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Abstract. Accurate prediction of the sawtooth cycle [1] is an important test for non-
linear MHD codes. The sawtooth cycle in the CDX-U tokamak [2], chosen because
its small size and low temperature allow simulation using actual device parameters,
has been an important benchmark for the comparison of the M3D [3] and NIMROD [5]
codes for the last several years. Successive comparisons have led to improvements and
refinements in both codes. The most recent comparisons show impressive agreement
between the two codes both on the linear instability and on the details of nonlinear
cyclical behavior. These tests are somewhat idealized and do not yet agree quantita-
tively with the experimentally observed sawtooth period. We expect a second gener-
ation of CDX-U sawtooth benchmarks based on an analytically specified equilibrium,
with source terms that show greater fidelity to the physical device, to produce better
agreement.

PACS: 52.55.Fa, 52.65.Kj
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1 Introduction

Verification and validation of 3D nonlinear MHD initial value codes is a particularly chal-
lenging task. The inherent high sensitivity of nonlinear systems to small differences in
initial conditions makes it difficult to distinguish the effects of differences in represen-
tation or time-advance scheme from differences in fidelity to the physical model when
making detailed comparisons of the predictions of two different codes for a particular
instability or other event. It is still more difficult to compare such predictions directly
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with experimental observations, for which measurement error leads to far greater uncer-
tainty regarding the initial conditions. Nevertheless, such efforts are necessary to justify
confidence in the predictive capabilities of these codes.

A program of verification and validation has been undertaken for the two workhorse
3D MHD codes of the SciDAC Center for Extended MHD Modeling (CEMM) [4], M3D [3]
and NIMROD [5]. The nonlinear instability chosen for the test is the resistive internal
kink mode that gives rise to the sawtooth crash [1], a fundamental dynamic of the induc-
tive tokamak discharges these codes are intended to model. The crash involves magnetic
reconnection across a thin helical current sheet, a structure whose size varies roughly in-
versely with the plasma temperature. For large magnetic fusion experiments, the high
temperatures result in a current sheet too thin to be practically resolved by present-day
codes. Some small tokamaks, however, such as CDX-U [2], are cold enough to have re-
solvable current layers and hence make good targets for validation studies using actual
device parameters. CDX-U was thus chosen for this study.

In this article, we present results of the first successful CEMM cross-code nonlinear
verification benchmark: the CDX-U sawtooth cycle. Because this problem should also be
of value to the larger MHD modeling community, we also propose a new version of the
benchmark with an analytically specified initial state. Preliminary results with this new
equilibrium are then presented.

2 Statement of the problem

The CDX-U tokamak is a small (R0=33.5 cm), low-aspect-ratio (R0/a=1.5) device with a
typical operating temperature of about Te =100 eV. Modeling 3D macroscopic activity in
the experiment requires the specification of an initial equilibrium as well as sources and
transport coefficients. The initial equilibrium configuration and sources are provided by
running the 2D transport timescale code TSC [6] to match typical traces of the plasma cur-
rent Ip(t) from the experiment. A sequence of experimentally relevant equilibria, each at
a fixed time, are obtained from the TSC computation as described in [7]. We note that as
the central current density increases in the TSC calculation, the central safety factor q0, a
measure of the pitch of the local magnetic field, falls below unity, the condition for onset
of the resistive internal kink instability. A single kink-unstable TSC equilibrium is then
chosen to be used as the initial condition for a complete run of each of the two 3D non-
linear codes. For the initial benchmark, we initialized the 3D codes with an equilibrium
in which q0 =0.92.

Both M3D and NIMROD are parallel 3D nonlinear magnetohydrodynamic (MHD)
codes in toroidal geometry, solving a superset of the resistive MHD equations that de-
scribe the behavior of a collisional magnetized plasma on timescales long compared to
electrostatic oscillations but typically short compared to resistive diffusion. The equa-
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tions solved by each code are (mks units)

∂ρ

∂t
+∇·(ρv)=0, (2.1)

ρ

(

∂v

∂t
+v·∇v

)

= J×B−∇p+µ∇2v, (2.2)

∂B
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)

+κ⊥∇⊥

(

p

ρ

)]

. (2.5)

Here ρ is the number density, v is the bulk velocity, J is the current density, B is the
magnetic field, p is the pressure, µ is the viscosity, η is the resistivity, γ = 5/3 is the
ratio of specific heats, and κ‖ and κ⊥ are coefficients of heat diffusion perpendicular and
parallel to the magnetic field respectively.

While they solve the same equations, the two codes differ in the variables being ad-
vanced in time, in the method of discretization, and in the numerical algorithms em-
ployed. In the M3D code, the magnetic field is kept divergence-free analytically by the
use of potential functions: substituting

B=∇ψ×∇φ+
1

R
∇⊥F+(R0+ Ĩ)∇φ, (2.6)

into (2.3), where φ is the toroidal angle, results in equations for advancing the poloidal
flux ψ and the non-vacuum toroidal field Ĩ in time along with the auxiliary elliptic solve

∇2
⊥F=−

1

R

∂ Ĩ

∂φ
. (2.7)

In NIMROD, the field is represented using the primitive variables, and a diffusion-based
method is used to minimize magnetic divergence errors [5]. Both codes use finite el-
ement approaches on 2D poloidal meshes, but M3D uses linear basis functions on an
unstructured triangular mesh whereas NIMROD uses high-order finite elements on a
structured rectangular mesh. In NIMROD, the toroidal dimension has a spectral repre-
sentation, with each 2D mesh corresponding to a particular toroidal mode number, while
M3D uses finite differences toroidally, with each 2D mesh corresponding to a particular
value of toroidal angle φ. In NIMROD, the linear terms of (2.1)-(2.5) that apply to in-
dividual mode numbers and the nonlinear terms that couple different modes together
are computed separately, while in M3D these terms are not separated. The NIMROD
time advance for the linear terms is fully implicit while M3D’s scheme is only partially
implicit, with a time step limited by the Courant condition on the shear Alfvén wave.
As a result of these design choices, NIMROD is considerably more efficient than M3D at
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computing linear modes but potentially less so in the nonlinear regime when several dif-
ferent toroidal harmonics reach comparable amplitudes. NIMROD typically runs faster
on cases like the one described here.

For the initial benchmark, a non-evolving Spitzer resistivity profile of the form

η ∝ T−3/2
eq

was used, normalized so that the central Lundquist number

S≡
τR

τA
=

a2BT

ηR0

√

µ0

ρ
=1.94×104.

The viscosity was held constant and uniform with a central Prandtl number PN ≡ µ/η
of 10. A high, uniform, and constant value of κ⊥ was chosen, equivalent to a physi-
cal value of approximately 200 m2/s. The two codes differ in their implementation of
parallel heat diffusion, with M3D using an “artificial sound wave” method in which a
hyperbolic rather than parabolic operator convects heat along the field while NIMROD
evaluates the actual diffusion term in (2.5). The parallel heat conduction parameter could
therefore only be approximately similar in the two runs; it was chosen to correspond to
an electron thermal speed six times the Alfvén speed. As a substitute for Ohmic heating
and inductive current drive, source terms were added in the field (2.3) and energy (2.5)
equations to drive these respective profiles toward their initial values, i.e., in the M3D
code

ψ̇= ···+η∆
∗ψ (2.8)

becomes

ψ̇= ···+η∆
∗(ψ−ψ0), (2.9)

where ψ0 is the initial poloidal flux, presumed to be the equilibrium value, and similarly
for the toroidal field and temperature variables. These sources remain switched on at
constant strength throughout the duration of the simulation.

3 Initial study

The first comparison made was of the linear n=1 eigenmode structure and growth rates.
Agreement here was good (Fig. 1). Both codes found the most unstable n = 1 mode to
have dominant poloidal mode number m=1 (the expected internal kink mode localized
interior to the q=1 surface). M3D predicted a normalized growth rate of γτA =5.1×10−3,
and NIMROD γτA=4.4×10−3. Both codes found the equilibrium to be stable with respect
to all higher-n modes at the chosen κ⊥.
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(a) (b)

Figure 1: Filled contour plots of toroidal current density on a constant-φ section for the n=1 eigenmode of the
q0 =0.92 CDX-U equilibrium. (a) M3D result. (b) NIMROD result.

(a) (b)

Figure 2: Time history of kinetic energy by toroidal mode number during the first two sawtooth crashes in an
earlier iteration of the nonlinear CDX-U benchmark. (a) M3D result (normalized units). (b) NIMROD result
(mks units). Highest peaks in both plots are for n = 1; successively lower peaks are in order of increasing n,

except for n=0, which is the curve at constant K.E.=1.2×10−6 in a and is labeled in b.

The initial nonlinear comparison was less successful. A previously published set of
results from M3D reproduces many of the expected features of the sawtooth cycle [7] but
shows disagreement with the NIMROD prediction (Fig. 2).

While the observation of Kadomtsev reconnection [8], temperature flattening, and re-
peating cycles was promising, this attempt had to be regarded as a failure with respect to
code verification. As illustrated in the figures, the two predictions did not agree on the
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(a) (b)

Figure 3: Profile of toroidal current density along midplane at several times during nonlinear 2D M3D run be-
ginning with unperturbed CDX-U equilibrium. (a) Original C equation. (b) Improved, conservative C equation.

degree of damping of oscillation strength between crashes, on the sawtooth period: 480
Alfvén times (160 µs) for M3D vs. 800 τA≈266 µs for NIMROD. Nor was there close agree-
ment on the growth rate of the n=1 mode in the linear phase, which remains constant in
NIMROD but increases in time significantly in M3D. Further, there were indications that
the M3D case was under-resolved and not convergent as the number of toroidal zones
was increased.

The changing growth rate effect in M3D was found to arise from an unphysical steady
decrease in the central value of the safety factor q0 arising from poor conservation prop-
erties of M3D’s treatment of toroidal current density in the presence of a current source
term and equilibrium flow. This poor conservation was shown to result in a significant
increase in the central current density over time (and hence a decrease in q0) even in a
two-dimensional nonlinear simulation with no n=1 activity. It arose numerically from a
scheme in which the elliptic operator

∆
∗≡R2∇·

( 1

R2
∇

)

applied to the expression for the rate of change of the poloidal flux function ψ(x,t) was
evaluated algebraically and then assembled term by term to compute the rate of change
of the toroidal current density function

C≡−RJφ =∆
∗ψ+

1

R

∂F

∂z
.

Following the first M3D-NIMROD comparison, it was realized that much more accurate
conservation could be achieved by composing ψ̇ term by term instead and then eval-
uating the elliptic operator on the sum of the terms numerically. Fig. 3 illustrates the
improvement in conservation accomplished by this change.
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Other improvements that were found to be required included the substitution of an
isotropic viscosity operator in M3D for the perpendicular operator that was originally
in use; and a more accurate equilibrium calculation in NIMROD in which the parallel
component of the current density was recomputed from the equilibrium magnetic field
on initialization rather than interpolated from the input file using cubic splines. Finally,
a scaling study in q0 revealed that the n = 1 growth rate was highly sensitive to this
parameter and that the q0=0.92 equilibrium was very close to marginal stability with the
transport coefficients listed earlier, making detailed agreement especially challenging.
Accordingly, a different initial equilibrium was extracted from the same TSC sequence,
with q0=0.82, making it further from marginal stability and thus more robustly unstable.
It was found that the codes were now in satisfactory agreement on the n =1 eigenmode
and growth rate.

4 Agreement

The results obtained after the aforementioned fixes are shown for comparison in Fig. 4.
It is clear from the figure that the codes are now in substantial, detailed agreement. Like
NIMROD, M3D now conserves q0 in the absence of mode activity, and thus shows a
constant linear growth rate for the n=1 mode until just before the first crash. The codes
also agree in the relative magnitudes of the various toroidal modes before, during, and
after the crashes; on the detailed time behavior of the low-n modes; on the degree of
damping of the oscillation in successive cycles, and on the cycle period of ∼ 600τA (200
µs). It has also been confirmed that the M3D result is now converged toroidally.

When we investigate the actual plasma state at various corresponding times in the
two runs, we also find detailed agreement (Figs. 5-6). This agreement constitutes a suc-
cessful verification of the two codes. However the present modeling is insufficient to
produce quantitative agreement with the experimental results for the two predictions
that can be compared directly with soft X-ray data from the experiment: the sawtooth
period and the crash time. The predicted period of 200 µs is significantly less than the
observed 500 µs sawtooth period in CDX-U, and the predicted crash time is a much larger
fraction of the total cycle time than is observed in the device. Hence this study cannot
be considered a successful validation of the model. It appears likely that an explanation
for the discrepancy in time scales must come at least in part from the artificial nature
of the source terms used, e.g., in (2.9). A more refined model and a set of initial and
boundary conditions that show greater fidelity to the experimental conditions are there-
fore required.

5 Conclusions and future plans

Our original study demonstrated that detailed nonlinear 3D MHD simulation of the saw-
tooth cycle with representative device parameters was possible for a small device and
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(a) (b)

Figure 4: Time history of normalized kinetic energy by toroidal mode number during the first three sawtooth
crashes in the present iteration of the nonlinear CDX-U benchmark. (a) M3D result. (b) NIMROD result.

Figure 5: Poincaré sections showing magnetic flux surfaces at several time instants during the M3D (top) and
NIMROD (bottom) sawtooth cycles. Left: late linear phase. Center: at culmination of crash. Right: Early
recovery phase following crash.
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Figure 6: Temperature contours at two times during the M3D (top) and NIMROD (bottom) sawtooth cycles.
Left: at culmination of crash. Right: Early recovery phase following crash.

with sufficient computing power, and that it was capable of reproducing qualitatively all
the salient features of the instability. We have now shown that cross-code verification is
possible in the nonlinear regime as well, with close quantitative agreement achieved in
spite of the numerous differences in numerical implementation. This exercise was ex-
tremely valuable for both groups of developers in that it led to greater understanding
(and in many cases improvements) of each code’s behavior, and ultimately to enhanced
confidence in the accuracy of their predictions. It also illustrated the necessity of thor-
ough, clear communication in the preparation of such a complex nonlinear benchmark.

Based on the lessons learned in the successful verification exercise, and out of a desire
for a successful validation as well, we propose a new more rigorous and more physically
valid test based on the same instability. The next iteration of the CDX-U sawtooth bench-
mark matches the physics of the experiment more closely in terms of boundary condi-
tions, sources, and transport coefficients so that these differences do not interfere with
a successful validation. The new initial equilibrium state is defined in a simple analytic
way, enabling any other nonlinear predictive tokamak MHD code to be tested on the
same problem, making possible a standard community-wide benchmark.

CDX-U is a small, inductively-driven short-pulse tokamak without any auxiliary heat-
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Table 1: Parameters for the next equilibrium for the CDX-U sawtooth benchmark.

Quantity Value

Major radius R0 0.341 m

Minor radius a 0.247 m (aspect ratio =1.38)

Ellipticity κ 1.35

Triangularity δ 0.25

Central temperature (Te =Ti) 100 eV

Normalized central pressure µ0 p0 7.5×10−4 (implies ne0 =ni0 =1.863×1019m−3 )

α Parameter in pressure equation∗ 0.1

Vacuum value g0 of R·BT 0.04252 T·m
Effective ion charge ZEFF 2.0

Loop voltage VL 3.1741 V (implies q0≈0.82)
∗p(ψ)= p0[αψ̃+(1−α)ψ̃2], where ψ̃≡ (ψ−ψlimiter)/(ψaxis−ψlimiter).

ing or current drive sources. In contrast, the heat and current sources present in the
previous test always drive these profiles toward their initial equilibrium states, which is
unphysical. For this iteration, all heating is now self-consistent ohmic heating, with a
resistivity profile that evolves to track the temperature with a T−3/2 dependence, rather
than remaining static as before. The very high, uniform perpendicular heat conduction
is replaced by a static profile that more accurately represents what was inferred from
the experiment. Current drive is now purely inductive, with a loop voltage applied as a
boundary condition and regulated to provide constant power input during the run.

The new equilibrium is specified analytically in Table 1 and may be computed with
any equilibrium code, such as JSOLVER [9]. The initial, uniform loop voltage is that
needed to drive the initial toroidal current against the initial resistance:

Vloop =
2πη〈J·B〉

〈B·∇φ〉
, (5.1)

where the brackets denote the flux surface average. Subsequently, the voltage should
track the evolving current to maintain constant input power. The perpendicular heat
conduction profile should be computed self-consistently to provide a steady state in the
presence of the ohmic heating arising from the current density and temperature distribu-
tions — if the random heat flux is

q=−κ⊥∇⊥T,

then we can integrate the surface average of the energy equation to get

κ⊥ =
1

T′〈|∇ψ|2〉

[

Vloop

2πµ0

〈

|∇ψ|2

R2

〉]

, (5.2)
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where the prime denotes the derivative with respect to the poloidal flux function ψ and
the particle flux corresponding to Pfirsch-Schlüter diffusion has been neglected.

The plasma boundary is parameterized as follows based on the values in the table:

R(θ)= R0+acos[θ+δsin(θ)],

z(θ)= aκsin(θ). (5.3)

The temperature profile is taken to be linear in the normalized flux,

T(ψ)=T0ψ̃, (5.4)

so that the density becomes

n(ψ)=
p

2kBT
=

p0

2kBT0
[α+(1−α)ψ̃], (5.5)

where kB = 1.6022×10−19 J/eV is Boltzmann’s constant and the parameter α is defined
in Table 1. The Spitzer resistivity profile has a coefficient of 1.06×10−6 ZEFF Ω-m, which
assumes the Coulomb logarithm lnΛ=20.

Initial axisymmetric nonlinear M3D results with this new equilibrium show promise,
confirming that the steady state can be maintained without conventional sources. Pre-
liminary low-n linear results now suggest that this equilibrium is susceptible to the same
(1,1) mode as the previous one, and that its higher-n modes are unstable at the same ra-
tional surface, with smaller growth rates. We intend to pursue this instability into the
nonlinear regime once again with both codes and hope to achieve a three-way agreement
between them and the experiment. We also invite other members of the tokamak mod-
eling community to adopt this test problem as a nonlinear benchmark and to share their
results.

The goal of this research is ultimately to develop a predictive capability relevant to
burning plasma fusion experiments that are much larger and much hotter than CDX-U.
While this verification result is gratifying, simple scalings indicate that many orders of
magnitude more computing power would be needed to apply these codes to those ex-
periments in a straightforward way using their real physical parameters. While some of
this increase may come from future hardware, much of it must be achieved by advances
in numerical methods, such as the use of greater implicitness, adaptive mesh refinement,
and more efficient linear solvers.
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