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Abstract. New direct spectral solvers for the 3D Helmholtz equation in a finite cylin-
drical region are presented. A purely variational (no collocation) formulation of the
problem is adopted, based on Fourier series expansion of the angular dependence and
Legendre polynomials for the axial dependence. A new Jacobi basis is proposed for the
radial direction overcoming the main disadvantages of previously developed bases for
the Dirichlet problem. Nonhomogeneous Dirichlet boundary conditions are enforced
by a discrete lifting and the vector problem is solved by means of a classical uncou-
pling technique. In the considered formulation, boundary conditions on the axis of
the cylindrical domain are never mentioned, by construction. The solution algorithms
for the scalar equations are based on double diagonalization along the radial and axial
directions. The spectral accuracy of the proposed algorithms is verified by numerical
tests.
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1 Introduction

Several problems in physics and engineering involve the solution of elliptic problems
in cylindrical coordinates. Among the numerical techniques proposed so far are finite
differences, spectral methods and spectral element methods. This work is concerned with
spectral approximations. For a comprehensive theoretical framework see the monograph
by Bernardi, Dauge and Maday [5].

The main difficulty with cylindrical coordinates lies in the axis singularity, the so-
called ‘pole’ or ‘centre problem’. However, the pole problem does not represent a true
difficulty and can be actually turned into an opportunity when discretizing the equation.
In fact, the Fourier components um(r,z) of a scalar function u(r,z,φ) of the cylindrical
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coordinates (r,z,φ) must satisfy the following conditions to be a regular function of R3

[12]

um(r,z)= r|m|Um(r2,z),

with function Um(s,z), s ≥ 0, being a regular function of its two variables. If such con-
ditions are not satisfied, the pole problem arises, since the numerical scheme provides
an unwanted over-resolution near the cylinder axis which can severely limit the time
step when time dependent problems have to be solved. On the other hand, the regularity
conditions are helpful since they can be exploited to reduce the number of basis functions
employed, by omitting the functions not satisfying them.

Several spectral methods have been proposed in the past in an attempt to satisfy the
aforementioned regularity conditions [7]. In some cases, they are fulfilled only partially,
as is the case, for instance, of shifted Chebyshev polynomials of quadratic argument,
where the parity condition is satisfied, or Legendre-Galerkin, Chebyshev-Galerkin and
Chebyshev-Legendre-Galerkin methods proposed by Shen and his co-workers [13,14,19],
where just the essential conditions with the Helmholtz are satisfied. Bessel functions
and polar Robert functions [16] satisfy all the conditions, but the former provide only
algebraic convergence and the latter are severely ill conditioned. Other kinds of spectral
approximations were proposed that disregarded completely the centre problem, such as
tau-Chebyshev methods, see, e.g., [8] and Galerkin-Legendre collocation methods [6,17].
For instance, a direct spectral collocation method for the Poisson equation in polar and
cylindrical coordinates has been proposed [9].

The first well conditioned basis that satisfies all the regularity conditions and provides
spectral accuracy has been proposed by Matsushima and Marcus [15] in the context of the
solution of 2D Neumann boundary value problems, see also Verkley [20]. Unfortunately,
the condition numbers associated with Helmholtz operator grow as the fourth power of
the degree for this basis. Moreover, its application to solve homogeneous and nonhomo-
geneous Dirichlet problems is unduly complicated.

This paper describes new direct spectral solvers for 3D scalar and vector elliptic equa-
tions supplemented by Dirichlet boundary conditions in a cylinder of finite axial extent.
The solution algorithms are all based on a Galerkin variational formulation of the ellip-
tic boundary value problem so that there is no need to introduce the idea of collocation.
After the Fourier representation of the angular dependence, the spectral approximation
of the unknown coefficients in the azimuthal plane is achieved by means of a new one-
sided Jacobi polynomial basis for the radial variable and by bases of Legendre polyno-
mials for the axial variable. A distinctive feature of the proposed 3D solvers is that the
size of discrete subspaces associated with the radial operators is lower at higher Fourier
wavenumbers.

In the case of the vector problem, the classical uncoupling of the radial and azimuthal
components is employed. The uncoupling transformation is used in conjunction with
the new Jacobi representation of variable size to implicitly satisfy all of the regularity
conditions for the vector problem—a result which, to the best of our knowledge, is new.



428 F. Auteri and L. Quartapelle / Commun. Comput. Phys., 5 (2009), pp. 426-441

All the proposed spectral solvers rely upon the double diagonalization of the discrete
operators in the radial and axial directions. Numerical comparisons are given to assess
the spectral accuracy of the proposed direct solvers.

2 Scalar Helmholtz equation in cylindrical coordinates

Let us consider the Helmholtz equation in cylindrical coordinates with unknown u =
u(r,z,φ), in the cylindrical domain of finite axial extent Ω≡(0,c]×[−H,H]×[0,2π), which
includes part of the axis,

−1

r

∂

∂r

(

r
∂u

∂r

)

− 1

r2

∂2u

∂φ2
− ∂2u

∂z2
+γu= f (r,z,φ). (2.1)

where γ is a non-negative constant, f (r,z,φ) is a known source term defined in a cylin-
drical domain. Thanks to the periodic character of the φ variable, the right-hand side and
the unknown can be expanded by means of a real Fourier series. In order to discretize the
problem, the series is truncated at a suitable integer M>0, so that −M+1≤m≤M, and the
Fourier expansions are approximated by finite summations; for instance, the truncated
expansion of the unknown is

u(r,z,φ)=u0(r,z)+2
M−1

∑
m=1

[

um(r,z)cos(mφ)−u−m(r,z)sin(mφ)
]

+uM(r,z)cos(Mφ), (2.2)

where the coefficients um(r,z) and u−m(r,z), for m=0,1,2,··· , are defined by

u±m(r,z)=
1

2π

∫ 2π

0
u(r,z,φ)

cos(mφ)

sin(mφ)
dφ. (2.3)

The absence of the coefficient 2 in front of last term in (2.2) should be noticed. A similar
Fourier expansion is used for the right-hand side f .

The expansions can now be introduced in the original differential equation (2.1).
Equating similar terms and simplifying, we obtain a system of uncoupled equations.
To obtain the variational form in the proper weighted Sobolev space, each equation is
multiplied by r. Introducing the dimensionless variables ρ = r/c and ζ = z/H, 0< ρ≤ 1
and −1≤ζ≤1, and recasting in weak form by the Galerkin method, the elliptic equation
for the transformed unknown ũm(ρ,ζ)=um(r,z), which will still be indicated by the same
letter um, as um(ρ,ζ), is obtained
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where v(ρ,ζ) denotes the weighting function. To ensure infinite differentiability of the
solution on the axis, the Fourier components um(ρ,ζ) will have to satisfy the regularity
conditions for ρ→0 reported in [12]:

um(ρ,ζ)∼ρ|m|Um(ρ2,ζ),

where Um is a regular function.

3 Neumann solver using the Matsushima and Marcus basis

Let us first consider the case of Neumann boundary conditions on the entire surface of
the cylindrical region:

∂u

∂n

∣

∣

∣

∂Ω
=b, (3.1)

where b is the boundary datum defined on cylinder boundary ∂Ω. When γ = 0, the
solution is determined up to an additive constant provided the right-hand side satisfies
the compatibility condition

∫

Ω
f =−

∫

∂Ω
b.

The Neumann boundary conditions for the Fourier coefficients um(r,z) of the solu-
tion, defined in the rectangle ω≡ (0,c]×[−H,H], are

∂um(c,z)

∂r
=bo

m(z), |z|≤H,
∂um(r,∓H)

∂z
=bb,t

m (r), 0< r≤ c. (3.2)

Taking into account the Neumann boundary conditions for the transformed unknown
um(ρ,ζ), the weak equation (2.4) is modified by replacing all boundary terms with those
including the boundary values, namely,

1

c

∫ 1

−1
v(1,ζ)bo

m(Hζ)dζ− 1

H

∫ 1

0
ρv(ρ,−1)bb

m(cρ)dρ+
1

H

∫ 1

0
ρv(ρ,1)bt

m(cρ)dρ. (3.3)

To satisfy the aforementioned regularity conditions in an optimal way and to avoid any
over-resolution near the axis, we can approximate um(ρ,ζ) employing the basis proposed
for the radial direction in polar coordinates by Matsushima and Marcus [15], see also [20].
Then, the approximation to um(ρ,ζ) is expressed by the following double expansion

u±m(ρ,ζ)=
M−m

∑
k=0

ρm P̂
(0,m)
k

(

2ρ2−1
)

ûk;j;±m L̂j(ζ)
J

∑
j=0

, (3.4)

where the inverted summation symbol is used to denote the summation over the second

and, later, third summation indices. In the expansion (3.4) P̂
(0,m)
k (s), k = 0,1,2,··· , with

s=2ρ2−1 are the Jacobi polynomials of degree k in s with −1≤ s≤1, normalized so that

1

4

∫ 1
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(1+s

2

)m
P̂

(0,m)
k (s) P̂

(0,m)
k′ (s)ds=δk,k′ , k,k′ =0,1,··· . (3.5)
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A direct calculation leads to

P̂
(0,m)
k (s)=

√

2(2k+m+1)P
(0,m)
k (s), k=0,1,··· .

We note in passing that the basis functions ρm P̂
(0,m)
k

(

2ρ2−1
)

only differ from those pro-
posed in [15, 20] by a scaling factor.

Notice that different expansion functions are used to express how each Fourier com-
ponent u±m(ρ,ζ) depends on the radial variable ρ. The number of involved functions
decreases with m, going from M+1, for the first component with m =0, to only one, for
the last Fourier component with m = M. Correspondingly, the array of the expansion
coefficients, denoted by

U±m ={uk;j;±m, i=0,1,··· ,M−m; j=0,1,2,··· , J},

will be of dimensions (M−m+1)×(J+1). The expansion coefficients of the Fourier-
spectral representation of the unknowns can be organized in a set of rectangular matrices
with variable first dimension, going from the largest size of M+1, for m=0, to the smallest
size of 1 for m= M. Note that the variable index m runs only on the nonnegative integers
and equations containing ±m actually represent two sets of relations.

The basis L̂j(ζ) used to represent the dependence on the axial variable ζ consists of the

normalized Legendre polynomials, namely, L̂j(ζ)≡
√

j+1/2 Lj(ζ), for j≥ 0, where Lj(ζ),
j≥0, are the Legendre polynomials.

By using the Galerkin method, the weak variational formulation of the Helmholtz-
Neumann problem yields the following system of linear equations

( 1

c2
D̂

�m
+ γ Î

�m

)

Û±m + Û±mD̂
1

H2
= Ĝ±m + 〈B.I.〉±m, (3.6)

where the “hat” on the matrices indicates that normalized bases of Jacobi polynomials
and Legendre polynomials are involved in the definition of the their elements.

The special notation �m is adopted to emphasize that the size of the (square) left-
multiplying matrices is dependent on index m. The dimension corresponding to �m is
M−m+1, running from M+1 for m=0 to 1 for m= M, as depicted in Fig. 1 for M=3.

In the array equation above, the matrix Î�m is the identity matrix of order M−m+
1 while the matrix D̂

�m
represents the second-order operator associated with the radial

variable, namely
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k (s) P̂

(0,m)
k′ (s)

}

ds, (3.7)

with 0 ≤ (k,k′) ≤ M−m. The integration in the radial direction is performed numeri-
cally by Gauss-Legendre quadrature with M+1 integration points, which are distributed
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Figure 1: Sketch of the dimension of radial matrices as a function of the Fourier index m.

nearly uniformly in the radial coordinate ρ, near the axis. On the other side, the matrix D̂
representing the axial stiffness is defined by

D̂j,j′ =
∫ 1

−1

dL̂j(ζ)

dζ

dL̂j′(ζ)

dζ
dζ. (3.8)

The right-hand side is expressed by the sum on the source term
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with the boundary term

〈B.I.〉k;j;±m =
1

c
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∫ 1
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) L̂j(1)−bb
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(

c
(

1+s
2

)1/2)

) L̂j(−1)
]

ds.

(3.10)

The linear system (3.6) is solved by double diagonalization. The diagonalization leads to
symmetric eigenvalue problems for the matrices D̂

�m
, m=0,1,··· ,M, on the left and D̂ on

the right and is dealt with by the LAPACK routine dsyev.
The L∞ and L2

r errors for the solution of the Neumann problem with γ = 1.5 in the
cylinder r≤1.5, |z|≤1 are reported in Table 1 and show the expected spectral convergence.

Table 1: Neumann problem for Helmholtz operator with γ = 1.5 in the cylinder r ≤ 1.5, |z| ≤ 1. u =

ep(x−x0)
2+q(y−y0)

2+z−z0, with p=0.5,q=1.2 and r0 =(0.1,0.2,0.3).

J = M 10 15 20 25 30

L∞ error 8.9×10−4 2.9×10−7 2.0×10−10 5.0×10−12 1.3×10−11

L2
r error 9.8×10−4 3.6×10−7 2.7×10−10 1.1×10−11 3.7×10−11
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4 Dirichlet problem

Despite not being plagued by any centre problem, Matsushima and Marcus basis has
two main drawbacks. First, while it is well suited to solve the Neumann problem, it does
not accommodate easily Dirichlet boundary conditions since the basis functions are all
nonzero on the lateral surface of the cylinder. Second, as is readily seen from Fig. 3, the
Helmholtz discrete operator is quite ill conditioned since its condition number grows as
M4, a typical behaviour for collocation spectral methods.

To see how such drawbacks can be overcome, let us start by stating the Dirichlet
problem. We assume a Dirichlet condition u|∂Ω=a on the boundary ∂Ω which consists of
the lateral cylindrical surface c×[−H,H]×[0,2π) and of the top and bottom circular lids
(0,c]×{±H}×[0,2π), so that a represents the value of u prescribed on such a boundary.
After introducing the truncated Fourier expansion of the boundary data, we obtain the
set of conditions

um(c,z)= ao
m(z), |z|≤H, um(r,∓H)= ab,t

m (r), 0≤ r≤ c, (4.1)

for the modal unknown um(c,z). Here ao
±m(z), with |z|≤H, denotes the Dirichlet data for

the Fourier components ±m on the outer side, while ab
±m(r) and at

±m(r), with 0≤ r≤ c,
denote those on the bottom and top sides.

The approximate solution u±m(ρ,ζ) is expanded in the double series

u±m(ρ,ζ)=
M−m

∑
k=0

ρm P⋆m
k

(

2ρ2−1
)

uk;j;±m L∗
j (ζ)

J

∑
j=0

. (4.2)

Here the basis functions P⋆m
k (s) are defined in terms of Jacobi polynomials P

(α,β)
k (s), −1≤

s≤1, by the relations:

P⋆m
0 (s)=1 and P⋆m

k (s)=
1−s

2
P

(1,m)
k−1 (s), k=1,2,··· . (4.3)

The four sets of basis functions ρm P⋆m
k

(

2ρ2−1
)

for M =3 are shown in Fig. 2. The figure
shows that, for each value of m, only one basis function assumes nonhomogeneous values
on the outer radius thus enabling to relieve Dirichlet boundary conditions.

On the other side, the basis {L∗
j (ζ)}, −1≤ ζ≤1, is defined as

L∗
0(ζ)=1, L∗

1(ζ)=
ζ√
2

, L∗
n(ζ)=

Ln−2(ζ)−Ln(ζ)
√

2(2n−1)
, n≥2. (4.4)

This basis is slightly more complicated than the one for the Neumann problem since it
contains linear combinations of two Legendre polynomials which vanish on the bound-
ary to satisfy homogeneous Dirichlet conditions, as introduced by Shen [18].
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Figure 2: Radial basis functions ρmP⋆m
k (2ρ2−1), with k = 0,1,··· ,M−m, for the Dirichlet problem: the basis

functions belonging to each Fourier subspace are shown for M =3.

The complete spectral expansion considered here for the unknown u(ρ,ζ,φ) of the
elliptic boundary value problem in the cylindrical domain is therefore given by

u(ρ,ζ,φ)=
M

∑
k=0

P⋆0
k

(

2ρ2−1
)

uk;j;0 L∗
j (ζ)

J

∑
j=0

+2

{M−m

∑
k=0

ρm P⋆m
k

(

2ρ2−1
)

uk;j;±m L∗
j (ζ)

J

∑
j=0

}

cos(mφ)

−sin(mφ)

M−1

∑
m=1

+ρM

{

u0,j;M L∗
j (ζ)

J

∑
j=0

}

cos(Mφ). (4.5)

The presence of superposed cosine and sine functions means that two distinct series are
involved by the Fourier summation. The nested dependence of the lower extreme of the
first summation on the third index m must be noticed.

Introducing the expansion of um(ρ,ζ) above into the weak equation for this unknown,
and choosing as weighting functions v(ρ,ζ) the same basis functions used to expand the
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solution, the weak equation leads to the following system of equations

( 1

c2
D�m + γM�m

)

U±mM + M�m U±mD
1

H2
= G±m + 〈B.I.〉±m. (4.6)

The matrices occurring in this system are defined as follows:

D�m k,k′ =
∫ 1

−1

{

4
(1+s

2

) d

ds

[

(1+s

2

)m/2
P⋆m

k (s)

]

d

ds

[

(1+s

2

)m/2
P⋆m

k′ (s)

]

+
m2

4

(1+s

2

)m−1
P⋆m

k (s)P⋆m
k′ (s)

}

ds, (4.7)

M�m k,k′ =
1

4

∫ 1

−1

(1+s

2

)m
P⋆m

k (s)P⋆m
k′ (s)ds,

with 0≤(k,k′)≤M−m, for the operators associated with the radial variable r. The matrix
D

�m
is diagonal and matrix M

�m
is tridiagonal. These integrals are evaluated numerically

by means of Gauss-Legendre quadrature with M+1 integration points. The condition
number of the matrices

(

c−2D�m +γM�m

)

is bounded by M2, see Fig. 3, similarly to condi-
tion number of the matrices for Chebyshev approximations proposed by [10]. It compares
favourably with the condition number for the analogous matrix computed employing the
Matsushima and Marcus basis that grows as M4, as reported in the same figure.

On the other side, the matrices D and M for the operators in the axial variable are
defined by

Dj,j′ =
∫ 1

−1

dL∗
j (ζ)

dζ

dL∗
j′(ζ)

dζ
dζ and Mj,j′ =

∫ 1

−1
L∗

j (ζ)L∗
j′(ζ)dζ. (4.8)
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The right-hand side is expressed by

gk;j;±m =
1

4

∫ 1

−1

∫ 1

−1

(1+s

2

)m/2
P⋆m

k (s) f±m

(

c
(

1+s
2

)1/2
,Hζ

)

L∗
j (ζ)dsdζ. (4.9)

Note that the symbol M representing the right multiplying matrix should not be confused
with the upper extreme of the truncated Fourier summation.

4.1 Lifting of the Dirichlet condition

The nonhomogeneous Dirichlet value a±m(ℓ) is taken into account by means of a lifting,
a classical procedure for making the boundary conditions homogeneous. The need of a
lifting for developing multidimensional spectral solvers achieving a complete variable
separation at the numerical level is described in detail for a 3D rectangular domain in [4].
For the considered problem in a cylindrical domain, the lifting consists in expressing the
solution u±m(ρ,ζ) as the sum of three contributions

u±m(ρ,ζ)=u±m,0(ρ,ζ)+uc
±m,a(ρ,ζ)+us

±m,a(ρ,ζ), (4.10)

where u±m,0(ρ,ζ) is assumed to satisfy a homogeneous Dirichlet condition. Furthermore,
uc
±m,a(ρ,ζ) is the lifting contribution matching the boundary values at the two circles of

intersection between the lateral surface of the cylinder with its top and bottom sides,
while us

±m,a(ρ,ζ) is the lifting contribution to relieve the nonzero boundary values inside

the three aforementioned surfaces, and therefore equals u±m(ρ,ζ)−uc
±m,a(ρ,ζ) there.

The contribution uc
±m,a(ρ,ζ) to the lifting is evaluated by collocation, which enables

one to satisfy the Dirichlet boundary condition in a strong sense exclusively along the
two circles. The second contribution us

±m,a(ρ,ζ) of the lifting is defined by the Galerkin-
Legendre approach, which guarantees the optimality of the approximation (in the L2

r

norm). The combination of these two contributions is finally used to perturb the right-
hand side of the discrete elliptic equation to obtain the final system of algebraic equations.

The lifting of nonzero Dirichlet boundary values leads to the following linear system
of discrete equations

( 1

c2
D�m + γM�m

)

U±mM + M�m U±m

1

H2
= G±m,

where matrix G±m includes the effect of the lifting and where all capital letters in “sans
serif” font refer to matrices and arrays associated with the “lifted” problem. Notice that
there is a subtlety in the use of the index notation �m for the left-multiplying matrices
of the lifted problem. The order of these matrices is M−m, i.e., one unit less than that of
their respective original matrices before the lifting, since the first component is eliminated
by the lifting. This implies that in the last problem on the left for m = M these “lifted”
left-multiplying matrices will not exist. Thus, the left part of the solution for m = M
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Figure 4: L2 (solid line) and L∞ (dashed line) error Dirichlet problem for Helmholtz operator with γ=1.5 in the

cylinder r≤1.5, |z|≤1. Exact solution u= ep(x−x0)2+q(y−y0)2+z−z0, with p=0.5,q=1.2 and r0 =(0.1,0.2,0.3).

will consist only in taking into account the boundary values ao
±M(z) specified on the

cylindrical surface r= c. For details see [4].

The linear system is solved by double diagonalization. The diagonalization on the
left leads to generalized symmetric eigenvalue problems for the matrix pairs (D�m ,M�m ),
m=0,1,··· ,M−1, and is dealt with by the LAPACK routine dsygvd. The diagonalization
on the right for banded symmetric matrix M is obtained by dsbev.

4.2 Numerical results

The results of the Helmholtz solver with γ=1.5 for the Dirichlet problem in the cylinder
Ω=(r≤1.5,|z|≤1) are shown in Fig. 4 and also reported in Table 2 and demonstrate the
spectral accuracy of the proposed method.

Table 2: Dirichlet problem for Helmholtz operator with γ = 1.5 in the cylinder r≤ 1.5, |z| ≤ 1. Exact solution

u= ep(x−x0)2+q(y−y0)2+z−z0, with p=0.5,q=1.2 and r0 =(0.1,0.2,0.3).

J = M 10 15 20 25 30

L∞ error 7.5×10−4 2.5×10−7 1.8×10−10 9.7×10−13 3.8×10−12

L2
r error 9.6×10−4 3.2×10−7 2.7×10−10 2.6×10−13 1.9×10−12

The accuracy of the present 3D Dirichlet solver is compared with Shen’s solver for
polar coordinates on the Poisson problem with exact solution u(r,φ)= er(cosφ+sinφ). The
errors of the two solvers given in Table 3 show that Shen’s 2D solver is marginally more
accurate at low resolution and also more insensitive to roundoff errors.

A nonplanar version of this Poisson problem with a truly 3D solution u=er(cosφ+sinφ)+z
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Table 3: L2
r error for Poisson-Dirichlet problem in the cylinder r≤1, |z|≤1. u= er(cosφ+sinφ).

M 8 16 32 64

Present, 3D 4.7×10−8 3.2×10−15 4.7×10−15 2.5×10−14

Shen, 2D [19] 2.6×10−8 1.8×10−15 1.8×10−15 2.7×10−15

Table 4: L∞ error for Poisson-Dirichlet problem in the cylinder r≤1, |z|≤0.5. u= er(cosφ+sinφ)+z.

J = M 8 16 32 64

Present, spectral 4.9×10−8 5.9×10−15 1.4×10−14 9.6×10−14

Fourier/FD [11] 3.4×10−3 9.2×10−4 2.3×10−4 6.0×10−5

in the cylinder Ω=(r≤1, |z|≤0.5) is then solved to compare the proposed spectral method
with the Fourier/finite difference method of Lai et al. [11]. The L∞ errors of the two al-
gorithms for an equal number of degrees of freedom in the radial and axial directions are
given in Table 4. These results show the second-order converge rate of the hybrid method
vis-a-vis the spectral convergence of the fully spectral method.

5 Vector Dirichlet problem

We consider now the case of a vector elliptic equation, for instance the Helmholtz equa-
tion

(

−∇2+γ
)

u= f (r,z,φ)

in cylindrical coordinates, with the Laplace operator acting on a vector field defined by

∇
2 =















∇2− 1

r2
− 2

r2

∂

∂φ
0

2

r2

∂

∂φ
∇2− 1

r2
0

0 0 ∇2















, with ∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
∂2

∂z2
+

1

r2

∂2

∂φ2
, (5.1)

supplemented by the Dirichlet boundary condition u|∂Ω = a, where a is defined on the
entire boundary ∂Ω of the cylindrical domain.

The domain of definition of the elliptic equation is assumed to go all around the z-
axis, that is, 0 ≤ φ < 2π. Under these circumstances, since we are interested in purely
real vector fields, we can represent u(r,z,φ) by means of a real Fourier expansion, we can
write

u(r,z,φ)=u0(r,z)+2
∞

∑
m=1

[

um(r,z)cos(mφ)−u−m(r,z)sin(mφ)
]

, (5.2)

where
um(r,z;φ)=ur

m(r,z) r̂(φ)+u
φ
m(r,z)φ̂(φ)+uz

m(r,z) ẑ, −∞<m<∞, (5.3)
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and the right-hand side is expanded in a similar way.
Let us define, the following partial differential operators

∂2
m =













∂2
m−

1

r2

2m

r2
0

2m

r2
∂2

m−
1

r2
0

0 0 ∂2
m













, ∂2
m =

1

r

∂

∂r

(

r
∂

∂r

)

−m2

r2
+

∂2

∂z2
, (5.4)

for −∞<m<∞. Introducing the expansions for u and f in the Helmholtz equation and
equating similar terms with respect to the angular basis functions, we obtain a series of
systems of equations. Each system is uncoupled from the others,

(

−∂2
m+γ

)









ur
m

u
φ
−m

uz
m









=









f r
m(r,z)

f
φ
−m(r,z)

f z
m(r,z)









, −∞<m<∞. (5.5)

The minus sign in front of m for the φ components explains the change of sign of one
off-diagonal term in the Fourier transform from (5.1) to (5.4).

For m=0 the system consists of three uncoupled equations since the vector differential
operator ∂2

0 is diagonal. For any |m|≥1 we have a series of systems each consisting of a
subsystem of two coupled equations for the radial and angular components of velocity
plus an uncoupled equation for the axial component.

5.1 Uncoupling the cylindrical components

The z component of the vector field um being uncoupled, we focus our attention on the
algorithm for the uncoupled solution of the other two components, namely, we consider
the two-component vector unknown

um(r,z;φ)=ur
m(r,z) r̂(φ)+u

φ
m(r,z)φ̂(φ), −∞<m<∞,

for which the system above reduces to

(

−∂2
m+γ

)

(

ur
m

u
φ
−m

)

=

(

f r
m(r,z)

f
φ
−m(r,z)

)

, where now ∂2
m =







∂2
m−

1

r2

2m

r2

2m

r2
∂2

m−
1

r2






. (5.6)

Let us introduce the following transformation matrix

Q =
1√
2

(

1 1

1 −1

)

, (5.7)
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which is symmetric and orthogonal, namely, Q T = Q−1 = Q .

By left multiplying the system (5.6) for m 6= 0 by Q and exploiting the properties of
Q , we obtain

Q
(

−∂2
m+γ

)

Q Q

(

ur
m

u
φ
−m

)

= Q

(

f r
m(r,z)

f
φ
−m(r,z)

)

. (5.8)

Since

Q ∂2
m Q =

(

∂2
m−1 0

0 ∂2
m+1

)

(5.9)

is diagonal, system (5.6) transforms into the two uncoupled equations

(

−∂2
m−1+γ

)

u1
m−1 = f 1

m−1(r,z);
(

−∂2
m+1+γ

)

u2
m+1 = f 2

m+1(r,z), (5.10)

where
(

f 1
m−1

f 2
m+1

)

= Q

(

f r
m

f
φ
−m

)

and

(

ur
m

u
φ
−m

)

= Q

(

u1
m−1

u2
m+1

)

. (5.11)

The solution algorithm for the vector elliptic equation amounts to the following five
steps:

1. transform the right-hand side f and the Dirichlet boundary datum a, in the Fourier
space,

2. apply the transformation Q to (the planar part of) all the Fourier components of
the source and of the boundary values, except for the constant mode m=0,

3. solve the uncoupled equations,

4. apply the inverse of the transformation Q to all the Fourier components of the
solution except for the first mode,

5. antitransform the solution from the Fourier domain to the physical space.

The axial velocity component is uncoupled and is solved independently from the radial-
angular component of the field. The Fourier expansion (5.2) is truncated as in the scalar
problem, except for the highest wavenumber uM =(0,0,uz

M).

5.2 Numerical test

To test the spectral solver for the vector Helmholtz-Dirichlet problem in a cylindrical do-
main, the exact solution of the vector problem must be constructed so as to be infinitely
differentiable also on the cylinder axis. This can be easily done by defining the vector
field in terms of its Cartesian components, each one written as a function of the Cartesian
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Table 5: Vector Dirichlet problem for Helmholtz operator with γ=1.5 in the cylinder r≤1.5 and |z|≤1.5. The
exact solution u=(ux,uy,uz)(x,y,z) defined in the text.

J = M 10 15 20 25 30

L∞ error 2.7×10−2 4.0×10−5 2.3×10−8 1.1×10−11 3.5×10−11

L2
r error 2.8×10−2 5.2×10−5 2.1×10−8 1.0×10−11 2.0×10−11

coordinates, and then transforming to cylindrical coordinates and components. There-
fore, the exact vector solution inside a cylinder will be defined by

ux = ep1(x−x1)
2+q1(y−y1)

2+z−z1 , p1 =0.5, q1 =1.2, (x1,y1,z1)=(0.1,0.2,0.3);

uy = ep2(x−x2)
2+q2(y−y2)

2+z−z2 , p2 =0.7, q2 =1.4, (x2,y2,z2)=(0.2,0.3,0.4);

uz = ep3(x−x3)
2+q3(y−y3)

2+z−z3 , p3 =0.9, q3 =1.6, (x3,y3,z3)=(0.3,0.4,0.5).

(5.12)

The error is evaluated in the L2
r norm, which for a vector function is defined by

‖u‖2
L2

r
=‖ur‖2

L2
r
+‖uφ‖2

L2
r
+‖uz‖2

L2
r
. (5.13)

The errors of the spectral solutions in the cylinder Ω =(r≤ 1.5,|z|≤ 1.5) are reported in
Table 5 and demonstrate the spectral convergence of the uncoupled vector solver.

6 Conclusions

In this paper Galerkin spectral solvers for scalar and vector Helmholtz equations in a
cylindrical domain of finite axial extent have been presented. The ultimate aim of our
effort is to build a full set of spectral algorithms suitable for the numerical solution of the
incompressible Navier-Stokes equations in a cylinder by means of fractional step pro-
jection method, as done for rectangular domains in [3]. This method requires solving
at each time step a Poisson equation supplemented by Neumann boundary condition for
the pressure and a vector Helmholtz equation supplemented typically by Dirichlet condi-
tions on the entire boundary for the velocity. Two bases have been employed, depending
on the kind of conditions to be satisfied on the cylinder boundary. For the Neumann
problem, the Jacobi one-sided basis proposed in [15, 20] has been adopted, while for the
Dirichlet scalar and vector problems a new basis enforcing the essential boundary con-
ditions has been introduced. Nonhomogeneous boundary values are accounted for by
means of a general lifting implemented at the discrete level. This makes the Dirichlet
spectral solver for the cylinder completely general, much in the same spirit of that devel-
oped for the Helmholtz equation inside a prism in [2]. As far as the solution of the vector
Dirichlet problem is concerned, an uncoupled algorithm has been implemented which is
based on the solution of only real scalar equations and which provides spectrally conver-
gent values of the vector solution on the axis. Note that, as in the work of Verkley for 2D
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flows [20], the spectral bases proposed here for the unsteady velocity are free from the
severe time step restrictions related to an over resolution near the axis.
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Springer-Verlag, Paris, 1992.
[7] J. P. BOYD, Chebyshev and Fourier Spectral Methods, Dover, New York, 2001.
[8] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI AND T. A. ZANG, Spectral Methods in Fluid

Mechanics, Springer-Verlag, New York, 1988.
[9] H. CHEN, Y. SU AND B. D. SHIZGAL A direct spectral collocation Poisson solver in polar

and cylindrical coordinates. J. Comput. Phys., 160, 453–469 (2000).
[10] W. HEINRICHS, Improved condition number for spectral methods, Math. Comp., 53, 103–

119 (1989).
[11] M.-C. LAI, W.-W. LIN AND W. WANG, A fast spectral/difference method without pole

conditions for Poisson-type equations in cylindrical and spherical geometries, IMA J. Num.
Anal., 22, 537–548 (2002).

[12] H. R. LEWIS AND P. M. BELLAN, Physical constraints on the coefficients of Fourier expan-
sions in cylindrical coordinates, J. Math. Phys., 31, 2592–2596 (1990).

[13] J. M. LOPEZ AND JIE SHEN, An efficient spectral-projection method for the Navier–Stokes
equations in cylindrical geometries. I. Axisymmetric cases, J. Comput. Phys., 139, 308–326
(1998).

[14] J. M. LOPEZ, F. MARQUES AND JIE SHEN, An efficient spectral-projection method for the
Navier–Stokes equations in cylindrical geometries. II. Three-dimensional cases, J. Comput.
Phys., 176, 384–401 (2002).

[15] T. MATSUSHIMA AND P. S. MARCUS, A spectral method for polar coordinates, J. Comput.
Phys., 120, 365–374 (1995).

[16] S. A. ORSZAG AND A. T. PATERA, Secondary instability of wall bounded shear flows,
J. Fluid Mech., 128, 347–385 (1983).

[17] A. QUARTERONI AND A. VALLI, Numerical Approximation of Partial Differential Equations,
Second Printing, Springer-Verlag, Berlin, 1997.

[18] JIE SHEN, Efficient spectral–Galerkin method. I. Direct solvers of second- and fourth-order
equations using Legendre polynomials, SIAM J. Sci. Comput., 15 1489–1505 (1994).

[19] JIE SHEN, Efficient spectral–Galerkin methods. III. Polar and cylindrical geometries, SIAM
J. Sci. Comput., 18, 74–87 (1997).

[20] W. T. M. VERKLEY, A spectral model for two-dimensional incompressible flow in a circular
basin. I. Mathematical formulation, J. Comput. Phys., 136, 100–114 (1997).


