 0.3%≥ βe ≥ 1.5%. Further detailed study
is required to identify if the mode is the trapped electron mode.

Shown in Fig. 4 are the linear growth rate and real frequency versus ηi=κti/κn for beta
values of βe =0.5% (filled circles) and βe=1.0% (filled squares). The density gradient κn =
2.0 and the electron temperature gradient κte = 7.0 are fixed. The methodology is taken
from Fig. 4 of [7] in the electrostatic case. A transition is seen near η =3.0, possibly from
the trapped electron mode to the ITG mode [7]. At ηi = 5.0, the magnitude of the linear
growth rate and the real frequency becomes comparable [uncertainty in the measured
values as seen in the square plot at ηi = 5.0 in Fig. 4(a)]. Detailed investigation of the
trapped electrons modes (TEM) in the electromagnetic regime will be our next step task.

Our initial electromagnetic gyrokinetic particle simulation results with kinetic elec-
trons in the presence of magnetic shear is successfully demonstrated without the desta-
bilization of the tearing parity modes. These simulation results show that there is no
numerical difficulty of electron response near mode rational surfaces.

4 Summary and discussions

In this paper, electromagnetic gyrokinetic particle simulations using the hybrid model
with kinetic electrons are presented. The simulation is performed in a global full torus
geometry in the presence of magnetic shear. We reported our initial studies on the param-
eter dependence of the electromagnetic drift wave instabilities in the presence of kinetic
electrons. We have discussed the onset of kinetic ballooning mode in the presence of large
ion temperature gradient drive. We have also studied cases with large electron tempera-
ture gradient drive that possibly correspond to the trapped electron mode [7]. By varying
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the ηi value, the real frequency changes its sign as manifested in the electrostatic stud-
ies [7]. More detailed investigation (the detailed parameter scan) of the trapped electrons
modes (TEM) in the electromagnetic regime will be our particular interest. We plan to
compare the simulation results with the eigenvalue calculations.

As we discussed above the current hybrid model removes collisionless tearing modes
and thus magnetic stochasticity induced parallel electron heat transport cannot be de-
scribed. While the collisionless reconnection is eliminated, the hybrid model is capable
of simulating resistive reconnection. Whether we can include tearing parity modes (ques-
tion is how to include the k‖=0 mode of the parallel inductive electric field E‖) is opened
for further discussions.

While the electrostatic fluid-kinetic hybrid model requires time centering scheme in
the electron drift kinetic equation, the electromagnetic hybrid model presented in this
paper is free from time centering due to the lowest order electron continuity equation (as
a comparison, electrostatic split weight scheme avoids time centering scheme but then
requires an additional Poisson type equation for the time derivative of the electrostatic
potential).
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