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Abstract. Detection of edges in piecewise smooth functions is important in many ap-
plications. Higher order reconstruction algorithms in image processing and post pro-
cessing of numerical solutions to partial differential equations require the identification
of smooth domains, creating the need for algorithms that will accurately identify dis-
continuities in a given function as well as those in its gradient. This work expands the
use of the polynomial annihilation edge detector, (Archibald, Gelb and Yoon, 2005), to
locate discontinuities in the gradient given irregularly sampled point values of a con-
tinuous function. The idea is to preprocess the given data by calculating the derivative,
and then to use the polynomial annihilation edge detector to locate the jumps in the
derivative. We compare our results to other recently developed methods.
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1 Introduction

Edge detection is fundamentally important in image reconstruction, feature extraction
and several other applications. While many edge detection algorithms are available,
[2, 5, 8, 10, 11, 13, 14], less attention has traditionally been paid to determining edges in
the gradients of functions. However, such information can be very useful. For instance,
solutions to partial differential equations that arise in gas dynamics and acoustic prob-
lems in heterogeneous media often have derivative discontinuities. Locating them can
help high order post-processing of such numerical solutions. Their locations may also
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aid in determining domain decompositions that avoid shocks and contact discontinu-
ities. This paper addresses the problem of determining discontinuities in the gradients of
functions.

Most edge detection methods are either search based, [5, 14], or zero-crossing based,
[8]. Both types look directly for jump discontinuities. In contrast, the polynomial anni-
hilation edge detector described in [2] determines intervals of smoothness from which
the location of discontinuities in the function can be accurately identified. The method
has several advantages over already existing methods, the most important being that it
is applicable to multi-dimensional scattered data. Due to its variable order construction,
it captures jumps located as close as one pixel apart as well as distinguishes them from
steep gradients. The method is robust and is simple to implement numerically. Finally, it
has limited dependence on outside thresholding present in many edge detectors.

An attempt to extend the polynomial annihilation edge detector to detect derivative
discontinuities was made in [3]. However, the extension requires the use of several sten-
cils, making it less efficient and robust compared to the original method in [2]. Further-
more, the method so far can be implemented in multi-dimensions only by using a di-
mension by dimension approach. This motivates us to develop a gradient edge detection
method that can also be implemented on scattered data in higher dimensions.

The technique proposed in this paper detects jumps in the derivative of the given
data using a two-pass approach. We first preprocess the data by numerically approxi-
mating the derivative. Then we use the polynomial annihilation edge detector to locate
discontinuities in the approximate derivative. Our technique offers significant advan-
tages over existing methods in that it is applicable to data on scattered grids and is multi-
dimensional by design.

This paper is organized as follows: Section 2 reviews the polynomial annihilation
edge detector and discusses its extension to capturing the derivative jump discontinu-
ities. Section 3 explains our preprocessing algorithm in one and two dimensions followed
by the edge detection procedure. Concluding remarks are given in Section 4.

2 Polynomial annihilation edge detection

2.1 Locating jump discontinuities in one dimension

The polynomial annihilation edge detector in [2] differs from other commonly used edge
detectors chiefly in the fact that it looks for intervals of smoothness rather than looking
for jump locations, [5,14]. In smooth intervals, the method annihilates the first m terms of
the function’s Taylor expansion. In non-smooth regions, the method essentially estimates
the finite projection of the derivative – thereby locating the jump discontinuity.

To see how the edge detector works, let us consider a piecewise continuous function
f : [a,b]→R known only on the set of discrete points S = {x1,x2,··· ,xN}⊂ [a,b]. Assume
that f has well defined one sided limits, f (x±), at any point x in the domain. We denote
by J the set of the points of discontinuity of f , that is, J ={ξ : a< ξ <b}, where ξ is a point
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of a jump discontinuity in the function. The local jump function is defined as

[ f ](x)= f (x+)− f (x−)=

{

0, if x 6= ξ,
[ f ](ξ), if x= ξ.

(2.1)

Hence if f is continuous at x, the jump function [ f ](x)=0; if x is a point of discontinuity
of f , then [ f ](x) is equal to the signed magnitude of the jump value.

We seek an approximation to [ f ](x) that converges rapidly to zero away from the
jump discontinuities. To this end, let x be a point inside the domain, i.e., x∈ (a,b). For a
given positive integer m, we choose a local stencil

Sx ={xj|xj ∈S}={x1,··· ,xm+1} (2.2)

of nearest m+1 grid points around x. We denote by Πm the space of all polynomials of
degree ≤ m with dim(Πm) = m+1. Let pi, i = 1,··· ,m+1, be any basis for this space of
polynomials. The polynomial annihilation edge detector introduced in [2] is given by

Lm f (x)=
1

qm(x) ∑
xj∈Sx

cj(x) f (xj) . (2.3)

In one dimension, the reconstruction points are typically chosen as the mid-points of the
grid intervals (cells). The coefficients cj(x) are determined by solving the following linear
system that results from annihilation of polynomials of degree up to m−1,

∑
xj∈Sx

cj(x)pi(xj)= p
(m)
i (x), ∀ i=1,··· ,m+1, (2.4)

w here p
(m)
i (x) denotes the mth derivative of pi(x). Notice here that the solution to (2.4)

exists and is unique. Next, we also define

S+
x ={xj ∈Sx|xj ≥ x} and S−

x =Sx\S+
x . (2.5)

The normalization factor in (2.3) is then given by

qm(x)= ∑
xj∈S+

x

cj(x), (2.6)

and ensures that Lm f (x) has correct magnitude at the jump discontinuities. Note that
(2.6) is non-zero by design. In [2] it was shown that the polynomial annihilation edge
detector satisfies the desired property, viz., in regions where f is smooth, (2.3) converges
to zero with a rate depending upon m and on the local smoothness of f . Specifically, if
the maximum separation h(x) is defined as

h(x)=max{|xi−xi−1| : xi−1,xi∈Sx}, (2.7)
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then

Lm f (x)=

{

[ f ](ξ)+O(h(x)), i f xj−1≤ ξ,x≤ xj,

O(hmin(m,k)(x)), i f f ∈Ck(Ix) f or k>0.
(2.8)

Here, Ix is the smallest closed interval such that Sx⊂ Ix. The proof of convergence is given
in [2]. The following example demonstrates the performance of (2.3).

Example 2.1. Consider the function on [−2,6π]

f (x)=







ex, x<0,

−e−x, 0≤ x<
3π
2 ,

−1.5sin(x), 3π
2 ≤ x≤6π.

(2.9)

The function in Example 2.1 has jump discontinuities at x = 0 and 3π/2 and is con-
tinuous everywhere else in the domain. We apply (2.3) on a randomly distributed grid.
Fig. 1(a) displays the wide gaps located near and about x = 9 and x = 12. Although the
function is smooth there, these gaps can be easily mistaken by a low order edge detector
as jump discontinuities in the data. The results of applying the polynomial annihilation
edge detector (2.3) for various orders m are shown in Fig. 1(b)-(e).
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Figure 1: Example 2.1 (a) underlying function; (b)-(e) Jump function approximation of Example 2.1 using
various orders m; (f) Minmod results, (2.10).

Fig. 1 demonstrates the importance of the order m in (2.3). Small order m might cause
misidentification of a steep gradient as an edge (due to low resolution). On the other
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hand, oscillations occur in the vicinity of the discontinuities when m is large. To prevent
inaccuracies due to either reason, we apply the minmod function, which is typically used
to reduce oscillations in flux limiters when solving numerical conservation laws. It was
introduced in the context of edge detection in [4, 6] and was used in [2] to enhance the
performance of the polynomial annihilation method. Specifically, we apply

MM(Lm f (x))=







minm∈MLm f (x), if Lm f (x)>0 ∀ m∈M,
maxm∈MLm f (x), if Lm f (x)<0 ∀ m∈M,
0, otherwise,

(2.10)

where M⊂N. As shown in Fig. 1(f) for M= {1,2,3,4,5}, the minmod function controls
the oscillations while still maintaining high order of convergence away from the jumps.

2.2 Locating jump discontinuities in two dimensions

Let f : Ω→R be a piecewise continuous function on a bounded domain Ω⊂ R2 known
only on the set of discrete points S⊂Ω. Analogous to the one dimensional case, we let J
denote the set of discontinuity points in f . The jump discontinuity at x=ξ is now defined
by its enclosed points. Following [2], we use the Delaunay triangulation of S to define
the enclosed points, as obtained by

τS ={Tj|Tj
·
={x

j
1,x

j
2,x

j
3}⊂S for j=1,···NT}, (2.11)

where NT is the number of triangles formed by the triangulation. The set of elementary
triangles are non-overlapping and are such that for each triangle, its circumcircle does
not contain any other grid point. The triangulation maximizes the minimum angle of
all the angles of the triangles. The barycenters of these triangles form the reconstruction
points for our polynomial annihilation edge detector. We define a local stencil Sx of

m2 =

(

m+2
2

)

points around the barycenter x such that Sx =Tj∪STj
. Here, Tj∈τS is such that x∈Tj and

STj
is the set of m2−3 closest points to x in the set S\Tj. The jump function approximation

of order m is again defined as in (2.3). As in the one dimensional case, the coefficients
cj(x) depend upon the local set Sx and are determined by solving the linear system

∑
xj∈Sx

cj(x)pi(xj)= ∑
|α|1=m

p
(α)
i (x), i=1,··· ,m2, α∈Z2

+ . (2.12)

The polynomials to be annihilated, pi(x), i = 1,··· ,m2, are chosen such that they form a
basis of Πm, the space of polynomials of degree up to m. The scaling factor qm for the
two-dimensional case is defined as

qm(x)
.
= ∑

xj∈Px

cj(x) ,
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where Px is a suitable subset of Sx such that qm(x) 6=0 (see [2] for the construction of Px).
In the two-dimensional case the jump magnitude may vary along different paths through
the discontinuity. Hence defining the magnitude of the jump is no longer meaningful as it
was in one dimension. However, with qm thus defined, the edge detector Lm f (x) remains
uniformly bounded.

The rapid convergence of Lm f (x) to zero away from the discontinuities can be quan-
tified using the spatial density

h(x)= max
x∈KSx

min
xj∈Sx

|x−xj|,

where KSx is the convex hull of Sx. As proved in [2], if f ∈Ck(KSx), for some k>0, then

Lm f (x)=O(hmin(k,m)(x)).

As in the one dimensional case, the edge detector suffers from oscillations in the vicinity
of discontinuities. Once again we utilize the (two-dimensional) minmod function, (2.10).
Enhancing the edge detector with the minmod function increases the area of convergence
for the edge detector away from the discontinuities and helps pinpoint the location of its
discontinuities.

2.3 Polynomial annihilation derivative detector

In [3] the polynomial annihilation edge detector was extended to detect discontinuities
in the derivative of functions. The underlying formulation is the same, however, we now
consider a one dimensional piecewise smooth function f ∈Cγ−1, γ∈N={1,2,···}, known
only on the set of discrete points, S = {x1,x2,··· ,xN} ⊂ (a,b). For ease of presentation,
we assume that f (x) and all its derivatives up to f (γ−1)(x) are continuous in [a,b] and
the jump discontinuity first appears in f (γ)(x). † We also assume that at any point x in
the domain, f (γ)(x) has well-defined one sided limits. We denote by Jγ the set of jump
discontinuities in the γth derivative, that is,

Jγ ={ξ| f (γ)(x+) 6= f (γ)(x−)}, (2.13)

where f (γ)(x+) and f (γ)(x−) are the right and left side limits of f (γ)(x) at the point
x∈ [a,b]. The local jump function for the γth derivative is defined as

[ f (γ)](x)= f (γ)(x+)− f (γ)(x−).

As before, for x /∈ Jγ, [ f (γ)](x)=0. When x= ξ∈ Jγ ,

[ f (γ)](x)= [ f (γ)](ξ).

†A multi-pass approach used in [3] enables the method to determine jump discontinuities in subsequent
derivatives.
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Next, we consider any point x∈ (a,b) and let m > γ be a positive integer. Following
the notations in Section 2.1, let Sx denote a local set of (m+γ+2) points around x with
S+

x and S−
x defined as in (2.5). For reasons stated later, the stencil Sx must be carefully

chosen so that

min(#S+
x ,#S−

x )>γ.

The γ−derivative edge detector of order m for stencil Sx is then defined as

Lm,γ,Sx f (x)=
1

qm,γ(x) ∑
xj∈Sx

cj(x) f (xj). (2.14)

We use the notation Lm,γ,Sx f (x) since the method will require the use of several stencils.
Again cj are determined from (2.4) but are now subject to the additional constraints

∑
xj∈S+

x

cj(x)pl(xj)=h−m+γ(x)p
(γ)
l (x), l =1,··· ,γ+1, (2.15)

where the grid density h(x) is defined in (2.7). The functions pl(x), l = 1,··· ,m+1, used
in (2.4) and (2.15) represent a basis for ∏m, the space of polynomials up to degree m. The
normalization factor qm,γ(x) is given by

qm,γ(x)= ∑
xj∈S+

x

cj(x)
(xj−x)γ

γ!
. (2.16)

The constraints in (2.15) guarantee this normalization factor to be non-zero. The annihi-
lation of polynomials up to degree m in (2.4) results in all the first m terms in the Taylor
expansion of f (x) becoming zero. When the remainder of the Taylor expansion is di-
vided by the scaling factor qm,γ(x), a high order of convergence is achieved in the smooth
regions. In [3] it was shown that (2.14) converges to [ f γ](x). The following example
illustrates the application of (2.14) when γ=1.

Example 2.2. Let f : [0,1]→R such that

f (x)=

{

−(x− 1
2)+ 1

6 sin(4πx), i f x<
1
2 ,

(x− 1
2)+ 1

6 sin(4πx), i f x≥ 1
2 .

(2.17)

Fig. 2(a) shows the data sampled on N =128 irregularly distributed grid points. The
first derivative, f ′(x), has a discontinuity at ξ = 1

2 , with [ f ′](ξ) = 2. The derivative edge
detector, (2.14), implemented with orders m=2,4,5 is displayed in Fig. 2(b)-(d).

The polynomial annihilation derivative detector, (2.14), inherits similar problems as
the polynomial annihilation edge detector, (2.3). Choosing small m>γ may lead to false
jumps while choosing large m causes oscillations in the vicinity of the discontinuities.
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Figure 2: Example 2.2 distributed on N = 128 randomly distributed points. (a) Original function; (b)-(d)
Lm,1,Sx

f (x) for m = 2,4 and 5; (e) Edges detected after applying minmod limiter; (f) Edges detected after
including stencil shifting.

Once again, we use the minmod limiter, (2.10). However, as shown in Fig. 2(e), the min-
mod limiter does not remove all oscillations because at some points near the disconti-
nuity, all of the oscillations in Lm,γ,Sx are in the same direction. To resolve this problem,
multiple stencils were used in [3] to compute Lm,γ,Sx around each point. The minmod
limiter was then applied to L

m,γ,S
j
x
f (x), with j=1,2, and 3 and m=2,··· ,5 . The derivative

jump discontinuity detected after employing stencil shifting is shown in Fig. 2(f).
Our numerical results indicate that the polynomial annihilation derivative detector is

able to capture the edges in the derivative of a function. The method assumes that in any
local set of size m+γ+2 points, there exists at most one derivative discontinuity. This,
together with the requirement m > γ, sets a minimum resolution requirement of 2γ+3
stencil points. Furthermore, since

min(#S−
x ,#S+

x )>γ,

the discontinuities in the derivative functions must be at least γ+1 grid points away from
the domain boundaries. Finally, the method is designed only for one dimension. Deriva-
tive discontinuities in higher dimensions are detected by implementing the method di-
rection by direction. Consequently, the method cannot be implemented when the data is
given on irregularly scattered grids. Hence we are motivated to search for a technique
that can be implemented on irregular grids in two dimensions as well.
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3 Preprocessing by differentiation

As mentioned in the introduction, our approach here is to first approximate the piece-
wise smooth derivative of a continuous function and then use the (standard) polynomial
annihilation method to determine its jump discontinuities. We use the ENO (Essentially
Non-Oscillatory) interpolation algorithm, [1, 7, 9, 12], to approximate the derivative.

3.1 One dimension

Recall the divided difference formulation of a function f (x) : [a,b] → R. The first order
divided difference is defined as f [xi] = f (xi), ∀ i = 1,··· ,N. The second order divided
difference is then defined as

f [xi−1,xi]=
f [xi]− f [xi−1]

xi−xi−1
. (3.1)

The kth order divided difference of f (x), based on a stencil consisting of s points to the
left of xi, is recursively defined in terms of the (k−1)th order divided differences as

f [xi−s,··· ,xi,··· ,xi−s+k−1]=
f [xi−s+1,··· ,xi−s+k−1]− f [xi−s,··· ,xi−s+k−2]

xi−s+k−1−xi−s
. (3.2)

The divided difference of f (x) measures its smoothness, as told by [12]:

Theorem 3.1. If f (x) is smooth inside a stencil [xi−s,··· ,xi−s+k−1], then

f [xi−s,··· ,xi−s+k−1]=
f (k)(ξ)

k!
, (3.3)

for some point ξ∈(xi−1,xi−s+k−1). If f (x) is discontinuous at some point inside the stencil, then

f [xi−s,··· ,xi−s+k−1]=O(
1

∆x
). (3.4)

Let us consider a continuous function f (x) : [a,b]→R, known only on a finite number
of points, S={a=x1<···<xN=b}⊂[a,b], and assume that the first derivative of f (x) has a
discontinuity at some point in the interval (xi,xi+1). Suppose xj∈S is the point where we
want to reconstruct the derivative. Interpolating the data inside any local stencil about
xj ({xj−2,··· ,xj+2}, for instance) is accurate if the function is smooth inside the stencil. If,
however, the stencil encloses a discontinuity in one of the derivatives then, by Theorem
3.1, the accuracy of the interpolating polynomial and hence the derivative approximation
does not remain valid any more. Thus, before computing the derivative value at any
interior point, xj, j=2,··· ,N−1, we must first carefully choose a stencil about xj that does
not contain a derivative discontinuity. The derivative estimation process can be described
as a two-step process: (i) Determine a stencil inside which the function is as smooth as
possible. Then, (ii) use this stencil to compute the derivative at the point xj.
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Step 1: Stencil choosing

For an interior grid point xj, we want to determine the smoothest kth order stencil around
xj that can be used for derivative reconstruction. Since we have assumed that the function
is continuous and a potential discontinuity lies in the first derivative, we start with the
following second order (three-point) stencils:

Snobias ={xj−1,xj,xj+1}, S−1 ={xj−2,xj−1,xj}, and S+1 ={xj,xj+1,xj+2}, (3.5)

and compute the corresponding second order divided differences. The stencil that cor-
responds to the minimum absolute value of the divided differences is the one where the
function is smoothest. We pick that stencil from the three choices as the second order
stencil to be used for derivative reconstruction. Without loss of generality, let us assume
that S−1 is chosen as the smoothest stencil. Next we want to enlarge this stencil for a still
higher order accurate interpolation. This can be done by adding either xj+1 or xj−3 to S−1.
To decide upon which point to add, we now consider the third order divided differences
f [xj−3,xj−2,xj−1,xj] and f [xj−2,xj−1,xj,xj+1] and compare their absolute values. If

| f [xj−3,xj−2,xj−1,xj]|< | f [xj−2 ,xj−1,xj,xj+1]|,

we add xj−3 to S−1 to obtain the third order stencil {xj−3,xj−2,xj−1,xj}; otherwise, we
add xj+1 and obtain {xj−2,xj−1,xj,xj+1}. By repeating this process k−2 times, adding one
point at each step, we obtain a (k+1) point stencil that can be used to obtain a kth order
interpolation for the given data.

Step 2: Derivative reconstruction

Let us assume that we are doing a k = 4th order interpolation and S =
{xj−3,xj−2,xj−1,xj,xj+1} is the resulting stencil from Step 1. Then the local interpolating
polynomial for the function using this stencil is given by

p(x)= f [xj ]+ f [xj ,xj−1](x−xj)+ f [xj,xj−1,xj−2](x−xj)(x−xj−1)

+ f [xj,··· ,xj−3](x−xj)(x−xj−1)(x−xj−2)

+ f [xj+1,··· ,xj−3](x−xj)(x−xj−1)(x−xj−2)(x−xj−3) . (3.6)

The corresponding derivative at x= xj is simply

p′(xj)= f [xj ,xj−1]+ f [xj ,xj−1,xj−2](xj−xj−1)

+ f [xj,··· ,xj−3](xj−xj−1)(xj−xj−2)

+ f [xj+1,··· ,xj−3](xj−xj−1)(xj−xj−2)(xj−xj−3) . (3.7)

In this way, we can obtain an estimate for the derivative at all the interior points. For
a kth order approximation to the derivative, the technique requires that the derivative
discontinuities in the data be at least k points apart. The points that are close to the
boundary are treated more one-sidedly. This completes our preprocessing phase.
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(f) MM{Lm f ′(x)}

Figure 3: Example 2.2 distributed on N =128 randomly distributed points. (a) The derivative computed using
4th order interpolation; (b) Logarithmic plot of the error in preprocessing |p′4(x)− f ′(x)|; (c)-(e) Jump function

approximation Lm f ′, m=1,2,4; (f) Derivative edge detection, (2.4), after preprocessing.

To demonstrate the performance of the derivative computation described in this sec-
tion, let us consider Example 2.2 once again. We used a fourth order derivative approx-
imation with ENO type stencil choosing to do the preprocessing. Fig. 3(a) compares the
reconstructed derivative to the actual derivative. Fig. 3(b) shows the logarithmic plot of
the error in preprocessing.

Once we have the derivative approximation from the preprocessing step, we imple-
ment the polynomial annihilation edge detector, (2.3), to locate the derivative jump dis-
continuities of f ′(x). Note that the new function we get after preprocessing is itself a
polynomial, so using the polynomial annihilation edge detector on such data should be
particularly good. Fig. 3(c), (d) and (e) show the result of implementing (2.3) on (3.7).
Fig. 3(f) demonstrates the minmod algorithm, (2.10), implemented on the preprocessed
data, using m={1,2,3,4,5}. In contrast to the method in [3], which is displayed in Fig. 2(f),
no oscillations remain in the derivative jump function approximation. A comparison of
the convergence of the two methods to the correct jump height is shown in Fig. 4(a).
Fig. 4(b) shows the decay of oscillation observed in an adjacent pixel. As is evident from
Fig. 3(f), there are no oscillations in the non-uniform case when we use the preprocessing
approach. The same is true for the uniform case using the method in [3]. The polynomial
annihilation derivative detector becomes ill-conditioned when the grid density, h(x), be-
comes too small. Due to decreasing grid density, ill-conditioning occurs for N ≥ 210 on
uniform grids and for N≥28 on randomly distributed grids.
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Figure 4: Example 2.2. (a) Logarithmic plot of |MM(Lm f (ξ))−[ f ′](ξ)|, the error in jump height from the two

methods on two different grids (one uniform, the other random), for N =2j, j =5,··· ,10; (b) Logarithmic plot

of |MM(Lm f (ξ̂))| (ξ̂ is a pixel adjacent to ξ), the height of the oscillation in the neighboring pixel.

3.2 Two dimensions

In this section we present a second order reconstruction of the gradient of a function,
which is similar to the ENO idea proposed in [1]. We consider a function f :Ω→R, Ω⊂R2,
known only on the set of discrete irregularly scattered points S={(xi,yi),i=1,··· ,N}⊂Ω.
We start by obtaining a Delaunay triangulation, (2.11), displayed in Fig. 5. Our derivative
reconstruction points will be the grid points themselves. Let P(x0,y0)∈ S be an interior
point of the grid where we want to reconstruct the partial derivatives. A second order
accurate interpolating polynomial in the vicinity of (x0,y0) is given as

P(x,y)= f (x0,y0)+(x−x0)a10+(y−y0)a01+(x−x0)
2a20

+(x−x0)(y−y0)a11+(y−y0)
2a02 . (3.8)

To obtain the coefficients in (3.8), we need at least five points in the neighborhood of
the point (x0,y0). The points immediately surrounding the point (x0,y0) are a natural
choice, so let us consider the stencil PABCDEF that encloses P(x0,y0) as shown in Fig. 5.
We define this stencil as our primary stencil Snobias = {(xi,yi)}

6
i=1 with the correspond-

ing function values { f (xi,yi)}
6
i=1. Substituting each of the points {(xi,yi, fi)}

6
i=1 into (3.8)

yields a 6×5 system of linear equations, resulting in an over-determined system. In such
a situation, the coefficients are determined by a least squares approximation. (When
the number of neighbors is exactly five, we use interpolation.) Suppose our solution
is (a∗10,a∗01,a∗20,a∗11,a∗02). If f (x,y) is smooth inside this stencil, then P(x,y) in (3.8) is a
second order accurate polynomial approximation for f (x,y) inside the nobias‡ stencil.
Then a second order approximation to the function can be written as (3.8) over the region

‡By nobias we mean the centered stencil.
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ABCDEF with partial derivatives of the function given by

fx(x,y)≈Px(x,y)= a∗10 + 2a∗20(x−x0) + a∗11(y−y0) ,
fy(x,y)≈Py(x,y)= a∗01 + 2a∗02(y−y0) + a∗11(x−x0) .

(3.9)

Now suppose the stencil Snobias has a derivative discontinuity running through it. Then
the constants that we have solved for no longer approximate the corresponding deriva-
tives; instead they are of large order due to the presence of the discontinuity. Therefore
we see that in order to determine the constants correctly, we first need to choose a stencil
that is smooth enough. In this context, we state the following theorem proved in [1]:

Theorem 3.2. Let ǫ be a positive real number and Sn an admissible stencil for degree n such
that there exists an affine transformation A for which A(Sn)∈Pn

ǫ , where Pn
ǫ denotes the set of

possible stencils for which the total degree of P(x,y) is exactly n. If Sn is an admissible stencil of
degree n, then K(Sn) denotes the convex hull of the union of the elements of Sn and h denotes the
diameter of K(Sn). Let (x0,y0) be any point of the set K(Sn) and f a real valued function defined
on an open set Ω of R2 containing K(Sn). We assume that f is Cp−1,p<n, in Ω and, except on
a locally C1 curve, admits a continuous and bounded pth derivative with a jump [Dpu] so that

|[Dpu]|> Mp >0.

Then the highest degree coefficients of the Taylor expansion of P(x,y) ((3.8) for n=2) satisfy

∑
i+j=n

|aij|≥C(n,p,ǫ)
Mp

hn−p
,

where C(n,p,ǫ) is a constant independent of Sn and invariant by affine transformation.

Theorem 3.2 says that if our function has a jump in the pth derivative inside a stencil
of degree n, then the highest degree coefficients in the Taylor’s expansion based on this
stencil will tend to infinity as the mesh size tends to zero. In a stencil where f is smooth,
these coefficients will always remain bounded.

Now suppose f (x) is continuous in the domain (i.e., f ∈ C0) but has potential dis-
continuities in the first derivative. Then Theorem 3.2 applies with p = 1 and n = 2, and
in this case, the second order coefficients in the Taylor’s expansion would be relatively
large (depending on h). Such information can be used to determine a stencil that avoids
the derivative discontinuity.

We consider each triangle of our current stencil, one at a time. Let us start with
△PDC, i.e., T1. We want to solve (3.8), except now using a stencil that is based on T1

which does not include any other triangle from Snobias. Hence, as shown in Fig. 5, we
consider the triangles t1,t2 and t3. We choose the vertices G,H and K of these triangles to
complete our stencil. Our new stencil, therefore, is S1=PDKGHC. We solve the 5×5 sys-
tem that we get from this stencil again to get a new set of constants {a∗10,a∗01,a∗20,a∗11,a∗02}.
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Figure 5: Derivative discontinuity running through the nobias stencil.

We repeat the process for each of the triangles T1,T2,T3,T4,T5 and T6 (and thus, in six
different directions). Next, we consider the following sum for each stencil

∑
i+j=2

|a∗ij |. (3.10)

For the stencils that contain a discontinuity somewhere (for example, the stencil Snobias

and those based on T3,T4,T5 ), (3.10) will be a large value, whereas the stencils that are
completely smooth will result in coefficients that approximate the corresponding partial
derivative. Thus, the stencil that minimizes (3.10) is the direction in which the function is
smoothest. We choose the coefficients resulting from this stencil as our final coefficients
and approximate the x- and y-derivatives at the point P by the corresponding first order
coefficients as

fx(x0,y0)≈Px(x0,y0)= a∗10 ,
fy(x0,y0)≈Py(x0,y0)= a∗01 .

(3.11)

Conceivably, there are several other stencil choices available (eg. stencil ABCDPF) that
were ignored in our method. We limit ourselves to stencil choices described in the pro-
cedure here. In this way, the method remains simple to implement while still allowing
a reasonable range of stencil choices. For points that have fewer than five immediate
neighbors, the ‘nobias’ stencil does not have enough points to determine a second order
approximation. In this case we only consider the different ‘directional’ stencils and then
choose the smoothest of these as our final stencil.

The following example demonstrates the performance of the method:

Example 3.1. f : [−1,1]×[−1,1]→R such that

f (x,y)=

{

−(
√

x2+y2− 1
2)+ 1

12 sin(2π
√

x2+y2), if
√

x2+y2 <
1
2 ,

(
√

x2+y2− 1
2)+ 1

12 sin(2π
√

x2+y2), if
√

x2+y2 ≥ 1
2 .

(3.12)
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(a) given data (b) x-derivative (c) y-derivative

Figure 6: Figures for Example 3.1. (a) Original data; (b) x derivative computed using ENO; (c) y derivative
computed using ENO.
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Figure 7: Cross-sections of fx(x,yj) and fy(x,yj), where j = Ny/2, of Example 3.1 computed using the ENO
method on a uniform grid of 64×64 points.

The data sampled on a grid of randomly distributed N =642 data points is shown in
Fig. 6(a). It is continuous everywhere on the domain. The computed partial derivatives
fx and fy are shown in Fig. 6(b) and (c). The one-dimensional cross sections are displayed
in Fig. 7. Edges in the gradient are detected by taking a two pass approach, just as was
done in one dimension. In the first phase, we preprocess the data using the ENO method
to compute fx and fy. In the second phase, we implement the polynomial annihilation
edge detector on this preprocessed information separately for each gradient. This gives
us the edges in the x− and y−derivatives. The edges from the two directions are then
suitably combined (we used the discrete L2 norm) to produce the desired result. Fig. 8
demonstrates the gradient jump function for Example 3.1 on uniform and random grids
with a total of 1282 and 2562 points. The polynomial annihilation edge detector was used
with orders m = 1,2,3, followed by minmod application, (2.10). In addition, any edges
whose magnitude fell below a threshold, τ, were discarded. Our experiments show that
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Figure 8: Comparisons of the real edge locations with the computed ones. (a) True edges on a uniform grid of
size 128×128; (b) Detected edges on a uniform grid of size 128×128; (c) True edges on a random grid with

a total of 1282 points; (d) Detected edges on a random grid with a total of 1282 points; (e) True edges on a

random grid with a total of 2562 points; (f) Detected edges on a random grid with a total of 2562 points. We
used τ =0.05max(MM(Lm f (x))) for the results displayed in (b), (d) and (f).

Table 1: Performance on uniform grids (left) and non-uniform grids (right) for τ =0.05max(MM(Lm f (x))).

#S points missed false alarms

32×32 5(≈4.55%) 191(≈64.52%)
64×64 10(≈4.65%) 70(≈25.45%)

128×128 42(≈9.81%) 33(≈7.87%)
256×256 96(≈10.91%) 57(≈6.78%)

#S points missed false alarms

322 10(≈9.71%) 285(≈75.39%)
642 10(≈4.52%) 419(≈66.51%)
1282 12(≈2.79%) 251(≈37.57%)
2562 6(≈0.69%) 151(≈14.83%)

the false alarms mostly disappear for

τ >0.1max(MM(Lm f (x))).

Table 1 shows the performance of the method on different grids as we increase the res-
olution. This does not reflect completely how well the method works, however, since
there is only a single point of discontinuity at (x,y) = (0,0), and all of the neighboring
detected discontinuities are counted as false alarms. Enhancements to further reduce the
number of false alarms will be introduced in future investigations. In the case of uniform
grids, the method seems to miss more points in the second and fourth quadrants. This is
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possibly because of the way the Delaunay triangulation was obtained but requires more
investigation. Further, the tables are perhaps not the best way to compare the perfor-
mance of the method for uniform and nonuniform point distributions. For example, it
is entirely possible that a false alarm would affect two cells in the uniform case while
only one cell is affected in the nonuniform case, or vice versa. Similar behavior can be
observed when a point of discontinuity is missed.

4 Conclusion

The preprocessed gradient edge detection discussed in this paper works well and is com-
petitive with other recently proposed techniques. One of the most important assets of
the method is that it is applicable to irregular grids. The edges in the derivatives are
detected with greater accuracy as the resolution is increased. Further, the polynomial
preprocessor is naturally suitable for use with the polynomial annihilation edge detector.
In this paper, we assume that the given data is continuous everywhere. However, in a
more general situation where the function itself has discontinuities, the polynomial an-
nihilation method, [2], can first determine the discontinuities. Their corresponding cells
can subsequently be removed and our gradient preprocessing edge detection method
will then detect derivative jump discontinuities in cells away from the already identified
jump locations. By repeating the process a number of times as demanded by the situation,
jumps in successive higher order derivatives (or gradients) can be located. This method
is particularly useful for identifying smooth regions for solving partial differential equa-
tions. The use of the least squares approach for the often over-determined nobias stencils
in two dimensions might be advantageous when the data is noisy, and will be studied in
future investigations.
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