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Abstract. For the backward diffusion equation, a stable discrete energy regularization
algorithm is proposed. Existence and uniqueness of the numerical solution are given.
Moreover, the error between the solution of the given backward diffusion equation
and the numerical solution via the regularization method can be estimated. Some
numerical experiments illustrate the efficiency of the method, and its application in
image deblurring.
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1 Introduction

Let Ω be a bounded domain in Rn and let ∂Ω be its boundary. Then Σ = Ω×(0,T) is
a bounded domain in Rn+1. We are interested in finding the numerical solution of the
following backward diffusion problem:

∂u

∂t
=

n

∑
k,l=1

∂

∂xk

(
akl(x)

∂u

∂xl

)
−c(x)u, in Σ,

u=0

(
or

∂u

∂ν
=0

)
, on ∂Ω×[0,T),

u(x,T)= g(x), x∈Ω,

(1.1)
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where c(x) is a given non-negative smooth function on Ω, g(x) defines homogeneous
boundary conditions on Ω, i.e.,

g(x)=0 or
∂g

∂ν
=0 on ∂Ω. (1.2)

Moreover,
∂u

∂ν
=

n

∑
k,l=1

akl(x)
∂u

∂xl
nk, (1.3)

where {nk} are the components of the unit normal vector on the boundary ∂Ω and
{akl(x)} is smooth on Ω satisfying, for all x∈Ω,

akl(x)= alk(x), 1≤ k, l≤n,

α0

n

∑
k=1

ζ2
k ≤

n

∑
k,l=1

akl(x)ζkζl ≤α1

n

∑
k=1

ζ2
k , ∀ζ =(ζ1,··· ,ζn)∈Rn,

(1.4)

where 0<α0 <α1 are two constants.

The problem (1.1) is reduced to the isotropic heat diffusion problem if we let akl=c0δkl,
where c0 is a positive constant and δkl is the Kronecker delta defined by

δkl =

{
1, when k= l,
0, when k 6= l.

(1.5)

The backward diffusion problem (1.1) is a typical ill-posed problem in the sense of
Hadamard [9,16]. The uniqueness of the given problem (1.1) can be found in [16], but the
solution of problem (1.1) does not depend continuously on the given final data g(x), and
in general for any given function g(x) with the vanishing boundary condition (1.2), there
is no solution satisfying (1.1). In 1935, Tikhonov [1] obtained the backward diffusion
problem by a geophysical interpretation, namely recovering the geothermal prehistory
from contemporary data.

The problem (1.1) has been considered by many authors since the last century. Af-
ter adding a priori information about the solution of the problem, such as smoothness
or bounds on the solution in a given norm, we can restore stability and construct effi-
cient numerical algorithms. Regularization methods are used by most authors to con-
struct a solution of the ill-posed Cauchy problem for the backward diffusion equation.
The main idea of most algorithms is solving a well-posed problem which is perturbed
from the ill-posed one, and approximating the solution of the original problem with the
solution of the well-posed one. A number of perturbations have been proposed, includ-
ing the method of quasi-reversibility [3], pseudo-parabolic regularization [4], hyperbolic
regularization [15]. Only the differential equation is perturbed in these methods. In [8],
Showalter perturbed the initial condition rather than the differential equation, which has
a better stability estimate than the previous ones.
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Regularization techniques have been well developed for numerically solving the
backward diffusion problem [2, 5, 6, 13, 14, 17]. The difference of all these approaches
lies in the functional selected to be minimized or the perturbation. In [17], we used an
energy bounded solution as a regularization, and presented a possible formulation for
the backward diffusion equation. The effectiveness is shown by examples in [17], while
no order of convergence is proved in [17], and the present work may be considered as a
discrete version of it. Similarly to [17], a given energy functional is minimized in order to
obtain the regularizing approximation to solution of the original problem. The numerical
examples in [17] demonstrate that the approach is very well suited to numerically solve
the ill-posed problem. Furthermore, the error between the solution of the original initial
boundary problem and the discrete regularizing solution can be estimated.

The image deblurring is a important subject in image reconstruction [19–22], and the
backward diffusion equation can be applied to image deblurring. As is well known,
image blurring is regarded as an image degrading procedure which can be described by
convolutions. Therein Gaussian convolution, also known as Gaussian blur, is the most
frequent. The Gaussian blur of an image u can be viewed as the solution of the linear
heat equation with u as the initial value [18]. In image deblurring manner, one is to find
the true image before degrading from the blur one. This is equivalent to solving the
backward diffusion equation, particularly the backward heat equation for Gaussian blur.
In fact, the backward heat equation has been widely investigated in [7, 10, 12, 19, 21, 22]
for image deblurring and enhancement etc.. In this paper we consider the application of
a general backward diffusion equation based on its energy regularization method.

The outline of the paper is as follows. In the next section, we add a priori information
on the solution of the original problem, and obtain some stability properties in discrete
form on the solution. In Section 3, we propose a stable discrete energy regularization
method for the backward diffusion equation, existence and uniqueness of the method
are given. The error estimates between the numerical solution and the solution of the
original problem are given in this section also. In Section 4, we provide some numer-
ical experiments, which show the efficiency of the given method and its use in image
deblurring. Finally, we end this paper with a short concluding section.

2 A finite difference scheme and its stability analysis

For the sake of simplicity, in the problem (1.1), we take n=2, T=1, Ω=(0,1)×(0,1), Σ=
Ω×(0,1). Then problem (1.1) is reduced to the following 2-D backward diffusion prob-
lem:

∂u

∂t
=

2

∑
k,l=1

∂

∂xk

(
akl(x)

∂u

∂xl

)
−c(x)u, in Σ,

u=0 (or
∂u

∂ν
=0), on ∂Ω×[0,1),

u(x,1)= g(x), x∈Ω.

(2.1)
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We will discuss only the vanishing Dirichlet boundary condition in this paper; for the
other boundary condition, we can get similar results without any difficulty.

Suppose that problem (2.1) has an unique solution u(x,t). The main concern in this
paper is to find the numerical approximation of u(x,t), the solution of problem (2.1).
We now construct a finite difference scheme for problem (2.1). Let I, J, and N be three
positive integers and let h1 =1/I,h2 =1/J,τ =1/N be the three mesh sizes. We introduce
the following notations:

Ωh ={ (xi
1,x

j
2)
∣∣∣xi

1 = ih1, x
j
2 = jh2, 0≤ i≤ I, 0≤ j≤ J},

Σh,τ ={ (xi
1,x

j
2,tn)

∣∣∣(xi
1,x

j
2)∈Ωh, tn =nτ, 0≤n≤N}.

For any given mesh function w={wn
i,j, 0≤ i≤ I, 0≤ j≤ J, 0≤n≤N} on Σh,τ, we define:

D−
1 wn

i,j =(wn
i,j−wn

i−1,j)
1

h1
, D+

1 wn
i,j =(wn

i+1,j−wn
i,j)

1

h1
,

D−
2 wn

i,j =(wn
i,j−wn

i,j−1)
1

h2
, D+

2 wn
i,j =(wn

i,j+1−wn
i,j)

1

h2
.

Furthermore, we have the following definitions of corresponding discrete functions of
g(x),akl(x) and c(x):

gi,j = g(ih1, jh2), ci,j = c(ih1, jh2), akl
i,j = akl(ih1, jh2).

Having the above definitions, we can obtain the following finite difference scheme for
backward diffusion problem(2.1):

un+1
i,j −un

i,j

τ
=

2

∑
k,l=1

D−
k

(
akl

i,jD
+
l

un
i,j+un+1

i,j

2

)
−ci,j

un
i,j+un+1

i,j

2
,

1≤ i≤ I−1, 1≤ j≤ J−1, 0≤n≤N−1, (2.2)

un
0,j =un

I,j =un
i,0 =un

i,J =0, 0≤ i≤ I, 0≤ j≤ J, 0≤n≤N−1,

uN
i,j = gi,j, 0≤ i≤ I, 0≤ j≤ J.

It is easy to see that the finite difference scheme (2.2) is unstable, and the solution {u0
i,j}

is not continuously dependent on the final data {gi,j}.
Let us define

Vn
i,j :=

un+1
i,j −un

i,j

τ
, W

n
ij :=

Wn+1
ij +Wn

ij

2
. (2.3)

We can easily get the following finite difference scheme for {Vn
i,j}:

Vn+1
i,j −Vn

i,j

τ
=

2

∑
k,l=1

D−
k

(
akl

i,jD
+
l V

n
i,j

)
−ci,jV

n
i,j,

1≤ i≤ I−1, 1≤ j≤ J−1, 0≤n≤N−2, (2.4)

Vn
0,j =Vn

I,j =Vn
i,0 =Vn

i,J =0, 0≤ i≤ I, 0≤ j≤ J, 0≤n≤N−1.
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Furthermore, for a given integer m (1≤m≤N−1), take integer m̃ (0<m̃≤min{m,N−m}),
and we define

ϕn
i,j =u2m−1−n

i,j , m−m̃≤n≤m.

Then we get the following finite difference scheme for {ϕn
i,j}:

−
ϕn

i,j−ϕn−1
i,j

τ
=

2

∑
k,l=1

D−
k

(
akl

i,jD
+
l ϕn−1

i,j

)
−ci,j ϕ

n−1
i,j ,

1≤ i≤ I−1, 1≤ j≤ J−1, m−m̃+1≤n≤m, (2.5)

ϕn
0,j = ϕn

I,j = ϕn
i,0 = ϕn

i,J =0, 0≤ i≤ I, 0≤ j≤ J, m−m̃≤n≤m.

Theorem 2.1. If the energy norm is defined by

|um|2∗=
I−1,J−1

∑
i=0,j=0

(
2

∑
k,l=1

akl
i,j(D+

l um
i,j)(D+

k um
i,j)+ci,ju

m
i,ju

m
i,j

)
h1h2, (2.6)

then we have the following estimate:

|um|2∗≤|um−1|∗|um+1|∗, 1≤m≤N−1. (2.7)

Proof. By the definition of ϕn
i,j and Vn

i,j, one has

m−1

∑
n=m−m̃

τ

(

∑
ij

ϕn
i,j

Vn+1
i,j −Vn

i,j

τ
h1h2

)

=
m−1

∑
n=m−m̃

τ

(

∑
ij

ϕn
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l V

n
i,j

)
−ci,jV

n
i,j

)
h1h2

)

=
m−1

∑
n=m−m̃

τ

(

∑
ij

V
n
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l ϕn

i,j

)
−ci,j ϕ

n
i,j

)
h1h2

)

= −
m−1

∑
n=m−m̃

τ

(

∑
ij

V
n
i,j

ϕn+1
i,j −ϕn

i,j

τ
h1h2

)
, (2.8)

where the summation for i, j is for 1≤ i≤ I−1, 1≤ j≤ J−1. Moving the right-hand side
terms to the left-hand side, we get

0=
m−1

∑
n=m−m̃

τ

(

∑
ij

ϕn
i,j

Vn+1
i,j −Vn

i,j

τ
h1h2

)
+

m−1

∑
n=m−m̃

τ

(

∑
ij

V
n
i,j

ϕn+1
i,j −ϕn

i,j

τ
h1h2

)

=
m−1

∑
n=m−m̃

τ

(

∑
ij

ϕn+1
i,j Vn+1

i,j −ϕn
i,jV

n
i,j

τ
h1h2

)
. (2.9)
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If we let m̃=1, we can get

m−1

∑
n=m−m̃

τ

(

∑
ij

ϕn+1
i,j Vn+1

i,j −ϕn
i,jV

n
i,j

τ
h1h2

)

=∑
ij

(ϕm
i,jV

m
i,j −ϕm−1

i,j Vm−1
i,j )h1h2 =∑

ij

(um−1
i,j Vm

i,j −um
i,jV

m−1
i,j )h1h2

=∑
ij

um−1
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l um

i,j

)
−ci,ju

m
i,j

)
h1h2

−∑
ij

um
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l um−1

i,j

)
−ci,ju

m−1
i,j

)
h1h2

Rearranging the right-hand side gives

m−1

∑
n=m−m̃

τ

(

∑
ij

ϕn+1
i,j Vn+1

i,j −ϕn
i,jV

n
i,j

τ
h1h2

)

=∑
ij

um
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l um−1

i,j

)
−ci,ju

m−1
i,j

)
h1h2

−∑
ij

um
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l um−1

i,j

)
−ci,ju

m−1
i,j

)
h1h2

=∑
ij

um+1
i,j

2

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l um−1

i,j

)
−ci,ju

m−1
i,j

)
h1h2

−∑
ij

um
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l

um
i,j

2

)
−ci,j

um
i,j

2

)
h1h2

=− 1

2

I−1,J−1

∑
i=0,j=0

(
2

∑
k,l=1

akl
i,j(D+

l um−1
i,j )(D+

k um+1
i,j )+ci,ju

m−1
i,j um+1

i,j

)
h1h2

+
1

2

I−1,J−1

∑
i=0,j=0

(
2

∑
k,l=1

akl
i,j(D+

l um
i,j)(D+

k um
i,j)+ci,ju

m
i,ju

m
i,j

)
h1h2. (2.10)

Using the definition of the energy norm (2.6) and the Cauchy-Schwarz inequality gives
the desired estimate (2.7).

Following some analysis we can get the following Hölder-type estimate:

Theorem 2.2. With the solution u of (2.2) and the functional |·|∗ defined in (2.6), the following
estimates holds:

|un|∗≤|uN |n/N
∗ |u0|1−n/N

∗ , n=0,··· ,N. (2.11)
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Proof. We prove it in three steps.
Step 1. In the case |u0|∗=0, from (2.7) we have

|un|2∗≤|un−1|∗|un+1|∗, ∀1≤n≤N−1.

So we obtain |un|2∗≤0 for all n, which implies that |un|∗ =0. Consequently, the estimate
(2.11) holds.

Step 2. In the case |u0|∗ 6=0, we define

Gn := ln{|un|∗/|u0|∗}, n=0,··· ,N. (2.12)

Obviously G0 =0 and we shall prove that

Gn ≤
t

s+t
Gn+s+

s

s+t
Gn−t (2.13)

for integers s, t and 0 < s≤ N−n, 0 < t≤ n. If the estimate (2.13) is proved, we choose
s= N−n and t=n in the inequality (2.13), to get

Gn ≤
n

N
GN +

N−n

N
G0 =

n

N
GN. (2.14)

The above equality in (2.14) is from the fact that G0 =0. Substituting the definition of Gn

in (2.14), we obtain

ln
|un|∗
|u0|∗

≤ n

N
ln

|uN |∗
|u0|∗

= ln

[
(
|uN |∗
|u0|∗

)n/N

]

⇐⇒ |un|∗
|u0|∗

≤
( |uN |∗
|u0|∗

)n/N

⇐⇒ |un|∗≤|uN |n/N
∗ |u0|1−n/N

∗ . (2.15)

Step 3. The proof of (2.13). In order to prove (2.13), we use the method of mathematical
induction. We first observe that it is satisfied when s= t=1:

Gn≤
1

1+1
Gn+1+

1

1+1
Gn−1. (2.16)

This follows directly from (2.7),

|un|2∗≤|un−1|∗|un+1|∗, (2.17)

and therefore,

Gn = ln
|un|∗
|u0|∗

≤ 1

2
ln

|un−1|∗|un+1|∗
|u0|2∗

=
1

2
ln

|un+1|∗
|u0|∗

+
1

2
ln

|un−1|∗
|u0|∗

=
1

2
Gn+1+

1

2
Gn−1. (2.18)
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Then let us suppose that (2.13) holds for all (s,t) such that s+t≤m, s>0, t>0, where m is
a positive integer. We have to prove that it holds for all (s+1,t) and (s,t+1). From (2.13),

Gn ≤
t

s+t
Gn+s+

s

s+t
Gn−t

≤ t

s+t

(
s

s+1
Gn+s+1+

1

s+1
Gn

)
+

s

s+t
Gn−t. (2.19)

Therefore, (
1− t

s+t

1

s+1

)
Gn≤

t

s+t

s

s+1
Gn+s+1+

s

s+t
Gn−t,

which gives that

Gn ≤ (s+t)(s+1)

s2+st+s

(
t

s+t

s

s+1
Gn+s+1+

s

s+t
Gn−t

)

=
t

s+t+1
Gn+s+1+

s+1

s+t+1
Gn−t. (2.20)

Similarly we can get the following inequality for the case (s,t+1):

Gn≤
t+1

s+t+1
Gn+s+

s

s+t+1
Gn−t−1. (2.21)

Based on what is proved above, we finally obtain

Gn ≤
t

s+t
Gn+s+

s

s+t
Gn−t, s, t≥0, 0< t≤n, 0< s≤N−n. (2.22)

This completes the proof of (2.11).

Based on the definition of the energy norm, we have the following lemma.

Lemma 2.1. The solution of (2.2) satisfies:

|uN |2∗≤|u0|2∗. (2.23)

Proof. Using the definition of the functional |·|∗, we get that

|uN |2∗−|u0|2∗=
N−1

∑
n=0

(
|un+1|2∗−|un|2∗

)

=
N−1

∑
n=0

{
I−1,J−1

∑
i=0,j=0

(
2

∑
k,l=1

akl
i,j(D+

l un+1
i,j )(D+

k un+1
i,j )+ci,ju

n+1
i,j un+1

i,j

)
h1h2

−
I−1,J−1

∑
i=0,j=0

(
2

∑
k,l=1

akl
i,j(D+

l un
i,j)(D+

k un
i,j)+ci,ju

n
i,ju

n
i,j

)
h1h2

}
.
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Rearranging the right-hand side with some standard tricks gives

|uN |2∗−|u0|2∗=−2
N−1

∑
n=0

{

∑
ij

un+1
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l

un+1
i,j

2

)
−ci,j

un+1
i,j

2

)
h1h2

−∑
ij

un
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l

un
i,j

2

)
−ci,j

un
i,j

2

)
h1h2

}

=−2
N−1

∑
n=0

{

∑
ij

un+1
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l un

i,j

)
−ci,ju

n
i,j

)
h1h2

−∑
ij

un
i,j

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l un

i,j

)
−ci,ju

n
i,j

)
h1h2

}

=−2
N−1

∑
n=0

(

∑
ij

(un+1
ij Vn

ij −un
ijV

n
ij )h1h2

)
=−2

N−1

∑
n=0

τ

(

∑
ij

Vn
ij Vn

ij h1h2

)
≤0. (2.24)

This completes the proof of this lemma.

Theorem 2.3. If the solution u of (2.2) also satisfies |u0|2∗≤ M, where M is a constant greater
than 0, and we define two functionals

|u|21,∗=τ
N

∑
n=1

|un|2∗, |un|20 =∑
ij

(un
i,j)

2h1h2, (2.25)

then we have the following stability estimates for the solution in these two given functionals:

|u|21,∗≤
M−ε1

lnM−lnε1
, (2.26)

|un|20≤ ε0+2
M−ε1

lnM−lnε1
, n=1,··· ,N−1 (2.27)

|u0|20≤ ε0+2
M−ε1

lnM−lnε1
+τM, (2.28)

where
ε0 := |uN |20, ε1 := |uN |2∗.

Proof. Summing up (2.11), we obtain

τ
N

∑
n=1

|un|2∗≤τ
N

∑
n=1

(|uN |2∗)n/N(|u0|2∗)1−n/N

= |u0|2∗τ
N

∑
n=1

( |uN |2∗
|u0|2∗

)n/N

= |u0|2∗τ
N

∑
n=1

enln ã/N ,
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where
ã := |uN |2∗/|u0|2∗<1, ln ã<0.

Using the geometrical meaning of the definite integrals gives

τ
N

∑
n=1

|un|2∗≤|u0|2∗
∫ 1

0
etln ãdt

= |u0|2∗
ã−1

ln ã
=

|uN |2∗−|u0|2∗
ln|uN |2∗−ln|u0|2∗

=
∫ 1

0
|uN |2t

∗ |u0|2−2t
∗ dt≤

∫ 1

0
|uN |2t

∗ M1−tdt

=
|uN |2∗−M

ln|uN |2∗−lnM
=

M−ε0

lnM−lnε0
. (2.29)

So the stability estimate (2.26) is proved. Next, we have to prove the second stability
estimate. For k=0,··· ,N−1, we have

|uN |20−|uk|20 =
N−1

∑
n=k

(|un+1|20−|un|20)

=
N−1

∑
n=k

∑
ij

(
(un+1

i,j )2−(un
i,j)

2
)

h1h2 =
N−1

∑
n=k

∑
ij

(
un+1

i,j −un
i,j

)(
un+1

i,j +un
i,j

)
h1h2.

Using the definition of the difference scheme in (2.2), we get

|uN |20−|uk|20

=τ
N−1

∑
n=k

∑
ij

(
2

∑
k,l=1

D−
k

(
akl

i,jD
+
l un

i,j

)
−ci,ju

n
i,j

)(
un+1

i,j +un
i,j

)
h1h2

=−1

2
τ

N−1

∑
n=k

|un+un+1|2∗≥−τ
N−1

∑
n=k

(|un|2∗+|un+1|2∗).

Furthermore, we obtain

|uk|20≤|uN |20+τ
N−1

∑
n=k

(|un|2∗+|un+1|2∗). (2.30)

So that, for k=1,··· ,N−1, we can get

|uk|20≤|uN |20+2τ
N−1

∑
n=0

(|un+1|2∗)= ε1+2|u|21,∗

≤ ε1+2
M−ε0

lnM−lnε0
. (2.31)
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Moreover, for k=0, we have

|u0|20≤|uN |20+2τ
N−1

∑
n=0

(|un+1|2∗)+τ|u0|2∗= ε1+2|u|21,∗+τ|u0|2∗

≤ ε1+2
M−ε0

lnM−lnε0
+τM. (2.32)

This completes the proof of this theorem.

If there is a bound on |u0|2∗ for the solution, then we can see that the solution {un
i,j} is

continuously dependent on the given data {gi,j} for n=1,··· ,N.

3 An energy regularization method and the error estimates

Based on the stability estimates (2.26)-(2.28) proved in the last section, we will propose
an energy regularization method for the numerical solution of the problem (2.1) which is
an ill-posed problem and no classical numerical method in partial differential equations
can be used to get a numerical approximation of it.

Instead of considering the backward diffusion problem, let us focus on the following
finite difference scheme for the forward diffusion problem:

vn+1
i,j −vn

i,j

τ
=

2

∑
k,l=1

D−
k

(
akl

i,jD
+
l vn

i,j

)
−ci,jv

n
i,j,

1≤ i≤ I−1, 1≤ j≤ J−1, 0≤n≤N−1, (3.1)

vn
0,j =vn

I,j =vn
i,0 =vn

i,J =0, 0≤ i≤ I, 0≤ j≤ J, 1≤n≤N,

v0
i,j given, 0≤ i≤ I, 0≤ j≤ J.

For any given grid function

v0
h ={v0

i,j : v0
0,j =v0

I,j =v0
i,0 =v0

i,J =0, 0≤ i≤ I, 0≤ j≤ J},

the problem (3.1) has an unique solution {vn
i,j, 0≤ i≤ I, 0≤ j≤ J, 0≤n≤N}. Let vN

h denote

the grid function {vN
i,j, 0≤ i≤ I, 0≤ j≤ J}. Then we obtain a mapping B,

B : Bv0
h =vN

h . (3.2)

It is easy to see that the operator B is bounded and linear, while the inverse problem is
unstable. To overcome this difficulty, we will introduce an energy regularization method
for it, finding a solution in a small set in which we have some compactness.
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Suppose that the smooth function u∗(x,t)∈ C4,2(Ω×[0,1]) is the unique solution of
the continuous parabolic equation (2.1). Then u∗(x,t) satisfies:

∂u

∂t
=

2

∑
k,l=1

∂

∂xk

(
akl(x)

∂u

∂xl

)
−c(x)u, ∀(x,t)∈Σ,

u=0, on ∂Ω×[0,1] (3.3)

u
∣∣
t=0

=u∗(x,0).

If u∗(x,0) is given, the problem (3.3) is a well-posed problem.
Let {(u∗

h)
n
i,j, 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ n ≤ N} be the solution of the finite difference

problem (3.1) with the initial condition v0
i,j = u∗(ih1, jh2,0). Furthermore, we know that

{(u∗
h)

n
i,j, 0≤ i≤ I, 0≤ j≤ J, 0≤n≤N} is a finite difference approximation of u∗(x,t). Using

the standard methods, we can get the following error estimates between the grid function
u∗={(u∗)n

i,j, 0≤ i≤ I, 0≤ j≤ J, 0≤n≤N}( here (u∗)n
i,j =u∗(ih1, jh2,nτ)) of u∗(x,t) and u∗

h:

|u∗−u∗
h|21,∗=O(h2), (3.4)

|(u∗)N−(u∗
h)

N |2∗= |gh−(u∗
h)

N |2∗=O(h2), (3.5)

|(u∗)n−(u∗
h)

n|20 =O(h4), n=0,··· ,N−1, (3.6)

where h=max(h1,h2,τ) and gh is the discrete grid function of g in (2.2), gh ={gi,j, 0≤ i≤
I, 0≤ j≤ J}. From (3.5), we can assume that there exists a constant C1 >0 such that

|gh−(u∗
h)

N |2∗≤C1(h2), ∀h>0.

Then we consider the finite difference scheme of the backward diffusion problem. Since
the inverse problem is unstable and we can not find the exact grid function v0

h from vN
h =

gh, we have to find an approximation of v0
h in a small set.

For any given ε (C1h2
< ε≪1), we define the set

Kε,h :={v0
h

∣∣|Bv0
h−gh|2∗≤ ε}, (3.7)

which is a non-empty closed convex subset. The set is non-empty because

|gh−(u∗
h)

N |2∗≤ ε,

and (u∗
h)

0 belongs to Kε,h.
Now we consider the following energy regularization problem:

Find u0
h∈Kε,h, such that |u0

h|∗= min
v0

h∈Kε,h
|v0

h|∗. (3.8)

For fixed ε > C1h2, problem (3.8) is a well-posed problem, there exists a unique solution
u0

h∈Kε,h, and the associated grid functions at all time steps {un
h , 0≤n≤N} are obtained.

We now claim that un
h is an approximation of the solution u∗(x,t) of the continuous

problem (2.1).
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Theorem 3.1. Let C1h2
<ε≪1 be any given constant. Suppose that u∗(x,t) is the solution of the

continuous problem (2.1), u∗
h is the solution of the finite difference problem (3.1) with the initial

condition v0
i,j =u∗(ih1, jh2,0), and u0

h is the solution of the minimization problem (3.8) with {un
h}

the grid functions at all time steps. Then the solution uh = {un
h} is an approximation of u∗

h and
satisfies the following error estimates:

|u∗−uh|21,∗≤C2h2+8
M−ε

lnM−lnε
, (3.9)

|(u∗)n−un
h |20≤C5h4+16

M−ε

ln M−lnε
+2C4ε, n=1,··· ,N−1 (3.10)

|(u∗)0−u0
h|20≤C5h4+16

M−ε

ln M−lnε
+2C4ε+8τM, (3.11)

where |(u∗
h)

0|2∗= M and C2, C4, C5 are constants independent of h and ε.

Proof. For u0
h and the associated grid functions at all time steps un

h , one has

|u0
h|2∗≤|(u∗

h)
0|2∗= M. (3.12)

Set

MF := |(u∗
h)

0−u0
h|2∗, εF := |(u∗

h)
N−uN

h |2∗. (3.13)

Then
MF ≤4M, εF = |((u∗

h)
N−gh)−(uN

h −gh)|2∗≤4ε.

Using the inequality (2.26) proved in Section 2, we obtain

|u∗
h−uh|21,∗≤

4M−εF

ln4M−lnεF
. (3.14)

Using the representation

M−εF

lnM−lnεF
=
∫ 1

0
Msε1−s

F ds, (3.15)

we finally obtain

|u∗
h−uh|21,∗≤

4M−εF

ln4M−lnεF
=
∫ 1

0
(4M)sε1−s

F ds

≤
∫ 1

0
(4M)s(4ε)1−sds=

4M−4ε

ln4M−ln4ε
=4

M−ε

lnM−lnε
. (3.16)

Combining the estimate (3.16) with the error estimate (3.4) together with the triangle
inequality gives

|u∗−uh|1,∗≤|u∗−u∗
h|1,∗+|u∗

h−uh|1,∗. (3.17)
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We obtain the following estimate of the error between the solution and the numerical
result:

|u∗−uh|21,∗≤C2h2+8
M−ε

lnM−lnε
, (3.18)

where C2 is a positive constant independent of h and ε. Using the equivalent norm theo-
rem we can find a constant C3 >0 such that

|(u∗
h)

N−uN
h |20≤|(u∗

h)
N−uN

h |21≤C3|(u∗
h)

N−uN
h |2∗. (3.19)

From the stability estimates proved in Theorem 2.3, we have the error estimates

|(u∗
h)

n−un
h |20≤C4ε+8

M−ε

ln M−lnε
, n=1,··· ,N−1 (3.20)

|(u∗
h)

0−u0
h|20≤C4ε+8

M−ε

ln M−lnε
+4τM, (3.21)

where C4 is a positive constant independent of ε. Similarly, combining the estimates
(3.20)-(3.21) with the estimates (3.6) and using the triangle inequality

|(u∗)n−un
h |0≤|(u∗)n−(u∗

h)
n|0+|(u∗

h)
n−un

h |0, (3.22)

we have the following estimates:

|(u∗)n−un
h |20≤C5h4+16

M−ε

lnM−lnε
+2C4ε, n=1,··· ,N−1 (3.23)

|(u∗)0−u0
h|20≤C5h4+16

M−ε

lnM−lnε
+2C4ε+8τM. (3.24)

This completes the proof of this theorem.

In fact, the upper bound of the error can be also given by

|(u∗)0−u0
h|20≤C

(
h4+ε+τ+

M−ε

lnM−lnε

)
, (3.25)

from which we can easily see that the value of ǫ has a strong influence on the bound of
the error. However, as demonstrated in (3.7), the value of ǫ cannot been arbitrarily small.

4 Numerical examples

4.1 Test examples

The examples chosen here are such that the solutions are already known. We consider
the following problem:

ut =α∆u, (x,y,t)∈ (0,π)×(0,π)×(0,1),

u
∣∣
x=0

=u|x=1 =u|y=0 =u|y=1 =0, (4.1)

u
∣∣
t=1

=sinmxsinmy, (x,y)∈ (0,π)×(0,π),
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Figure 1: Numerical result at t=0.

where α>0 is a constant. The unique solution of problem (4.1) is

u(x,y,t)= e2α(1−t)m2
sinmxsinmy. (4.2)

For numerical approximations, we discretize the problem by a uniform mesh of size h=
π/N in the x-direction and y-direction and a time mesh of size τ, and obtain a numerical
solution u0

h at t=0 to the problem (4.1). The L2 norm errors |(u∗)0−u0
h|2 for m=1, α=1/4

are shown in Table 1. The numerical results demonstrate a convergence rate of
√

ǫ as N
is sufficiently large.

Fig. 1 shows the numerical results at t = 0 (m = 1, α = 1/4, N = 16, ǫ = 10−4 and
m=5, α=1/100, N =40, ǫ=10−2). These results are found to be in good agreement with
the exact solution (4.2).

Table 1: L2 norm errors for problem (4.1) (m=1).

ǫ\N 8 16 32 64

10−1 3.845×10−1 3.721×10−1 3.690×10−1 3.688×10−1

10−2 1.323×10−1 1.200×10−1 1.168×10−1 1.166×10−1

10−3 5.260×10−2 4.023×10−2 3.711×10−2 3.693×10−2

10−4 2.738×10−2 1.501×10−2 1.189×10−2 1.172×10−2

10−5 1.941×10−2 7.036×10−3 3.919×10−3 3.745×10−3

In the diffusion equation, the higher the frequency of the signal is, the faster the atten-
uation. Therefore, if m is large and the diffusion time is long, the given final value will be
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much smaller than the solution of the backward diffusion equation. This results in that
the solution overflows in current computers with finite wordlength. In summery, the
computation becomes more and more difficult as the frequency of the final value grows.

4.2 Examples in image deblurring

In this subsection, we are concerned with images which are degraded by the diffusion
problem (1.1). We assume that the original images are of high quality in focused images.
After time T, the images are blurred by diffusion (1.1) with the second boundary condi-
tion ∂u

∂ν = 0, and we obtained blurred images g(x), which are what we observed at time
T. The problem is how to get the original images u0(x) from the known blurred images
g(x), which is equivalent to how to obtain the numerical solution of the backward dif-
fusion problem. We use the energy regularization method derived in the last section to
reconstruct the images.

In Figs. 2 and 3, we show two examples using the isotropic diffusion equation, which
is also known as the heat equation. In each figure, three pictures are given. Therein (a) is
the true image; while (b) is the blurred version uT(x), which is from the original image
(a) by the diffusion equation (2.1). The right one (c) is the reconstructed image obtained
by solving the backward diffusion equation from the blurred image (b).

(a) (b) (c)

Figure 2: Deblurring using the backward isotropic diffusion equation, left: original image, middle: blurred image,
right: recovered image.

In our last example we illustrate the effect of anisotropic blurring and solving the
corresponding backward problem. In Fig. 4, (a) is the true image; while (b) is the blurred
version which is obtained via anisotropic diffusion equation. Fig. 4 (c) is the recovered
image by our method.
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(a) (b) (c)

Figure 3: Deblurring using the backward isotropic diffusion equation, left: original image, middle: blurred image,
right: recovered image.

(a) (b) (c)

Figure 4: Deblurring using the backward anisotropic diffusion equation, left: original image, middle: blurred
image, right: recovered image.

5 Conclusion

We proposed a discrete energy regularization method for the backward diffusion equa-
tion by finite difference methods. We prove the existence and uniqueness of the solution
to this discrete problem. In addition, the error estimates are given. Also, in the exam-
ple section, we apply this algorithm in image deblurring, and the numerical examples
demonstrate the efficiency of this method. Many problems, such as using this method
for restoration of noisy blurred image, are still open.
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[4] H. Gajewski and K. Zaccharias, Zur Regularisierung einer Klass nichtkorrekter Probleme

bei Evolutiongleichungen, J. Math. Anal. Appl., 38(1972), 784-789
[5] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, Winston and Sons, Wash-

ington, 1977
[6] H. Han, The finite element method in a family of improperly posed problems. Math. Comput.,

38(1982), 55-65
[7] J. J. Koenderink, The structure of images, Biol. Cybern., 50(1984), 363-370
[8] R. E. Showalter, Cauchy problem for hyper-parabolic partial differential equations, in Trends

in the Theory and Practice of Nonlinear Analysis (Elsevier), 1984
[9] J. V. Beck, B. Blackwell and C. R. St. Clair, Inverse heat conduction ill-posed problem, Wiley-

Interscience, New York, 1985
[10] M. Bertero, T. A. Poggio and V. Torre, Ill-posed problems in early vision, Proc IEEE, 76-

8(1988), 869-889
[11] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE

Trans. on PAMI, 12-7(1990), 629-639
[12] B. M. Romey, Geometry-driven diffusion in computer vision, Computational imaging and vision.

Kluwer Academic Publishers, 1994
[13] H. Han, D. B. Ingham and Y. Yuan, The boundary element method for solution of the back-

ward heat conduction equation, J. Comput. Phys., 116(1995), 292-299
[14] T. I. Seidman, Optimal filtering for the backward heat equation, Siam J. Numer. Anal.,

33(1996), 162-170
[15] K. A. Ames and S. S. Cobb, Continuous dependenc on modeling for related Cauchy prob-

lems of a class of evolution equations, J. Math. Anal. Appl., 215(1997), 15-31
[16] V. Isakov, Inverse problems for partial differential equations, Springer, Berlin, 1998
[17] H. Han and G. Hu, Stabilized numerical approximations of the backward problem of a

parabolic equation, Numer. Math. J. Chin. Univ.(Engl. Ser.), 10-2(2001), 182-192
[18] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differen-

tial Equations and Calculus of Variations, Springer, 2002
[19] A. Buades, B. Coll and J. M. Morel, Image enhancement by non-local reverse heat equation,

Preprint CMLA 2006-22, 2006
[20] D. Krishnan, P. Lin and X.-C. Tai, An efficient operator-splitting method for noise removal

in images, Commun. Comput. Phys., 1(2006), 847-858
[21] P. Favaro and S. Soatto, 3-D Shape Estimation and Image Restoration Exploiting Defocus

and Motion-Blur, Springer, 2007
[22] P. Favaro, S. Soatto, M. Burger and S. Osher, Shape from defocus via diffusion, IEEE Trans.

on PAMI, accepted


